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Abstract

Environment representation and mapping play a
key role in the navigation of mobile robots, in par-
ticular in outdoors scenarios that are becoming in-
creasingly important fostered by a large number of
challenging applications. The main goal of this pa-
per is to use sensor fusion and feature extraction to
provide the minimal and sufficient topological repre-
sentation of an environment to support the navigation
of a mobile robot in unstructured environments. Ex-
perimental results illustrate the performance of the
representation procedure.

1 Introduction

The choice of the environment representation is es-
sential in the design of any navigation algorithm for
mobile robots, mainly in hostile environments. A topo-
logical map is a representation of an environment with
no metric information. Topological maps provide use-
ful abstractions of an environment, showing natural or
artificial features that characterize particular locations
or places.

Given the complexity of unstructured environments
and its inherent uncertainty, the probabilistic approach
to robotics scales better to real-world applications than
the deterministic algorithms. The robots interact with
the world through the actuators and get feedback from
the sensors. To perform a mission, the robots need an
abstraction of the world to localize themselves and to
reach a given target according to the allocated mis-
sion. Asreferred in [4] the probabilistic paradigm pays
tribute to the inherent uncertainty in robot perception
and control relying on the selected representation of
uncertainty when determining what to do.

The main goal of mapping is to provide a suffice
accuracy map for autonomous navigation which can
be achieved by a probabilistic approach on the world

representation.

In [5], the authors describe an high accuracy out-
door navigation system based on standard dead reck-
oning sensors, laser range and bearing information.
The main tool is the Extended Kalman Filters (EKF).
The application provides the pose (position and orien-
tation) of the vehicle, and the position of the trunks
(natural landmarks). Due to the landmark selection,
the algorithm is extremely dependent on the match-
ing performance. Moreover, the algorithm is compu-
tational expensive being quadratic in the number of
landmarks.

In [2] this computational burden is overcome by the
implementation of a Fast SLAM algorithm. While
Kalman filter-based algorithms are quadratic in the
number of landmarks to incorporate each sensor ob-
servation, the FastSLAM algorithm estimates recur-
sively the full posterior distribution over robot pose
and landmarks, this estimation being logarithmically
scaled with the number of landmarks. The algorithm
is based on the Rao-Blackwellized representation of
the integrating particle filter and on Kalman filter rep-
resentations. The algorithm shows limitations, in par-
ticular the number of landmarks increases when com-
pared to the EKF. These limitations are also draw-
backs for outdoors applications embodying natural fea-
tures.

In the challenging applications of mobile robots in
large outdoors scenarios, where complexity and un-
certainty are present, it is necessary to overcome the
drawbacks imposed by the large number of landmarks
and/or features available. All the available informa-
tion has to be condensed and recorded into a map
able to provide an abstraction of the environment for
autonomous navigation.

The novelty of this paper is a procedure to map
outdoors environments in a topological representation,
using a probabilistic approach. The topological map
collects environment features and properties provided



by the sensor fusion procedure. The algorithm is in-
tended to adapt to the available sensors, this meaning
that adding or removing different types of sensors en-
larges or reduces the number of properties available to
the algorithm. Based on the amount of available infor-
mation, the algorithm builds the environment repre-
sentation for mobile robot navigation as a set of states,
where each state is represented by a set of Gaussians.
These pdfs translate numerically the features that rep-
resent the environment by their means and covari-
ance matrices. The main tool used to accomplish
the mapping procedure is a modified version of the
Expectation-Maximization algorithm, where the stan-
dard version is referred in [6] and [8].

The paper is organized as follows. Section 2 presents
an overview of topological world representations and
introduces the notation of the map’s parameters that
will be used to support map building. With the a-
dopted world representation, the map building is dis-
cussed in Section 3. Experimental results obtained in
a real indoors environment are presented in Section 4.
Section 5 concludes the paper and presents directions
for further developments, in particular the extension
of the experiments for outdoors environments.

2 Topological Maps

A topological map is a representation of an environ-
ment with no metric information available, showing
physical (natural or artificial) features that character-
ize particular locations or places. The map expresses
a functional relationship among relevant features with
a resolution that is proportional to the complexity of
the environment’s representation. The structure of
a topological map relies on a set of nodes that, in
this work, represent places in an outdoor environment.
Each node is defined as a state of the map and is char-
acterized by a set of relevant features to support the
state identification and to avoid mismatching.

