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Abstract— This paper describes a Hybrid Automata
approach to the modelling of biological populations com-
posed by a large number of T-Cells. Individual T-Cells
are modelled based on a deterministic Hybrid Automata
endowed with input events and continuous-valued outputs.
The complexity of interaction among the T-Cells and Anti-
gen Presenting Cells is described by a stochastic approach,
under which the T-Cells distribution over the state space is
modelled. This is based on a Stochastic Hybrid Automaton,
which results from inputting a stochastic event sequence to
the individual T-Cell model. The dynamics of the state
probability density functions is determined and the results
applied to the analysis of experimental data.

Keywords— Hybrid Automata, T-Cell Receptors, Multi
Agent Systems.

I. INTRODUCTION

HE aim of this paper is to shed some light on the

prediction of a biological population macro-dynamics
based on the micro-dynamics model of individual popula-
tion members. This paper is motivated by the investigation
of biological population dynamics phenomena [1] [2], where
biological facts and experimental data were used to inves-
tigate the T-Cell receptors (TCR) triggering mechanism.
Along these lines an approach in designing experiments
based on different hypotheses is presented in [3].

The lessons learned from previous work [3] concern the
importance of deriving the macroscopic properties of the
phenomena from the properties and interaction among the
elementary interaction components. An overview of the
most promising methods to reach this goal is provided in
[4] [5]. The biological facts used in model design [2] lead us
to conclude that biological interaction could have suitable
description under a Hybrid Automata framework [6]. This
idea is already exploited in [7] where the Hybrid Automata
model of single biomolecular network is designed.

In this paper we are using the Hybrid Automata frame-
work to model and analyze the consequence of interactions
between the large populations of T-Cells and Antigen Pre-
senting Cells (APCs), where large amounts of biomolec-
ular interactions occur concurrently. The paper starts
by the description of the biological phenomenon and of
the complexity problem in Section II. The Hybrid Au-
tomata framework for modelling T-Cells, under the light
of TCR triggering phenomena, is introduced in Section III.

D. Milutinovi¢ and Pedro Lima are with the Institute for Sys-
tems and Robotics, Instituto Superior Técnico, Lisbon, Portugal,
(e-mail: dejan@isr.ist.utl.pt and pal@isr.ist.utl.pt)

J. Carneiro is with Gulbenkian Institute of Science,
Portugal, (e-mail: jecarneir@igc.gulbenkian.pt)

M. Athans is Visiting Research Professor with the Institute for
Systems and Robotics, Instituto Superior Técnico, Lisbon,Portugal
(e-mail: athans.isr.ist.utl.pt)

Oeiras,

The Mathematical definition of the individual T-Cell model
(T-Cell Micro Agent model) is presented in Section IV.
The complexity of population is modelled by using a
Stochastic Hybrid Automata model for the population in
Section V. The dynamics of the state probability density
function is determined (Section VI) and the results applied
to the analysis of experimental data in Section VII.

II. PROBLEM FORMULATION

The interaction between T-Cells and APCs is one of the
most important reactions of the immune system. This re-
action is called T-Cell Receptor (TCR) triggering and leads
to the production of effector cells, which kill antigens. The
interaction between T-Cells and APC produces changes in
the amount of TCR (TCR dynamics) in a T-cell. The T-
Cell should be connected to an APC. However, simultane-
ously some of the T-Cells will disconnect from APCs, and
others will connect again. Figure 1 presents a population
of T-Cells surrounded by APCs.

The T-Cell population is definitely a complex system.
To follow the complete dynamics of the population, the
TCR dynamics and the motion dynamics, which leads to
the connection or disconnection of each T-Cell to APCs,
should be followed. If we assume a 3D model of motion
we need 6 state variables per T-Cell just to describe the
position and velocity of a T-Cell. We need also at least
one state for TCR dynamics and at least one discrete state
variable that contains information on whether the T-Cell
is connected or disconnected. In total this means, at least,
8 variables per T-Cell. A population of 1000 T-Cells has
a state vector of dimension 8000. Although the simulation
of the population would not be impossible with current
computational power, the dynamics of the average value
and the variance of the TCRs in the population are typ-
ically sought by biologists. These moments are particu-
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Fig. 1. The T-Cells population surrounded by APCs, ¢; is the dis-
crete state of the ith T-Cell.



larly important when the population observed data is to
be matched to the individual TCR dynamics. These facts
motivated a more general approach to the modelling of a
multi-agent population, which is described in the sequel.

