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Abstract– Three dimensional reconstruction aims at estimat-
ing a real function f defined on a subset ofR3. The function f

usually conveys information about the organs properties to be
used for medical diagnosis. Bayesian methods (e.g. MAP) are
often used to address this problem since they allow to incor-
porate the available knowledge about the data and function
to be estimated. However they are usually slow and exhibit
a bad performance at transitions. This paper addresses both
difficulties by approximating the MAP solution by the output
of a set of recursive filters which are fast and provide better
results at transitions.
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I. I NTRODUCTION

3D reconstruction aims at estimating a 3D functionf :
Ω → R whereΩ ⊂ R3 is a 3D region of interest (e.g.,
a region of the human body). This problem arises in sev-
eral biomedical applications e.g., CT, MRI and Ultrasound
imaging.
The function to be reconstructedf is usually observed at a

discrete set of pointsxi ∈ R3 and only noisy observations
yi are usually available. The problem can then be formu-
lated as follows: given a set of dataV = {xi, yi} we wish
to estimatef in the region of interestΩ.
Several methods have been proposed to address this prob-

lem [1]-[6].
The Bayesian methods are one of the most popular solu-

tion since they provide a sound framework to incorporate
the available information about the data model and about
the a priori knowledge onf . They have however some dis-
advantages: they are usually slow and exhibits a bad perfor-
mance at transitions if Gaussian priors [7] are used [8]-[13].
This paper addresses both difficulties by approximating

the MAP solution by the output of a set of recursive fil-
ters which are fast and allow a better representation of the
transitions.

II. MAP RECONSTRUCTION

Let f(x) be a function to be estimated, defined inΩ ⊂
R3. It is assumed thatf interpolates a set of coefficients
u1, u2, ..., uN defined on the nodes of a cubic grid. There-
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fore,f can be expressed as follow

f(x) = Φ(x)T U (1)

whereΦ(x) = [φ1(x), φ2(x), ..., φN (x)]T is a vector of
interpolating functions andU = [u1, u2, ..., uN ] is aN × 1
vector of coefficients. The coefficientsup form a discrete
3D signal defined inR3 ∩ Ω.
Let V = {xi, yi} be the set of observed data:yi being a

noisy observation off(xi) andxi ∈ Ω. Let us assume that
the observationsyi are independent random variables with
normal distribution,i.e.,

p(yi/xi) =
1√

2πσ2(x)

(yi−f(xi))
2

2σ2(x) (2)

where it is assumed thatxi is accurately measured and that
the meanf(x) and varianceσ2(x) change inΩ. The likeli-
hood function is

l(V,U) = C −
∑

i

(
(yi − f(xi))2

2σ2(xi)
+ log σ2(xi)) (3)

whereC = −N
2 log 2π andσ2(xi) is assumed to be con-

stant in the vicinity ofup and computed from the data points
that intersect that vicinity (voxel).
In this paperU is modeled as a Markov random field with

a Gibbs distribution ,

p(U) =
1
Z

e
− α

N′v

∑
p∈G

∑
g∈δ′p

(up−ug)2

(4)

whereZ is the partition function,G is the set of indexes
of theU coefficients andδ′p is the set of allN ′

v backwards
neighbors ofup. This prior constraints neighboring values
penalizing differences between neighboring nodes. By se-
lecting the regularization parameterα it is possible to con-
trol the degree of smoothness of the solution and therefore
its bandwidth [14].
3D reconstruction aims to estimateU using the observa-

tionsvi = (yi, xi). In the popular method MAP algorithm
the solution is obtained as follows

Û = arg max
U

E(U, V ) (5)

where

E(U, V ) = −l(U, V )− log (p(U)) (6)



The solution of (5) corresponds to an huge optimization
problem that usually is solved by using numerical meth-
ods. SinceU has thousands of coefficients the optimization
procedure is computationally demanding. The ICM [15] al-
gorithm has been used to address this problem. This algo-
rithm transforms the N-dimensional optimization problem
in a set collection of 1-D optimization problems (see [14]
for details).
The optimization of (5) with respect to each volume coef-

ficientup is performed by finding the stationary point ofE
with respect toup, i.e.,

∂E(V, U)
∂up

= 0 (7)

Using the fixed point method an iterative algorithm can be
found

up =
1
4α

∑

i

f(xi)− yi

σ2(xi)
φp(xi) + ūp (8)

The MAP estimation using (8) is usually slow and has
a limited convergence range. To enforce the convergence
the initial volume and the regularization parameter must be
carefully chosen.
To overcome these difficulties a simplification to this al-

gorithm is proposed in the next section by deriving an IIR
filter. The estimation process using this recursive filter be-
comes a non iterative process, more stable and faster than
the previous method.