The notation used to define a topological map is
the following:

e s; is the state ¢ of the map,

o S=1{s1,...,sn}is aset of N states of the map,

e v; is the j* feature or attribute, j = 1,..., M,
that may classify any state s;,

e v; € Vj}, ie., the feature j takes values in the set
Vi

e s;(vj) is the value of the attribute v; at state
si; si(vj) = 0 means that the attribute v; is
unknown at state s;.

The connection between states is described in [3].

3 Map Building

In the present work, a topological map is built to
support the navigation of a mobile robot. To per-
form a symbolic representation of the environment the
robot perceives it with its on-board sensors and the ac-
quired data is processed aiming at extracting the most
relevant features of the environment. The built map
provides the essential information for the navigation
process. The robot perception is condensed in obser-
vations, o;, that represent the information obtained
from the processing of the raw data acquired at each
time instant ¢. For a time interval, T', the result is a
sequence of observations, Op. An observation is a vec-
tor where each component is related with a different
feature, v;. For instance, a feature defined as ” Colour”
might have the values "red”, "green” or ”"blue”. This
characterization is translated in numerical values, as
the colours can be written in RGB format.

The notation used to characterize the observations
is the following:

o 0y = [o¢(v1)ot(v2) . .. 01(var)] is a M-dimensional
observation vector referred to time instant ¢,

e 0;(v;) is the value of the attribute v; extracted
from the observation o,

e 0:(vj) = 0 states that the observation of the at-
tribute v;, at time instant ¢, is not achieved,

o Oy ={o4,,0t,,...,0¢ } is an observation sequence

from tg to t.

The different components of the observations re-
flect that the robot is able to perceive a diversity of
attributes of the environment. These different levels
of perception have to be recorded in each state of the
map. According to the uncertainty of the measure-
ments and sensors, each state s; is represented by a
Gaussian pdf, characterized by a mean vector u; and
a covariance matrix, R;,

si ~ N (i, Ry).

As previously referred, a map is composed by a set
of states s; and, consequently, is represented by a set
of Gaussian pdfs, each one represented by its mean
and covariance matrix, as shown in (1):

SZ{81,...,81\]}N{N(,LL1,R1),...,N(,U,N,RN)} (1)

The Figure 1 shows an example of a map, where
each state s; is symbolically represented by the plot
of the values of p;. The representation in Figure 1
does not provide any information on the state spatial
distribution. The bindings represented by the grey ar-
rowed lines express the probability transitions between



states. In the proposed frame-work, these transitions
result from the Hidden Markov Model approach de-
scribed in [3].

Figure 1: An example of a topological representation,
where each state is characterized by 5 features.

With this map characterization, the mapping pro-
cedure estimates the mean vectors and the covariance
matrices in (1) that maximize the probability of all
observations given the environment model, i.e., that
maximize the likelihood function (2),

p(O | S) = p(0t070t0+1;' e | S)
= plot|S) plory,---s01-11]S)
= plog | S) -plog—1|8)-...-ploy | 5)

t

= []po:195) (2)
i=1
or, equivalently, its logarithmic representation,

L(S) =log(p(O | S)) Zlog (0i]15)). (3)

Given that S is a set of states, any observation is
a measurement of the state s, with a probability cg,
for k =1,...,N. Therefore, the probability p(o; | S)

in (3) can be written as a combination of p(o; | si),
k=1,...,N yielding

t N
Zlog (Z cx - ploj | 5k)> . (4)
i=1 k=1

3.1 Expectation-Maximization (EM) Al-
gorithm

The maximization of the likelihood function in (4)
is a hard problem to solve. A way to overcome the
computational burden associated to it is by changing
the function L(S) by the expectation of the likelihood
given a previous estimation of the model, S°¢ i.e.,

F(s) = E {log(p(0 | 9)) | 5°'*} ()

this corresponding to the use of the Estimation and
Maximization algorithm, as referred in [4], [6] and [8].

Given a previous estimate of the model, it is as-
sumed that it is possible to evaluate the probability
w;; that the observation o; belongs to the state s;.
Accordingly, log(p(o; | S)) in (3) can be written as
log(c; - p(o; | s;)) with uncertainty w;;. Therefore, the
likelihood function (5) becomes

N t
F(S) = > wijlog(e; - ploi | 55))

=1 i=1
N ¢

= ZZwij log(c;j - N (04, uj, Rj))
N ¢

— Z Zwij [log(cj) —log <(27T)%\/ |Rj|)
=5 (0i = ;) "R (01 = ﬂj)] (6)

where N (o, pj, R;) is a Gaussian pdf.