III. INTRODUCTION TO MATHEMATICAL DEFINITIONS

In this section we will introduce the Hybrid Automata
framework into the problem of TCR triggering phe-
nomenon modelling. Each T-Cell, regarding the connection
to an APC, could be in one of the three discrete states: 1-
never connected, 2-connected and 3-disconnected. Before
the T-Cell - APC connection, the amount of TCRs pre-
sented on the T-Cell surface is constant. The consequence
of connection between the T-Cell and APC is a decrease in
the amount of TCRs. The dynamics of decrease and dy-
namics after the T-Cell - APC disconnection are unknown.

If the amount of the TCRs is designated by x then, with-
out any restriction, we can say that for each discrete state
i the TCR dynamics are given by

#(t) = f((z,1), 1) (1)

With the assumption that TCR dynamics depends only on
x we have

f((fL', 1)7t) = 0; f((va)vt) = fg(fL'); f((ZC,?)),t) = fS(x() )
2

The overall T-Cell dynamics regarding to the TCR trigger-
ing mechanism can be described by discrete states, transi-
tions between discrete states and continuous dynamics of
TCRs in each discrete state. This kind of dynamical sys-
tems are called Hybrid Automata. The proposed Hybrid
Automaton model which describes T-Cell dynamics, des-
ignated as T-Cell Micro Agent is depicted in Fig. 2. The
prefix ”Micro” is used because this model describes the
population behavior at the micro level, i.e., at the level of
the individual behavior.

IV. MICRO AGENT INDIVIDUAL MODEL

A Micro Agent is a single-input multi-output hybrid sys-
tem. The input to a Micro Agent is a continuous time dis-
crete event sequence. The output of a Micro Agent is a
continuous time real vector. The output of a Micro Agent
is a function of the hybrid system state. This hybrid sys-
tem state is a function of the discrete event time sequence
at the system input.

Definition 1 [6]. A hybrid automata H is a collection
H=(Q,X,Init, f, Inv, E, G, R) where:

- (@ is a finite set of discrete states (1)
- X is R™ the continuous state space (2)
- Init C Q x X is the set of initial states (3)
- f:Q x X = TX assigns to each ¢ € @ a vector 4)

field f(z,q)

- Inv: Q — 2% assigns to each ¢ € Q an invariant set (5)

- EC @ xQ is a collection of discrete transitions (6)

- G : E — 2% assigns to e € E a guard set, representing
the collection of the discrete transitions allowed by  (7)
the state vector

-R:X xE — 2% assignstoe € E and 2 € X a reset

map, describing jumps in the continuous state space (8)
due to event e.

Definition 2.
multi-output hybrid automaton. It
uwA = (H,U,1,Y) where:

A Micro Agent pA is a single-input
is a collection

- H is a Hybrid automaton (9)
H = (Q, X, Init, f,Inv, E,G, R) satisfying properties:
- Inv: X, VQ (10)
- R(e,z), V(e€e EAnz € X) (11)
- U is a finite set of input discrete events including
the nil event € (12)

- 7:U x @ — E, assigns to the discrete event u € U and

discrete state ¢ € () the transition e = (¢,¢') € E, (13)
where 7(¢,q) = (¢, 9)

- X is R", the state space of the continuous piece

of H (14)

- Y is R™, is the output state, a uA output y € Y is a
function of the continuous state z, y = g(x) (15)

Remarki. The Micro Agent state, called micro state, is a
pair (z,q) € X x Q. This couple consists of continuous
x € X and discrete state ¢ € ) parts.