III. IIR MAP FILTER

In this section a set of IIR filters are derived which approx-
imate the MAP estimate.
Let us consider (8). Iff(x) is smooth it can be approxi-

mated byup in the vicinity of the p-th node, i.e.,

f(xi) ' up (9)

leading to

up =
1
4α

[up

∑

i

φp(xi)
σ2(xi)

−
∑

i

yiφp(xi)
σ2(xi)

] + ūp (10)

This can be rewritten as

up = (1− kp)uML
p + kpūp (11)

where

kp =
1

1 +
∑

i
φp(xi)

4ασ2(xi)

(12)

uML
p =

∑
i yiφp(xi)∑
i φp(xi)

(13)

The equation (11) defines an IIR filter. However, since it is
not wedge supported [16], i.e., the output depends on past
and futures outputs, it is not possible to compute it recur-
sively. To overcome this difficulty (11) will be replaced by
a set of eight wedge supported filters which can be recur-
sively computed,

uw
p = (1− kp)uML

p + kpūw
p (14)

wherew = 1, .., 8, p = (i, j, k) andūw
p is the mean of the

three backward neighbors ofup with respect to the direction
of sweeping. Each filter is recursively computed starting
from a different corner of the tri-dimensional grid as shown
in Fig.1. The outputs of these filters are then averaged to
produce the final result as shown in Fig.2. This approach
does not provide the true MAP solution but, as we will show
in the section of experimental results, it still achieves very
good results. Furthermore, it has the advantage of being
always stable.

Figure 1 - Starting points of the IIR filters.

Figure 2 - Bank of recursive filters used to approximate the non wedge
MAP filter.

IV. FREQUENCYRESPONSE

Let us consider one of the wedge supported filters, e.g.,h1

and let us consider the 1D equivalent filter, i.e.,

un = (1− kn)uML
n + knun−1 (15)

.
Assuming thatkn is constant and equal tok in a small

vicinity of the nth node the z-transform ofh1 is

H1(Z) =
1− k

1− kZ−1
(16)

This is the expression of a first order low-pass filter with
unit gain atω = 0 and a pole atk (see Fig.4a)). This ap-
proach explains why the Gibbs prior with quadratic poten-
tial functions does not represents the transitions well. In
fact, under this approach, the regularization imposed by the
prior is equivalent to filtering the ML estimates with a first
order low-pass filter smoothes the transitions (see Fig.3).



Figure 3 - Frequency response of the first order filter for different values
of k = 0.1, 0.2, ..., 0.9

Some additional conclusions can be stated using (12): con-
clude that:

1) taking into account thatφp(xi) ≥ 0 then0 ≤ kp ≤ 1
which means that the pole of the first order filter is
always inside the unit circle, or , the filter is always
stable.

2) the parameterkp decreases with the number of data
points with

∑
φp(xi), i.e., the bandwidth of the fil-

ter increases with the amount of available data and de-
creases as the number of data points goes to zero. The
algorithm compensates the lack of confidence in the
data by decreasing the filter bandwidth.

3) the bandwidth of the filter decreases with the increasing
of the regulatization parameterα and with the increas-
ing of the variance of the data in the vicinity ofup,
σ2(x).

4) the algorithm is implemented in such way that when
there is no datakp = 1. In this caseup = ūp, i.e.,
the node estimates is equal to the mean of the neigh-
bors.

Therefore, the IIR filter proposed in this paper, is a space
variant filter that adapts its bandwidth along space accord-
ing to the amount of observed data and its uncertainty.
The first order filter is not appropriated to deal with transi-

tions. In the next section, a new class of filter are proposed
to improve the performance of the algorithm at the transi-
tions.

V. SECOND ORDER LOW PASS FILTER

Figure 4 - Root locus. a)1st order IIR filter, b)2nd order IIR filter

The first order filters derived in the previous section have
unit gain atw = 0 and a pole atkp with 0 < kp < 1. Let

now consider a second order IIR filter with complex poles at
positionsk′p = λkpe

±jθ, as shown in Fig.4.b) and with unit
gain atw = 0. The parameterλ is used to avoid poles in
the unit circumference which leads to instability (λ = 0.9).
This second order IIR filter should be design to have a

larger bandwidth than the first order filter but a smaller tran-
sition region. In this case the transitions are better preserved
and the high frequency noise better attenuated.
Fig.5 shows the frequency response for three different val-

ues ofkp. It is visible that the bandwidth of the second
order IIR filter is smaller than the first order filter for small
values ofkp (e.g.kp = 0.1) and bigger for large values.

Figure 5 - Frequency response of first order(1) and second order(2) IIR
filter for three different values ofkp; a)kp = 0.1, b)kp = 0.5 and c)kp =
0.95 with λ = 0.9 andθ = 10

The Z-transform of this second order filter is

H(Z) =
1− 2λKpcos(θ) + (λkp)2

1− 2λKpcos(θ)Z−1 + (λkp)2Z−2
(17)

allows to derive the new recursive filter expression

uw
p = gpu

ML
p +

1
3
Gw

p (18)

wheregp = (1 − 2λkpcos(θ) + (λkp)2) and Gp(up) is
obtained by applying a mask involving the six backward
neighbors of the p-th node as shown in Fig.6 wherea =
2λkpcos(θ) andb = −(λkp)2.

