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Abstract. This paper describes the design, implementation and test of

a goalkeeper robot for the Middle-Size League of RoboCup. The goal-

keeper task is implemented by a set of primitive tasks and behaviors,

coordinated by a 2-level hierarchical state machine. The primitive tasks

concerning complex motion control are implemented by a non-linear con-

trol algorithm, adapted to the di�erent task goals (e.g., follow the ball or

intercept the ball). One of the top level behaviors regularly determines

the robot posture from local features extracted from images acquired

by a catadioptric omni-directional vision system. Most robot parameters

were designed based on simulations carried out with the Hybrid Au-

tomata Matlab/Simulink toolbox CheckMate. Results obtained with the

actual goalkeeper are presented and discussed.

1 Introduction and Overview

In robotic soccer, namely in the Middle-Size League (MSL) of RoboCup, goal-

keepers are interesting robots, due to the potential behavior richness they can

exhibit. Indiveri [1] introduces an elegant solution for a goalkeeper based on a

non-linear state-feedback control algorithm. However, little is said about the co-

ordination of a larger set of behaviors rather than the one corresponding to ball

following and blocking. Jamzad et al [2] describe a very eÆcient goalkeeper with

changing shape, but they mostly concentrate on its mechanical design. Menegatti

et al [3] were the �rst to introduce in RoboCup a multi-behavior goalkeeper which

usually moves on an arc in front of the goal and tries to intercept the ball when

a shot is headed at its goal. Nevertheless, they use an ad-hoc model for both

motion control and the overall behavior coordinator.

The coordinated execution of a robotic task is one of the key features for an

autonomous robot. The robot resources (e.g., sensors, actuators, shared mem-

ory, CPU) required to accomplish a given task must be properly managed and

articulated with the di�erent behaviors composing the task.
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In the RoboCup MSL, one of the four allowed players is the goalkeeper. A

good goalkeeper should switch among di�erent behaviors to ful�ll its role in the

team.

In this paper, the design, implementation and test of a a goalkeeper is de-

scribed. The goalkeeper task is implemented by a set of primitive tasks and be-

haviors, coordinated by a 2-level hierarchical state machine. The primitive tasks

concerning complex motion control are implemented by a non-linear control al-

gorithm, adapted to the di�erent task goals (e.g., follow the ball or intercept

the ball), as detailed in Section 2. One of the top level behaviors, described in

Section 3, regularly determines the robot posture from local features extracted

from images acquired by a catadioptric omni-directional vision system. Most

robot parameters were designed based on simulations carried out with the Hy-

brid Automata Matlab/Simulink toolbox CheckMate, as covered in Section 4.

Results obtained with the actual goalkeeper are presented and discussed in Sec-

tion 5. Conclusions and future work are discussed in Section 6.

The RoboCup MSL ISocRob team consists of four Nomadic Scout II robots,

endowed with an omnidirectional camera and a front camera, both Philips Tou-

Cam Pro web-cams. The goalkeeper's kicker and cameras assembly, shown in

Figure 1-a) is di�erent from its teammates, namely due to a general 90Æ rela-

tive rotation of those hardware components and a larger surface for the kicking

device.
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Fig. 1. ISocRob's a) goalkeeper robot; b) functional architecture

ISocRob's functional architecture is based on the concepts of roles, behaviors,

primitive tasks and guidance primitive functions[4]. Figure 1-b) shows how the

four elements interact with each other. Each robot is assigned a role, which



consists of one or more behaviors. Behaviors are implemented using one or more

primitive tasks, and each primitive task uses the guidance primitive functions to

interact with the lowest level of hardware on the robot. At the top level, a role

is assigned to each robot. In this case, the goalkeeper role is assigned. The role

is �lled by executing one of the role's behaviors, according to the current robot

+ environment state. Each behaviors is assigned to a state of a state machine

whose arcs are traversed whenever some logical condition associated to the robot

+ environment state or the lower-level state machine becomes true. A behavior

is executed by running a number of primitive tasks, coordinated by the lower-

level state machine, where each state represents a primitive task and arcs are

again traversed when logical predicates over state variables become true.

Fig. 2. The goalkeeper state machine.

The state machine of the implemented goalkeeper is depicted in Figure 2.

There are �ve behaviors in the state machine. The Go2Area behavior is imple-

mented by one of the navigation algorithms introduced in previous papers[5].

KickBall is trivial. The other three behaviors (InterceptBall, SelfLocalize,

and FollowBall) are detailed in the remaining sections of the paper.

