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Abstract

Non-holonomic systems may appear in several forms,
including combinations between holonomic and non-
holonomic constraints for vehicle formations. Examples
of the latter are non-holonomic formation constraints
with  holonomic vehicles or holonomic formation
constraints with non-holonomic vehicles.

In this paper the problem of non-holonomic systemswith
holonomic or non-holonomic constraints is addressed by
reformulating the problem using scalar fields. This has
the advantage of leading to a definition of force which
allons to formulate the motion of a team of non-
holonomic vehicles in matrix form, both for holonomic
and non-holonomic constraints. Furthermore, the
congraints can be systematically included in this
formulation.

1 Introduction

A relevant isaue in cooperative robdics is to develop a
tod to solve the trgjedories of a robd team given the
mathematical modd of the robds kinematics (holonomic
or non-holonomic) [1], [2] and the mnstraints between
the team robds [3].

The idea is to find the posshble trajedories of the team
for a given task; the task could be epresed as
constraints among the robds themsdves (eg., to
transport large obeds) and the wnstraints for the
movement of the team (a desired trajectory with desired
vel ociti es).

Up to now several approaches have been made
considering the formation as arigid body [4], [5]. In [1]
the authors consider a set of planar robds manipulating a
flexible objed and develop a controller for the entire
formation.

Furthermore, obstacle avoidance is very important,
espedaly for cluttered environments.  Several
approaches in the literature approach this problem by
modeling the environment as dochastic [6]. In the @se
of known structured environments one of the more useful
technique isthe potential fields[7], [8]; according to that
technique the obstacles are modelled as a fields (scalar
fields) which generate attractive forces in order to avoid
acollision.

Any physical model based approach to robd navigation
with obstacle avoidance is roated in the definition of
force (interaction). This could be in the form of
Newton's laws or, more generdly, in the form of
Lagrange' s equations.

Lagrange's equations provide a generdizaion of
Newton’'s laws, which alows the representation of a
particle system (in this case aroba team) independently
of the mordinate framework used [9, pp 360367. This
has the advantage that we @n formulate every problem
related to team formations in adequate ®@ordinates.
Moreover, the formulation of Lagrange alows the
modeing of the motion of a given team as a partia
differential equation system where the boundary
conditions come in the form of constraint equations over
the position and velocity of every robd.

From this point of view the @mnstraints are such that if
some position cooardinate of any robd stands time
invariant, the number of partial differential equationsin
the system mentioned abowe isreduced. Thisisknown as
a holonomic problem. The general case where no
position coordinate stands constant is known as a non-
holonomic problem.

The non-holonomic problem has the hard inconvenient
that in order to solve the trajedories of the entire team
we neal to solve the wupled system of partia
differential equations without the posshility to reduce
the order of the system.



On the other hand, Lagrange's equations still keep the
vectorial  nature of Newton's laws except for
conservative cases [9, pp 35-39] where scalar fields can
be used for the model.

This paper combines the advantages of using scalar
fields and the concept of time-space interval [10, pp 3-9]
leading to a nove definition of force which permits the
formulation of the motion of a team in a matrix form
both for holonomic and non-holonomic cases. A method
that includes the constraints in a systematic way will be
introduced in this paper.

2 Theoretical Background

A review of the most relevant math concepts for this
work is required before we proceed. In this section some
concepts of advanced calculus frequently used in the
sequel will be reviewed. For further review of related
linear algebra see [11].

System of Partial differential equations:

Given a system of partia differential equations, an
important problem is to determine when there is a
solution, i.e., if there exists a function which verifiesthe
partial differential equationsin the system. Thisissolved
by the result for analytical functions known as the
Cauchy-K owal ewsky theorem [12].

Theorem 1:

Let t,x*---Xx™'be coordinates in ™. Consider a
system of n partial differential equationsfor n unknown
functions ¢@,,---,@, in O™, having the form:
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where the notation x® means the equivalence
x =|x,---,x™|. On the other hand the functions F; are

analytical functions of their variables. Let f(x*) and
g;(x") be analytic functions, then there is an open

neighbourhood O of the hyper surface t=t, such that
within O there exists an unique analytic solution of the
equation (1) with theinitial conditions:

0.ty x%) = F, (x%), %—‘f(to,x")=gi(xa). %)

3 Team formations Dynamics

The main idea behind this paper is to develop a new
modd of physical interaction (forces in the Newton’s
context) which handles team motion simpler than
Newton's laws or, which is the same, Lagrange's
equations.