VI. EXPERIMENTAL RESULTS

This section illustrates the performance of the proposed al-
gorithm using synthetic and real data. In each experiment



Figure 6 - Mask used in the second order filter.a = 2λkpcos(θ) and
b = −(λkp)2

Algorithm L S/N(dB) Time(s)
MAP -1.036e7 24.14 384.76

IIR 1st Ord -1.028e7 24.20 19.60
IIR 2nd Ord -1.027e7 27.69 19.58

Table I

SIMULATION RESULTS WITH SYNTHETIC DATA.

reconstructions are performed using the MAP method (8),
the first order IIR filter (11) and the second order IIR fil-
ter (18). The reconstructions are shown as well as a set of
figures of merit used to evaluate the algorithms: the likeli-
hood, the processing time and the signal to noise ratio (in
the case of synthetic data only) .
In the first experiment, a sequence of synthetic data is used

consisting of128 images with128 × 128 pixel. These
images correspond to parallel cross sections of a binary
volume containing a sphere corrupted with white noise
w ∼ N(0, 322). The background mean is75 and the sphere
mean is150. Fig.7 shows the reconstruction results ob-

Figure 7 - Reconstruction results (2D cut and 1D profile) obtained
with:a)MAP method, b)1st order filter and c) 2nd order filter.

tained with the three methods and the Table I shows the
figures of merit used to evaluate them. Since it is difficult
to visualize a 3D volume only 2D cuts and 1D profiles are
shown. It is concluded that the 1st order filter achieves re-
sults similar to the MAP method being 20 times faster. This
example shows that non iterative methods can be used to
achieve good reconstruction results. The second order filter
is as fast as the first order reconstruction and improves the
reconstruction results at the transitions being therefore the
best solution for this problem.
Experimental tests were also performed using a set of 40

Algorithm L Time(s)
MAP -2.076e6 96.32

IIR 1st Ord -2.044e6 5.60
IIR 2nd Ord -2.044e6 5.60

Table II

SIMULATION RESULTS WITH REAL DATA .

images1 with 120×100 pixels of a cell nuclei obtained with
the HRCM (high resolution cytometry) technique using an
optical microscope [17]. The distance between slices is 0.2
micrometers and each pixel is of size 0.1 x 0.1 micrometer.
The results are displayed in Fig.8 and Fig.9 and in table II.

Figure 8 - Reconstruction results using real data. a)image belonging to the
data sequence. Cross section extracted from the volume estimated using
the b)MAP iterative method, c)1st order IIR filter and d)2nd order IIR
filter.

Again the 1st order filter achieves similar results to the
ones obtained with the MAP iterative method with signif-
icant(one order of magnitude) computational gains. The
performance of the 2nd order filter is similar to the one ob-
tained with the 1st order filter because, in this case of real
data, there are no abrupt transitions.
Fig.10 shows the segmentation results. This results are ob-

tained using ray-casting techniques applied to the volumes
estimated using the MAP algorithm (see Fig.10a)) and the
2nd order IIR filter (see Fig.10b)). The 2nd order IIR filter
presents artifacts that do not correspond to any anatomical
detail. These artifacts, appearing as a structure of parallel
contours, are due to an non perfect interpolation operation
between the data planes. To value of theα parameter used
in both methods, MAP and 2nd order IIR filter, is the same
to allow a comparison. However, by increasing this value
in the IIR filter method it is possible to reduce or even elim-
inate these artifacts.

VII. C ONCLUSIONS

This paper presents a fast algorithm for 3D MAP recon-
struction based on the use of recursive IIR filters. The al-
gorithm performs as follows. First the maximum likelihood

1This sequence was gently provided by Pavel Matula from the Labora-
tory of Optical Microscopy, Faculty of Informatics, Masaryk University,
Czech Republic



Figure 9 - 1D diagonal profiles. Comparison of the original image with the
estimated images using a)MAP iterative method, b)1st IIR filter and c)2nd
IIR filter.

Figure 10 - Cell surfaces obtained with a)MAP method and b)2nd order
IIR filter.

estimate of the volume coefficients is computed for every
observed node of the 3D grid. Second, a set of 8 filters
is applied to the ML estimates each of them starting from a
different corner of the volume to be reconstructed. The pro-
posed filters are space variant: they have a small bandwidth
when a large number of observations are performed in the
vicinity of a grid node and they have a large bandwidth in
the case of few or zero observations. It has been shown
that the proposed algorithm is much faster than the original
MAP method, has better performance at the transitions and
is more stable.
The methods described in this paper for a Gaussian data

model can be easily applied with other types of distribu-
tions. An example is the Rayleigh distribution used in 3D
ultrasound which leads to non linear optimization problems
and can easily be tackled using the proposed technique [18].
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