Expectation Step

The parameter w;; in (6) is evaluated using the val-
ues of the previous estimation as shown in (7), where
71 is a pdf normalization factor,

wyy =0 Non g RI. (1)

This corresponds to the Expectation Step of EM al-
gorithm, as described in [9].

Maximization Step

The next step of the EM algorithm is the maxi-
mization of (6). According to the available tools for
maximization, the Lagrangean of the likelihood func-
tion is defined as,

N
QS) = F($) +A(}_e; = 1).

The equations:

0 9

provide the values for p1;, R; and c¢; parameters yield-
ing

i = Z Z Wi 04, (8)

=1 'LU“ i=1



t
1
Ri= —— wi'(oi—u')(oz‘—u‘)T’ 9)
! E;:l wij ; ! ’ !

1 t
Cj = X Z Wi - (10)
i=1

The constraint Zjvzl ¢; = 1 (total probability for
all possible states of the model) leads to

N 1 t
> (§3m) -t
j=1 i=1

which corresponds to A = t and, consequently, (10)

becomes
t
1
Cj = ; E Wij .
=1

After the maximization process in one step, the al-
gorithm returns to the expectation step with the val-
ues of (8),(9) and (10). This procedure repeats until
all the w;; parameters have stabilized.

Initialization and Stopping Criteria

The EM algorithm is initialized with

1
cj = N puj =random, Rj=1, Vj=1,...,N
corresponding to the values used in the first expec-
tation step. In particular, the p initialization is a
N - dimensional vector, assuming values in an interval

bounded by the physical constraints of the sensors.

The EM algorithm, as an iterative procedure, also
requires a stopping criteria. This algorithm belongs
to the class of unsupervised learning algorithms and,
consequently, the only variable that expresses the rep-
resentation accuracy is the parameter w;;. As men-
tioned above, w;; is the probability that the observa-
tion o; belongs to the state s; and, according to the
maximization step of EM, w;; stabilizes after some it-
erations. The parameter w;; is considered stabilized
when the difference between a couple of successive it-
erations is less or equal to a threshold, for all the ob-
servations o;. In addition, to evaluate the stabiliza-
tion of w;j, it is necessary to record the value of w;;
in each iteration k, w;;(k). The differences between a
sequence of L iterations is evaluated for a single state
Sj, as:

5=y lwij(k) — wij(k = 1)|. (11)

i=1 [=1

To evaluate the overall stabilization of the algorithm
it is necessary to define the stabilization for all the
states. When ¢ in (12)

5= 4 (12)

is lower than a given threshold Ay, it is considered
that the EM algorithm has stabilized.

After stabilization it is necessary to analyze the
quality of the representation obtained by the algo-
rithm. A good representation, s;, for the observation
0;, corresponds to a high value of w;;. Moreover, a
good representation for all the observations o;, reduc-
ing the number of outliers, requires high values w;; for
all the states s;. However, a good representation may
not occur, this resulting from the existence of spurious
states or even from a small number of states for the
representation.

3.2 Dynamic EM

According to the previous subsection the initial num-
ber of states, N, which is constant during the EM al-
gorithm, does not necessarily guarantees a good rep-
resentation of the environment. Even for a good rep-
resentation at a given time instant, a possible update
of the number of states might be required as the robot
is always acquiring new measurements. Consequently,
it is strictly necessary to re-evaluate the number of
states after the stabilization of the EM algorithm as
represented in Figure 2.

# States
evaluator

EM

Figure 2: Number of states analyzer

The evaluation of the number of states is explained
in the sequel. Starting with an initial estimate of the
number of states, the EM algorithm is applied iter-
atively. As represented in Figure 3, when § < Ag
the EM algorithm converges to an environment repre-
sentation. The next step assesses the quality of each
state to find possible superfluous states. To improve
this analysis, it is necessary to evaluate the amount of
observations represented by each state, s;. A natural
way to formalize this analysis is to consider Hj;, the
entropy of state s;, as referred in [1],

Hj (w”) = Z Wij log(w”) (13)
i=1



If H; is less or equal than a given threshold, H,,p,
the j-th state is removed and the number of states is
decreased by one. If H; > Hpyp forall j =1,..., N,
the set of observations could require a new state to
improve the representation. Accordingly, the number
of states is increased by one and the new state is ini-
tialized by a mean vector u and a covariance matrix R
as described in Section 3.3. The EM algorithm runs
again and when the stabilization is reached for this
new number of states, a new evaluation takes place,
along the steps in Figure 3, to check if the new state
improved the representation.