The robot is in FollowBall behavior if the ball is out of the danger zone

speci�ed in Figure 3-a). The ball is not considered as a big threat, but the

goalkeeper has to be able to handle a shot from the distance. The goalkeeper



follows the ball while tracking an arc with adjustable radius and centered with

the goal. The principle of the defensive arc is illustrated also in Figure 3-a). The

r min and r max parameters correspond to the minimum and maximum radius of

this arc. This adjustment of the radius is dependent of the distance between the

ball and the goal. When the ball is near the border of the danger zone, the radius

of the arc is at its minimum. When the ball is at the center line or further away,

the radius is at its maximum. The robot assumes the behavior InterceptBall

a) b)

Fig. 3. Concepts of danger zone, maximum and minimum defensive arcs. a)

FollowBall; b) InterceptBall.

when the ball is in the danger zone in Figure 3-a) and moving towards the goal as

seen in Figure 3-b). In this case, the goalkeeper is not following the arc anymore

but rather moving on a straight line in front of the goal, trying to intercept an

incoming ball.

Transitions between behaviors occur only when the associated predicates,

shown in the state diagram of Figure 2, become true.

2 Motion Control

Both the FollowBall and the InterceptBall behaviors pose trajectory track-

ing and posture stabilization problems [6]. Nevertheless, the trajectories to be

tracked will be di�erent, therefore each behavior will have its own control algo-

rithm, which will be derived in following subsections. Before that, we will take

a brief look at the robot kinematics, required to provide the terminology for the

rest of the section.

2.1 Kinematics

The goalkeeper is based on a di�erential-drive robot, that can be described by the

same kinematic equations as the unicycle vehicle. The unicycle is a nonholonomic

system with no slippage assumed. Let q = (x; y; �)T be the vector that describes

the goalkeeper posture in con�guration space. The �rst-order kinematic model

for the unicycle is given by [7]:2
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Where u is the linear velocity and ! is the angular velocity. Furthermore u and

! are the control inputs.

2.2 FollowBall Behavior

Moving on an arc in front of the goal is a trajectory tracking problem. Among the

possible solutions for this problem, we have chosen the algorithm described in [1],

used in its original form to implement the FollowBall. The goal of the control

design is to track and follow the arc in front of the goal until an equilibrium

point (in front of the ball) is reached for the goalkeeper, as well as to achieve

asymptotic stability for that equilibrium point.

Consider the kinematic model from equation 1. If the position is given in

polar-coordinates an equivalent kinematic model would be:
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Where the angle � is given as shown on Figure 4-a).

a)

b)

Fig. 4. The goalkeeper posture in polar coordinates: a) FollowBall scenario; b)

InterceptBall scenario.

In the �gure, the goalkeeper is on the arc when r = d. Furthermore the angle

� should be equal to 90Æ when the goalkeeper is moving on the arc in order to

keep the front towards the ball. These two requirements are expressed in the

following error vector:

e =

�
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To achieve asymptotic stability a control law for u and ! must be derived in

such a way that the time derivative of an appropriate Lyapunov function V (e)

becomes negative de�nite [8, 9]. The approach for the choice of ! is to cancel

some of the undesirable terms which makes it diÆcult to determine the nature

of _V (e). The following control law for ! guarantees aymptotic stability[9]:
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2.3 InterceptBall Behavior

If the ball moves inside the danger zone the goalkeeper switches its behavior to

InterceptBall. When running this behavior, the goalkeeper should defend the

goal on a straight line in front of the goal. It is most likely that the posture

of the goalkeeper is on the arc, when the upper-level state machine switches

to InterceptBall. The control algorithm should therefore not only be able to

track the straight line, but also to make the goalkeeper able to converge to the

line from any posture on the arc. This sounds similar to the trajectory tracking

problem of the previous subsection, for a di�erent trajectory. It is therefore

chosen to re-derive the control algorithm used to control the angular velocity in

FollowBall so that the equilibrium point is now on a straight line in front of the

goal. Since the reasoning for the design already has been given in the previous

subsection the control algorithm design will not be as detailed here. However, it

is important to underline that this derivation is one of the original contributions

of this work.

Consider again the kinematic model from equation 1. The straight line to be

tracked, at a distance d of the goal line, as well as the posture variables x, y

and � are shown in Figure 4-b). When the goalkeeper moves on the straight line

in front of the goal, the two requirements y = d and � = 0 are satis�ed. The

requirements are expressed in the following error vector:

e =
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A Lyapunov candidate function is introduced:
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To establish if asymptotic stability is feasible the derivative of V (e) is obtained:

_V (e) = h

�
d� y

�
u sin(�) + �! ; h > 0: (7)

Consider the control law:
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Applying the control law yields _V (e) = � 
 �
2

; 
 > 0, which is a negative

de�nite function. Since the control law is derived following the same line of

thought as for the control algorithm of FollowBall, a proof for asymptotic

stability will not be given here.