We need a linear model to apply to determine the
interaction and the final motion for the system. In
Newton’s definition, forces are quantities that can be
added up in alinear manner. Because of that, it is always
simple to formulate Newton’s laws but not so easy to
solve the final motion of ateam.

To start with our development we can consider another
important aspect, which took alot of consideration in the
past; this aspect takes into account the fact that
Newtonian mechanics always requires an inertial frame
in order to write correctly the motion equations. While
solving this inconvenient, it was found that the invariant
quantity with the transformation of coordinatesisthe one
named space-time interval [10, pp 3-9].

In this context we want to introduce a novel definitionin
order to cover the problem of the invariance between
coordinate transformations and the non-holonomic
problem introduced in Section 1, using scalar fields,
which are adequate for computational calculus. In the
sequel we will consider the number of robotsin the team
to be equal to N.

Definition 1:

A single interaction within a given teamis defined by the
following space-time law:

kd® = (X, t) +1 (X, p, Py Py) )

where X is the position vector of the entire system
represented by the position of each robot
X :[xl,yl,zl,---,zN], @is the term due to the external

and internal interactions and ¢ is the term due to the
team itself, related with the properties p; of the team. In
the case of mechanica systems we will see that the
properties are the masses m but in the general case we
can set other properties of interest. The constants k and |
are real numbers that adapt units. Finally t is the time
variable.

k and | will be calculated for any particular problem with
adequate initial conditions. Before, we need to determine
the mathematical form of ¢ and to verify that the



definition agrees with Newton’s laws, that is, we need to
find the relation between the forces and our fields ¢

We can perform this task applying total temporal
derivatives to (3):
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where the temporal dependence of the functions ¢ could
be defined as follows:

K2 = @(X,1) =1 (X, p,, P, Py) =0 = G(X,1) =0.(5)

The function G represents (3) in a more compact manner
in order to apply the implicit function theorem:

0GOXY _ o0 2k1-22 =00 21=22. (5)
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where (6) was obtained with the goal of getting a matrix
null space representation in the sequel.

Recalling that the goal of our definition is to get a
relation between Newton’s forces and our fields ¢, this
suggests that the term ™M X should appear in the
derivation where M is the inertia matrix of the team
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defined by M=0 i Fand I is a
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diagonal matrix living in 0*®with ones in the main

diagonal and zeros elsewhere.

By definition from (4) and (6):
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Now taking the partial derivatesin (7) with respect to the
spatial coordinates:
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To obtain (8) isused the fact Fvy =0. It should be:
X |,

X
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Solving (9) we obtain:
1.
W= ED>( M X, (20

where X indicates the transpose of X.

Note: In the calculus of ¢ we took the second derivative
in (7) because we want to get symrretric fields ¢, which
clearly demands a quadratic form for .

Finally our dynamic law for team formations takes the
form:

k[ﬂZ:(p(X,t)+%EI]D(‘DMD(. (1)

31 TheMethod

Let us now use Definition 1 in order to get a method to
avoid the difficulties found in the Lagrange's equations
for non-holonomic systems. We will also show how this
definition yields an interpretation for the number of
possible solutionsin a matrix context.

Wefirst rewrite (8) asfollows:

J(@+IIM)IX =0
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Notice (12) yidds an infinite amount of solutions for
X but it is well known [11, pp 193-197] that only
3N —d solutions are needed in order to span the entire



set of solutions of the system (12) providing that d isthe
rank of the J(@)+M matrix.

Now taking temporal derivativesin (12), we have:

PO gy - p , (13)

dt

where we assgn afield ¢to each forceF acting over the
team. This way is enough to reall the procedure of the
Newtonian mechanics [9, pp 315 where each force
acting over the team could be mnsidered as acting
independent of the other forces and we @n use the
mathematical form of that force obtained without any
other interaction except the force under study. The same
procedure @n be applied considering that we know the
j™ force and we want to calculate the | field acting
without any other interaction.

It turns out that the time variable is the same for every
interaction acting on the team. In the sequel we are
considering the fields formed by two parts, the external
and internal fields, as foll ows:

Vi TPt =@ 14

where @ isthe external field and @, istheinternal one.

External fields:

This case include the fidds representing the ecternal
interactions or interactions between the system and the
environment which could be obtained solving from (13)
asauming we know the mathematical form of the external
forces.

Internal fields:

The @se of the internal fields is very different from the
external ones becuse in general we do not know the
mathematical form of the internal forces but we know
the onstraints, which could come in two general forms

[13].

It turns out we will interpret the nstraints as an
equivalent manner to write the internal forces of the
team. The next sedion provides an insight to the
constraint equations.