Properties (10) and (11) in Definition 2 mean that, for
hybrid system H, discrete and continuous dynamics could
evolve in a free manner. However, jumps in the contin-
uous state space part are not allowed. It should also be
underlined that a Micro Agent is a deterministic system.

The individual T-Cell Micro Agent is presented in
Fig. 2. The continuous dynamics over the discrete states
are given by (2). The Function which defines the output in
this case is g(z) = x. It means that the value of the out-
put y is the amount of the TCRs, which is also the state
variable x.

q=1

q=3

Fig. 2. The graphical description of the T-Cell Micro Agent model
(definition includes discrete states and input events) and the T-Cells
population Stochastic Micro Agent model (definition includes discrete
states, input events and event rates) under the light of the TCR trig-
gering phenomenon. Discrete states: 1-never connected, 2-connected,
3-disconnected. Continuous state: x- TCRs amount. Input events u:
a-connection, b-disconnection. Event rates: \;j-event rate that cre-
ates transition from dth to jth discrete state. Output: y- TCRs
amount



V. STOCHASTIC MICRO AGENT

The Micro Agent model is deterministic since it is based
on a deterministic Hybrid System. Here, a Stochastic Mi-
cro Agent model will be introduced.

Definition 8 [8]. (Micro Agent Stochastic Execution) A
stochastic process (z(t),q(t)) € X x @ is called a Micro
Agent Stochastic Execution iff a Micro Agent stochastic
input event sequence e(7,), n € N, 70 =0< 7 <7 <...
generates transitions such that in each interval [, Th+1),
n € N, q(t) = q(1n).Remark 1. The z(t) of a Stochastic
Execution is a continuous time function since the transition
changes only the discrete state of a Micro Agent.

Definition 4. (Micro Agent Continuous Time Markov
Process Execution) A Micro Agent Stochastic Execution
(z(t),q(t)) € X x @ is called a Micro Agent Continuous
Time Markov Process Execution iff the input stochastic
event sequence e(7,), n € N, 7o =0< 7 <75 <...gen-
erates transitions whose conditional probability satisfies:
Plg(tit1) = ar1la(me) = ah, q(Th—1) = qu—1,-..q(10) =
@] = Plg(Tk+1) = qe+1]9(7k) = qr. Remark 1.The g(t) of
a Micro Agents Continuous Markov Process Execution is a
Continuous Time Markov chain.

Definition 5. (Stochastic Micro Agent, SuA) A Stochas-
tic Micro Agent is a pair Sud = (uA,e(t)), where pA
is a Micro Agent and e(t) is a Micro Agent stochas-
tic input event sequence such that the stochastic process
(z(t),q(t)) € X xQ is a Micro Agent Stochastic Execution.

Definition 6. Continuous Time Markov Process Mi-
cro Agent, CTMPuA. A Stochastic Micro Agent is
called a Continuous Time Markov Process Micro Agent
iff (z(t),q(t)) € X x @ is a Micro Agent Continuous Time
Markov Process Execution.

Previous definitions were aimed at making clear that a
Stochastic Micro Agent is a Stochastic Hybrid Automaton
based on a Micro Agent, which is a deterministic system.
In the sequel, a Stochastic Micro Agent will be used as a
model of Micro Agents populations.

The T-Cell population CT M PuA derived from T-Cell
Micro Agent is presented in Fig. 2. The graphical pre-
sentation of this stochastic model is composed from Micro
Agent presentation and event transition rates.

VI. MATHEMATICAL ANALYSIS

The connection between the individual micro dynamics
and the population macro dynamics is strongly related to
statistical physics [9] where behavior and properties of me-
chanical bodies, made up of a very large number of separate
particles, are studied. In this framework the connection be-
tween the micro and macro dynamics is established through
the probability density function (pdf) of system particles
over a state space.