A control law for the linear velocity u was designed independent of the control

law for !. Based on the good results from FollowBall, it was chosen to use a

P-controller for the linear velocity. The control law is given as u = Kp � ( � �),

where  is either the angle to the ball or the angle to the predicted interception

point xintercept, and � is, as in FollowBall, the angle between the center of the

goal and the goalkeeper. Depending on the direction and velocity of the ball, an

interception point between the trajectory of the ball and the defending line may

be used to determine the angle  .

3 Vision-Based Self Localization Using Local Features

The motion control algorithms of the previous section rely on good estimates of

the robot posture. However, and especially for a robotic goalkeeper, frequently

subject to bumps from other robots, odometry alone does not provide such a

reliable estimate, as it strongly degrades over time. Therefore, one must reset it

regularly with a more accurate estimate. The solution used in this work consisted

of using goalkeeper local visual features (e.g., the goal and the posts) and a

vision-based algorithm to provide such an estimate.

We have used ISocRob's omni-directional catadioptric vision system for this

purpose. An image acquired by this system is shown in Figure 5. Since this is a

norm-preserving omni-directional catadioptric system (i.e., distances on the �eld

are preserved on the image) it is relatively simple to determine the distance from

the goalkeeper to surrounding objects by processing the images. Furthermore the

goal posts will always point towards the position of the robot in the (center of

the) image.

Fig. 5. Omni-directional catadioptric vision image taken by the goalkeeper.

Under normal operation the goalkeeper should be near its own goal at all

times. So a good object to detect from the image will be the goal. Extracting

the goal posts as a feature from the image, will reveal the position of the robot



with respect to them. Then the posture of the robot can be estimated by simple

geometry. The algorithm runs in situations while the robot is standing still.

The image processing algorithm is split in four stages, brie
y detailed in the

sequel.

Stage 1: Image Processing | to retrieve the contour of the goal from

the image two steps are required (see Figure 6): i) segmentation of the goal in

the image (identifying the pixels with the same color as the defending goal and

disregarding all other pixels); ii) edge-detection revealing the contour of the goal

in the image.

i) ii)

Fig. 6. Steps of image processing stage 1: i) Goal segmentation; ii) edge-detection.

Stage 2: Feature Detection Using the Hough Transform | to detect

the goal posts in the image containing the contour of the goal the following

three steps are performed (see Figure 7): iii) Hough Transform of the image;

iv) line �ltering: all straight lines obtained in the previous step which do not

point to the center of the image will be �ltered out; v) goal post detection:

this is accomplished by comparing the angles of all the lines in a histogram, and

detecting the two angles most likely to be the angles of the goal posts. Afterwards

two arrays of one or more lines are created containing the line(s) of each goal

post.

Stage 3: Estimation of Goal Post Positions | If, as a result from the

previous steps, there were only one line describing the goal post, the position of

the goal post would be considered as the line endpoint closest to the robot. In

the case there are more lines, an estimate of the line endpoint is obtained by

�rst sorting the line endpoints, and then using a Bayesian data fusion algorithm

whose details we will omit here.

Stage 4: Geometric Calculations | knowing the positions of the two

goal posts with respect to the robot, and the positions of the goal posts in the

�eld, it is possible to determine the posture of the robot using simple geometry.

Again, due to limited space, the details will be omitted.

The image processing algorithm was implemented in C, using the OpenCV

library developed by Intel.



iii) iv)

v) vi)

Fig. 7. Steps of image processing stage 2: iii) Hough Transform; iv) line �ltering; v)

goal post detection; vi) goal posts position estimates.

4 Experimental Setup and Simulations

Simulations were designed to determine the \optimal" values for the danger

zone distance from the goal line ddz and the radius r of the defensive arc for the

FollowBall behavior. The purpose is to determine the con�guration that will

lead to the highest number of saves by the goalkeeper when the state machine

includes the FollowBall and InterceptBall behaviors only. Since both the

discrete state (FollowBall or InterceptBall) and the continuous state of the

robot as well as of the ball (i.e., their position and velocity) will matter for this

purpose, the goalkeeper was modeled as a hybrid automaton [10], resulting from

the composition of the goalkeeper and ball hybrid automata. The hybrid au-

tomaton was implemented in Simulink using CMU's CheckMate toolbox. Three

tests were performed. In the �rst test, several values of ddz used for a danger

zone as wide as the �eld. In the second test, the best values for ddz were taken

and the danger zone width varied. Finally, for the best pair determined in the

previous tests, several values for r were tested. In each of the three tests, shots

were �red from di�erent locations in the �eld, each shot aiming towards the goal.