3.2 Consraints

As we mentioned early the restrictions can come in
two different ways. For the @se of the kinematic
(holonomic) restrictions, we havein general [2]:

A, (X)X =0, (15

where A, is a sysem of k non-linear equations.
Determining the null space of thea, matrix we get
equations as foll ows:

X =H(X), (16)
where H is a system of k non-linear equations.
For the non-holonomic restrictions we @an undertake the

problem wusing the genera form as follows
[14, pp 2832):

A, (X,X)=0. 17)
Again A, isasystem of k non-linear equations.
From (12):
[0, +@,)+I M]X =00 X = A{)H (¢, +@,) (18

where A(t)JJ™" is a matrix, which gives the degree of
freedom of the equation (18).

Finally incorporating (18) into (16) or (17):

A, (X) EﬁH (9, + @, )] =0 (Holonomic case) (19.9)
A, (X, A(t) H (g, +¢,,)) =0 (Non-Holonomic case).(19.8)

We notice we till have a coupled pertia differential
equations gstem but now without boundary conditions.
It is important also to mention that in our case we have
just k-coupled equations but in the Lagrange’'s method
for the most general non-holonomic case we always have
3N eguations.

Here it is clear we neda to calculate first the external
fields @ and after replacing them into (19), we nedal to



determine the internal ones which will be necessary for
the calculus of the final motion of the team.

Finally isimportant that for the pure holonomic caselike
(19.8) we do not need the matrix A(t) for the calculus of
theinternal fidd @.

3.3 Initial Conditions

Theinitial conditions are essential in order to get awell-
posed problem. Theorem 1 ensures the uniqueness of the
solution for our system of partial differential equations
(19).

4  Example of application

Let us consider a formation of 3 robots in a planar
configuration, where each robot is modeled as a
punctual mass. The following holonomic constraints are
considered as well:

gt =R

%, +y,” =R?, (20)
2 2 _ 2

B tY, =R

where R is a real number and the congraints are
indicating the formation liesin acircle of radius R:

Y

Robot 2 Rebat 1

Robot 3

Figure 1: Team in arigid formation.

Here the constraints regarding the planar configuration
of the team are useful to sdlect the adequate coordinates
for the problem. In this case we choose

X :[xl,yl,---,ys] as Cartesian coordinates, where the
vector position of each robot is [xi Yo zi] with i=1,2,3.

We are considering two external fields: the gravity force
and one obstacle fidd.

For the external fields we can include them in the same
mathematical expression but the gravity force has no
influence on the team.

Regarding the obstacle field we can consider the
following one:

F =X, . (21)

obstacle [

From here we are ready to apply the method depicted in
Section 3.1 asfollows:

F =X,, =M X, O X, =MIX, +cte,(22)

obstacle
where the initial condition fix the value for the constant

in (22) and X« represents the vector position for the
team with only the obstacle force acting on it.

In the next step if we consider the constant in (22) equal
to zero and using (13) with I=1, we have:

_dbe)x, |
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Finally in order to get the external fields in that case we
can rewrite (23) in the following way:
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The equations system (24) is the system to be solved to
obtain the external field.

A final step is required to determine the span solution
(18) :

X =AM H (@ + @) (25)

Rewriting the constraints in (20) in a matrix form we
have:

X 0 0 oD
Ep 0 %x vy, 0 OEpszD(:o. (26)
B oo LAS



Replacing the general solution (25) and the externa
fields got in (24) into (26) we have:

AlH (@ +9,)) =0. (27)

Finally solving (27) and incorporing bath fields (internal
and external) into (18) we get the motion of the team
from 6 decoupled ordinary differential equations.

7 Conclusions

In this paper we introduced a novel method to solve the
dynamics of roba formations motion. The method
presented has sveral advantages with resped to the
traditional Lagrangian or Newtonian models. In thefirst
place we have no bandary conditions on the
determination of the internal fields, while in the @se of
Lagrange’'s method we have for the most general case a
system of partia differential equations with no-
integrable nstraints; on the other hand the matrix
nature of our definition alows to incorporate the
constraints in a systematic way through the span solution
of amatrix calculus.

On the hard sde the task to solve those partial
differential equations metimes has not immediate
solutions for the @lculus of the fields.

As future work, we plan to use our new modd for non-
inertial frames and exploit the matrix characteristics for
developing stable ntrollers. On the other hand an
appropriate tod for solving (19) will be investigated as
well as the systematic way to incorporate the generalized
coardinates for choasing the best set of coordinates for
every problem.
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