Concerning the Micro Agent population we assume that:
- The interaction between individuals is modelled as a Mi-
cro Agent (16)
- The complezity of the interactions among individuals in
the population produces the Micro Agent Stochastic Execu-
tion of a Micro Agent in the population. (17)

The previous assumptions bring us directly to similar
problems in statistical physics and the following conclu-
sion: The individual Micro Agent dynamics and the dynam-
ics of the Micro Agents population measurements are con-
nected through the probability density function of a Stochas-
tic Micro Agent state which represents the population state.

Different kinds of Stochastic Micro Agents could be con-
sidered. In sequel we will interested in CTM PuAs. The
following theorem concerns the probability density function
of a CTMCpuA over the state space.

Theorem 1. For a CT M PuA with N discrete states and
discrete state probability satisfying

P(t) = LT P(t) (18)
where P(t) = [P (t)Px(t) ... Pxn(t)]T, P; is the probability
of discrete state i, L = [\;;]&«, is transition rate matrix
and \;; is a transition rate from discrete state ¢ to discrete
state j, the vector of state probability density functions
plet) = [p((@,1),8),p((2,2), ). pl(, N),)]7 where
p((x,7),t) is the pdf of state (x,7) at time ¢, satisfies the
following equation:

V(f (2, N)pl(, N), 1)

where f(z,4) is the vector field value at state (z,1%).

\
/

Fig. 3. Possible trajectories in the Micro Agent state space: z;-state
of continuous space, g-state of discrete space, f(z,%)- vector field for
q = i, V-trajectory volume, V;-volume of trajectories not crossing the
surface S in the time interval [¢,t + At), Vg - volume of trajectories
crossing surface S in the time interval [¢, t+ At), AVp - element of the
volume Vg, AS-element of the surface S, v-projection of the vector
field f(z,i) onto the surface vector 5y, Az-length vA¢.

Proof. The state space X x () of the Stochastic Mi-
cro Agent is presented in Fig. 2. Transition between
the discrete states is a Continuous Time Markov Chain



stochastic process and z(t) is a continuous time function
ie. z(t7) = z(tT) = x(t). The probability py,; that Micro
Agent state (z,q) € {(z,q)|x € V,q =i} is given by
pvi= [ plli)nav (20)

%
where p(x, 1) is the probability density function of the state

(z,4) and arbitrary chosen volume V in X. The time
derivative of py; is:
/ 8p z,1)

Using Fig. 2. the time derivative of py; could be written
as:

sz (21)

. . 1
pvi(t) = lim —= | Apy; + > Apasas (22)

5,AS—0

where Apy, and Apasa, are probability changes in the
volumes Vi and AV = ASAz, respectively, and Vg =
> s.A5-0 ASAz. Due to the continuity of z(t)

Alilgo A_tApV’ Z)"“/ (z,4)dV (23)

since, in the time interval [¢,t + At), x(t) does not leave
volume V; and probability in V; changes due to the Markov
Chain transitions. During the same interval, the increase
of probability in the volume AVp = ASAz is

Apasax(t) = (24)

t+At
—AS /t Up(($>i)>7_) + p(($>7’)>7)(A$ - UT)dT]

where © € AVp. Taking into account the Markov Chain
transitions in the volume AVp and equation (23) we have

Apasaa(t) >
dim, SR = —ASup(. .7+ 00 3 Npl(a:b).0
(25)
Substituting (23) and (25) in (22) gives
pv,i(t) Z)\kz/ (z,3)dV + (26)

>

AS,AS—0

N
—ASUp((.’L‘,i), t) + ASAz Z )‘kip((xv k)v t)]
k=1

i.e.

sz

Z)"”/ (z,9)dV — %fxz ((z,1),t)dS

(27)

With the use of Gauss’ theorem we have:

[ - >\z
pv /‘/le $Z

k=1

V(f(z,i)p((z,i), 1) | dV

(28)
Taking the small volume limit of the equations (21) and
(28) we have

p((z,),0) o,
= l;)\kzp(az,z) —

Using p(z,t) = [p((x,1),8), p((z,1),1),...,
the equation system (29) becomes

V(f(z,i)p((x,0),1)) (29)

p((z, N), )]

V(f (2, N)pl(, N), 1)

Q.ED
Equation (19) is an extension of the Liouville’s equation
[9] and fundamentally it is a conservation law for the pdf
over the state space. This hyperbolic partial differential
equation is in the form of a Convection-Diffusion equation
[10], which is used for description of incompressible fluids.
The solution of this equation is the pdf of CT M PuA state
as a function of time. A numerical method for solving this
equation is discussed in [10].