For every di�erent setup for the danger zone or the radius of the defensive arc,

625 shots were �red against the goal. The speed and the direction of the shots

di�ered. In �ve groups of 125 shots each, the speed was set to 2m/s, 2.5m/s,

3m/s, 3.5m/s, 4m/s respectively. The goalkeeper was initially at the center of

the goal, on the defensive arc.

From these tests, the best results (64:6% of goals saved) were obtained for

a danger zone with the �eld width, ddz = 4:5 m and r = 0:6 m. A constant



radius was also used for the defensive arc, instead of r min and r max referred

in Section 1. The failure rate of 35:4% is mainly due to the relatively slow top

speed achieveable by the goalkeeper (1m=s) and the high speed of some of the

simulated shots.

5 Experimental Results

5.1 Self-Localization

To test the performance of the self-localization algorithm, two issues were con-

sidered: the success rate of the algorithm and the error of the estimated pos-

tures. The robot was placed with the same orientation (90Æ in the �eld frame,

where x points towards the opponent goal z points upwards and y is such that

a right-handed frame is obtained) in 60 di�erent positions in front of the goal,

as illustrated in Figure 8-a). In each position the algorithm was run until 20
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Fig. 8. Self-localization results: a) goal-keeper �eld positions; b) estimation error at

di�erent �eld positions.

estimates of the posture were determined (in some it was not possible to get 20

estimates though).

As explained earlier the algorithm does not return any posture if one of

several conditions is not met (e.g. if only one goal post is found in the image).

With this in mind, the success rate for the algorithm is de�ned as the ratio

between algorithm runs which are successful (a posture is found) and the total

algorithm runs. The success rate was evaluated in each of the 60 positions in the

�eld. The results are plotted in Figure 8-b. The success rate when the robot is

on the goal line outside the goal posts is zero, since the goal color is not visible

from here, and it is needed for posture disambiguation. It is also noticeable that

the success rate is very low in positions 2 m and further away from the goal. The



algorithm has the best success rate in positions 1 and 1.5 meters away from the

�eld end line, and in general there are more successes in positions in front of the

goal.

Concerning the posture estimation errors, in general errors are larger (around

20 cm) in the x direction than in the y direction (around 10 cm). Orientation

errors are typically below 10Æ. Unfortunately, large outliers can sporadically

occur, especially on the x coordinate. Therefore, a test is made which accepts an

odometry reset only if the new value does not di�er from the current odometry

estimate for more than a given threshold. The algorithm average run time is of

approximately 0.4 s.

5.2 Motion Control

The results regarding the motion control cover the the goalkeeper performance

while tracking the defensive arc, shown for two di�erent speeds in Figure 9-a),

under the FollowBall behavior, and when attempting to intercept a ball heading

towards the goal, starting from four initial positions, under the InterceptBall

behavior, as shown in Figure 9-b).
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Fig. 9. a) Results of simulated and actual robot motion for the FollowBall behavior.

The goalkeeper moves from its starting position to the arc and stops as it reaches the

line between the ball and the center of the goal. The solid line shows the movement in

goal coordinates logged from odometry and the dashed line is the simulated motion.

The radius for the defending arc is 1.2 m. The parameters used for the control algorithm

were d = 1:2, h = 4, 
 = 2, Kp = 1:5 and umax = 0:8m
s
. b) Results of simulated and

actual robot motion for the InterceptBall behavior under four situations where the

goalkeeper has di�erent start positions. The circle in (2, 1) represents the ball. The

line from the ball to the origin illustrates a shot towards the goal. The defending line

is placed at ddz = 0:5. Starting position for the goalkeeper in the �gures from the left

to right is (-1.5, 0.3), (-1.5, 1.5), (-1.5, 3) and (0, 1.5).The dashed line is the simulated

trajectory and solid is the logged trajectory from odometry.



In general, the tests made show a good performance when following the ball,

even though some di�erences from the simulated results were found, essentially

due to unmodeled dynamics in the simulations. Among those, the critical prob-

lem is the almost unstable convergence to the arc at higher speeds. Regarding

ball interception, a problem arises due to the usage of a constant value for ddz,

instead of a variable one, e.g., equal to the current x coordinate of the goal-

keeper. Due to speed limitation, for high ball speeds the robot tends to \open"

the goal while moving towards the intercept line, since it �rst rotates of 90Æ.

6 Conclusions and Future Work

This paper presented an integrated design, implementation and test of a robotic

goalkeeper which included hybrid automata modeling of the behavior coordina-

tor, non-linear motion control for trajectory tracking and posture stabilization

and vision-based self-localization. The results are very promising, but further

work needs to be done, namely to improve the reaction speed, to use a variable

intercept line and include further behaviors, such as leaving the goal to face

an opponent robot carrying a ball. In the latter case, inspiration on work con-

cerning behavior coordination with smooth and con
ict-free transitions between

behaviors [11] will be considered.
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