N=N+1

N=N-1

(removes the model j)

Figure 3: Increasing and decreasing the number of
states

The parameter H; quantifies the accuracy of the
representation. Low values for H,,;, lead to a large
number of states, that could yield states with similar
parameters. Additionally, the parameter As defines
the level of oscillations during the algorithm.

As represented in Figure 3, the algorithm is always
trying to adjust the number of states to update the
model. Therefore it is prepared for changes in the en-
vironment, adding new states and /or removing useless
states. Nevertheless, without any changes in the envi-
ronment, the algorithm converges and the number of
states oscillates around a given value. Whenever these
oscillations are above a threshold during a given time
interval the algorithm stops.

3.3 Initializations in the Dynamic EM
In the previous subsection, when the number of

states increases, the new state has to be initialized.
According to the dimension of the observations ac-

quired since the time instant ¢y and the iterative na-
ture of the EM algorithm, it is strictly necessary to
optimize the initialization procedure to reduce time
consumption. The initialization step establishes the
values p and R for a new state. There are two possi-
ble ways to accomplish this issue:

¢ Random combinations of the current states:
When more than one state is available, it is pos-
sible to generate the mean of the new state as
a combination of the means of two or more of the
current states. The selected states sgery s Sselys- - - »
Ssely, o (Nset =2,3,... N — 1) are randomly se-
lected with uniform distribution.

¢ Random values: In a real application, the val-
ues of each component of y are bounded by an
interval imposed by the physical constraints of
the sensors. Therefore, the vector p might be
generated by two different pdfs:

— Uniform inside the interval described above;

—1—- P(O | S), which is equivalent to
1-3>;>_; wij. This corresponds to include
the observations which are not yet duly rep-
resented by the current states.

In both cases the covariance matrix is initialized as
an identity matrix.

4 Experimental Results

The dynamic EM was tested in a real-world envi-
ronment using the mobile robot ATRV-Jr in Figure 4.
The robot is equipped with a laser range scanner, a
ring of ultra-sonic sensors, an inertial measurement
unit, GPS, vision and odometric sensors. The experi-
mental results were obtained only with the range sen-
sors (Sick Laser LMS and built-in sonars). From the
acquired data four features were extracted: the mean
and the variance of the free-area measured by the laser
and by the sonars.

The algorithm was tested by tele-operating the ro-
bot from a corridor to a room, containing chairs, ta-
bles and people moving and recording the sensor data.
The left side of Figure 5 displays the measurements
acquired by the laser and the sonars. Setting low ac-
curacy to the mapping algorithm the result is a topo-
logical map with three states, corresponding to the
room, its entrance and the corridor. The states were
distinguished based on the differences detected on the
free-area and variance: the room is defined as a state



Figure 4: Mobile Robot ATRV-Jr with a Sick Laser
LMS and a Pan and Tilt camera Sony EVI-D31

with a large free-area measured by the laser and sonar,
the corridor with a large free-area measured only by
the laser and the entrance mainly by the noise (high
variance). The states do not contain any paramet-
ric information and the algorithm that establishes the
connections between them is described in [3]. The
right side of Figure 5 represents the measurements of
the laser and sonar with three different grey-levels,
corresponding to each state. The odometry was only
used to record the location where each measurement
was acquired.

Figure 5: Left: The Laser and sonar measurements
acquired in the environment. Right: The Topological
map compiled by the algorithm

5 Future Development

In this paper a mapping algorithm was presented
aiming at the representation of rough outdoor envi-
ronments. Preliminary experimental results using a
reduced number of features were presented for indoor
and structured environments. According to the robot
capabilities, the future work includes: i) the test of the
algorithm using a larger number of features extracted
from the available robot’s sensor measurements (e.g.,

free space, environment sharpness, geometric features,
speed, orientation), ii) the extensive testing in out-
door environments, iii) the integration of the Markov
Model approach for localization presented in [3] in a
simultaneous localization and mapping procedure in
unstructured environments aiming at search and res-
cue operations.
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