VII. MODEL TEST BASED ON EXPERIMENTAL DATA

The study of the TCR triggering motivated the Micro
Agent model development. In Section IV we proposed the
T-Cell Micro Agent model (Fig.2.) based on a biological
facts. In this section the theoretically predicted TCR dis-
tribution will be matched to experimental data.

The basis for this analysis is the experimental data [1].
The experiment shows that after a time long enough the
TCRs distribution stays unchanged [1]. This constant dis-
tribution will be designated in the sequel by steady state
distribution. According to the stochastic approach, if the
TCRs distribution is normalized in such a way that inte-
gral of the distribution is equal to 1, the normalized TCRs
distribution should be equal to the T-Cell CT M PuA pdf
of the output (Definition VI).

Let assume that the transition rates of proposed T-Cell
Micro Agent model Ao, A23, A32 are constant and:

f((xa 1)7t) =0; f((:L',2),t) = fQ(x); f((l?,?)),t) = f3(g:) )
31
due to the reasons already explained in Section III. The
equation which describes the evolution of the pdf over the
CTMPuA state space (Theorem 1) is given by:

0

% = —izp1 — V(fip1) (32)
9 _ ) A A

o = 2o 23p2 + Az2pz — V(fap2)  (33)
0

9p3 = A23pa — A3ap3 — V(f3p3) (34)

ot



where p; = p((z,4),t). Since the output y = z, the pdf of
the CT M PpA output n(z,t) is given by
n(z,t) = p1+ p2 + ps (35)

Taking the limit, ¢ — oo, the steady state of (32)-(34) is:

0 = —Xi2pi — V(fipi) (36)
0 = Ai2p] — Aasps + As2p3 — V(fap3) (37)
0 = Dazps — As2p5 — V(f303) (38)

where pf = pf(z). Since fi = 0 we can conclude that

pi(x) = 0 and transform the system of equations
(36)- (37) to the equivalent one:
0 = —Apl + As2p3 — V(f2p3) (39)
0 = V(f2p5+ f3p5) © fap5 + f3p5 = const (40)

Since the functions pf are pdfs then pf(z) > 0, Vx € R.
The number of TCRs can not be negative, thus exists a
point 2° € R where p5(2°) = p5(2°) = 0, and the system
of equations (39)-(40) becomes:

0 = —Xa3p5 + As2p3 — V(f2p5)
0 = fops + fap3

(41)
(42)
After substituting p5(z) = n°(z) — p5(z), the solution for

the steady state of equations (32)-(35) is equivalent to the
solution of the following differential equation:

dp* _ | (fs—F ‘1i[f3f2] Xis e
dz l( f3f2> ar |5~ o +f2+f3]n

(43)
The solution of this equation is:
1 1 _f( A3 +M)dm
S(x) = ¢ — e F2(2) T Fa(a) 44
(@) <f3(m) f2(m)> (4

where ¢ has a value such that [ n®(z)dz = 1. The equa-
tion (44) is the steady state pdf of the T-Cell CTM PupA
and defines the shape of the TCRs distribution. This result
is very important because it shows that TCRs distribution
contains information about TCR triggering dynamics.

In Figure 4a, experimental data [1] of initial n(x,0) and
steady state n¢,,(z) distribution of TCRs over the T-Cell
population are approximated by log-normal distributions:

1 _(MQ—“;(E))Z
z,0) = —e 295 45
n(z,0) 2002 ) (45)
0 (@) L UE (g
o) = ———e 275 46
Teap 205074/ (1)

where My = log10(100), o9 = 0.19 and M, = log10(50),
0 = 0.27. In order to match steady state distribution
(44) to equation (46) we will make the first derivatives in
the exponent equal:

A23
fa(z)

)\32 _ i(ln(m) _Moo)2
* fa(z)  dx 202, (47)

After differentiation in (47) we have:

A23 Az2 My 1

fo(x) " falx) T 0%z

The solution of the equation (48) includes 1/z and In(zx)
functions and is not unique. The solution should take into
account that fo describes the decrease of the TCRs, so
we should have fa(x) < 0,Vz > 0. For the same reason
f3 > 0,Vx > 0, since it describes an increase of TCRs. Fol-
lowing the idea that increase and decrease dynamics follows
different dynamical shape one possible solution is

1 in(z)

2
o3, T

(48)

o) = —ko (49)
T
fs(z) = i) (50)
where
2 by
kg = O;}—Ojg,kg = O'go)\gg (51)

The previous relations show that the micro dynamics pa-
rameters ko and k3 functionally depend on the connection
and disconnection rates, Az and As3, respectively. If the
rate of disconnection is bigger, then the decreasing rate
of TCR, ks should be bigger, i.e., TCR triggering interac-
tion should be more efficient. Similar conclusions can be
made about parameter k3. This functional dependence has
been recently reported and some optimal value hypothesis
is suggested [11].

Besides the steady state values, the experimental data
[1] contains also the time record of the average value of
TCRs during the experiment (Fig. 5.). Taking into account
biological fact that decrease dynamics rate of the TCRs
is much bigger than increase dynamics rate we assumed

0.04
a)

002 } .
oL "
10° 103

0.04

b)
T —

0.02 - nx,0) A
0 L i
100 10! 10 2 103

Amount of TCRs (x)
Fig. 4. Normalized TCRs distributions: a) Experimental data:

dotted - non-normalized smoothed experimental data for initial(right)
and steady state(left) distribution, n(z, 0) - log-normal approximation
of initial distribution(Njog(log10(100),0.19)), ng,,(z) - log-normal
approximation of steady state distribution (Njq(log10(50),0.27)).
b) The model predicted steady state distribution n®(z).



ko ~ 100ks. To predict the TCR distribution the following
parameters are chosen:

)\12 = )\32 = 7, )\23 = 7000, My = lOg10(50), O — 0.27

(52)
Predicted steady state TCRs distribution n®(z) and av-
erage value 77°(t) are presented in Fig. 4b and Fig. 5.,
respectively.

We can see that T-Cell CT M PuA predicts steady state
TCRs distribution (Fig. 4b) which, for the given param-
eters, could not be distinguished from the log-normal dis-
tribution 77, (z) which approximates the non-normalized
experimental steady state distribution (Fig.4a, dotted), and
differs slightly from the later. The predicted average val-
ues fit well the experimental average values as well. From
the previous we can conclude that proposed T-Cell Micro
Agent model produces meaningful results.
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Fig. 5. Average amount of TCRs (relative to the initial TCRs
amount): 7., (t)-experimentally obtained values (o), 7(t)-the model
predicted average values

VIII. CONCLUSIONS

In this paper the T-Cell Receptors triggering mechanism
is studied. Each T-Cell is described by deterministic Mi-
cro Agent model, which is defined in the Hybrid Automata
framework. Under a stochastic assumption about the Mi-
cro Agent input event sequence the Stochastic Micro Agent
model of T-Cell population is introduced. The relation be-
tween the deterministic model Continuous Markov Chain
stochastic event sequence and the pdf of the Stochastic Mi-
cro Agent state is derived. Using this analytical relation
the proposed T-Cell Micro Agent model is tested against
the experimental data, and close agreement was found.

Potential future work along this research line includes a
test of the proposed model using experimentally obtained
statistics of stochastic event sequence. The initial and
steady state distribution could be more carefully studied
using better approximations or including hypothesis about
the TCRs dynamics in the absence of APCs. The theory
presented here could be used to have more insight in other
biological phenomena and planing biological experiments.
We have also been using it to model and stochastically con-
trol large populations of robots [12].
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