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Abstract

Computing a camera’s ego-motion from an image se-
guence is easier to accomplish when a spherical retina is
used, as opposed to a standard retinal plane. On a spheri-
cal field of view both the focus of expansion and contraction
are visible, whereas for a planar retina that is not necessar-
ily the case.

Recent research has shown that omnidirectional systems
can be used to emulate spherical retinas by mapping im-
age velocity vectors from the omnidirectional image to the
spherical retina. That has been done by using the Jacobian
of the transformation between the image formation model
and the spherical coordinate system. As a consequence, the
Jacobian matrix must be derived for each specific omnidi-
rectional camera, to account for the different mirror shapes.

Instead, in this paper we derive the Jacobian matrix us-
ing of a general projection model, that can describe all sin-
gle projection center cameras by suitable parameterization.
Hence, both the back-projection of an image point to the
unit sphere, as well as the mapping of velocities through the
transformation Jacobian remains general for all cameras
with a single center of projection.

We have conducted a series of experimental tests to illus-
trate the validity of our approach which lead to encouraging
results.

1. Introduction

For many applications in autonomous navigation, the es-
timation of the observer motion (ego-motion) is a very im-
portant step. The ego-motion estimation problem consists
of retrieving the observer instantaneous rotation and (direc-
tion of) translation while moving through the environment,
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taking an image sequence as the input.

Most of the time, the process of ego-motion estimation
starts by computing image motion and then using those vec-
tors and properties of the motion field equations to estimate
ego-motion. Usual approaches are based on point corre-
spondences [1], optical flow [2] or the so-called direct meth-
ods [3, 4].

For the usual cameras that can be modeled as the per-
spective projection of the 3D structure onto an image plane,
ego-motion is difficult to estimate. Even though the infor-
mation about the observer motion is present in the images,
it is very common that the direction of translation (focus of
expansion) lies outside their small field of view, which is a
challenge for most methods. In addition, different camera
motions can produce similar motion fields in the image [5].
A simple example is the case of a camera looking along the
Z-axis, where a rotation about the X -axis produces a sim-
ilar effect to a translation along the Y'-axis. Because of the
limitations of small field of view images, most ego-motion
methods become very sensitive to noise and also to camera
orientation.

Instead, if we consider that the observer’s retina is spher-
ical, as opposed to planar, ego-motion becomes easier to es-
timate [6]. For instance, with a hemispherical field of view,
either the focus of expansion (FOE) or the focus of contrac-
tion (FOC) will be visible in the image. If a whole spherical
field of view is available, it is guaranteed that both FOE and
FOC are inside the image.

Similarly, by using omnidirectional images, one can
benefit from the basic advantages of having a spherical
retina for ego-motion estimation. A significant effort has
been done in order to design different omnidirectional sys-
tems [7, 8] to address different tasks. Since the enlarged
field of view significantly improves the robustness of track-
ing or robot localization, wide-angle images have been
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used in many applications of autonomous robot navigation
[9, 10, 11] including motion estimation [12, 13].

In the remaining of the paper, we will refer to planar per-
spective projection to indicate the pin-hole camera model
with a planar retina and designate the projection to a spher-
ical retina as spherical projection.

Gluckman and Nayar [14] showed that good results for
ego-motion can be obtained by using omnidirectional im-
ages. They start by computing the image motion with a se-
quence of omnidirectional images. Then, the image motion
is mapped to the surface of a unit sphere, as if the camera
had a truly spherical retina. This mapping is performed by
means of determining the Jacobian of the transformation be-
tween spherical projection model and the image formation
model of a catadioptric omnidirectional camera. Once the
image motion vectors are mapped to the unit sphere, well
known ego-motion algorithms can be applied, after small
adaptations to the spherical projection model.

However in [14], a different Jacobian function must be
determined for each distinct omnidirectional system, ac-
cording to the specific projection model of the camera. In-
stead, in this work, we present a general Jacobian function
that can describe a large set of possible catadioptric omni-
directional cameras.

We rely on the general projection model defined by
Geyer and Daniilidis [15]. This model can represent many
single projection center systems, including omnidirectional
cameras. Using this model, we define a general expres-
sion for the Jacobian relating image flow and flow on the
spherical retina. The derived Jacobian can be adjusted for
different wide-angle cameras simply by changing a pair of
parameters.

We have conducted several experiments, where the im-
age motion on omnidirectional images was computed using
the tracker of Lucas and Kanade [16, 17]. Then, the om-
nidirectional flow field is projected to the unit sphere using
the proposed general Jacobian function. Then we used the
algorithm of Bruss and Horn [18] to estimate ego-motion
and illustrate the validity of our approach.

Section 2 presents the image formation model for single
projection center cameras, while the Jacobian calculation
is described in Section 3. The motion field on a spherical
retina and the considered constraint for ego-motion is stud-
ied in Section 4. Finally, some of the experimental results
and conclusions are presented in the last two sections.

2. The General Projection Model

The Projection Model defined by [15] and studied in
[19], represents in an unified manner several single pro-
jection center systems, like pin-hole cameras and many
omnidirectional cameras based on hyperbolic, elliptical or
parabolic mirrors. This model combines a mapping of a 3D

point P to a sphere followed by a projection to the image
plane. The center of the sphere lies on the optical axis of
the projection to the plane (see Figure 1).
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Figure 1. The general projection model for
single projection center cameras.

Different camera representations are obtained simply by
changing the values of parameters [ and m, which repre-
sent the normalized distances from the sphere center of the
projection model to the projection center O and projection
plane. According to the model, the image projection p(z, y)
of a 3D point P(X,Y, Z), can be defined by:

m— Lt m m with R= VX2 4V 522 (1)

y| IR-Z

It is important to mention that the camera intrinsic pa-
rameters, image center and focal length are not considered
in the equation above. In the following section, we will see
how to inverse project points and velocity vectors from the
image plane to the surface of the (unit) spherical retina.

3. From the image plane to the spherical retina

In order to project image flow vectors to the surface of
the unit sphere, we need first to know the inverse operation
of Equation (1), usually denoted as back-projection, [19].

By back-projecting an image point (x,y), we obtain a
point on the unit sphere (X,Y, Z) that represents the di-
rection of the incoming ray from the original 3D point.
The back-projection equation is derived from Equation (1),
yielding:
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where Z becomes negative if |l + m/|/l > /22 + y2 and
positive otherwise.

To map image velocity vectors to the surface of the
spherical retina, we need to calculate the Jacobian of the



back-projection Equation (2). The Jacobian relates tempo-
ral derivatives (velocities) in the spherical coordinate sys-
tem to those in the image frame. It is obtained by differen-
tiating the spherical coordinates (X, Y, Z) with respect to
the image coordinates (z, y).
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Since the projection model is valid for all cameras with
a single projection center, the corresponding Jacobian can
be applied to many different omnidirectional cameras (also
with a single projection center) simply by changing the val-
ues for the parameters [ and m in the equations. The partial
derivatives for the generic Jacobian are listed below and
were derived for the case when (I + m) < 0:
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The spherical flow field, U, on the surface of the spheri-
cal retina, can be calculated by multiplying the (planar) im-

age flow field by the Jacobian function:

Oz
ot
u = J
9y
ot
with
X oy 9Z r
v = [W ot ot ®)

Having described how to map the image flow computed
from an omnidirectional image sequence to the flow that
would have been obtained with a spherical retina, we can
now apply ego-motion estimation methods to this flow field.

4. Ego-motion from the motion field on a
Sphere

As shown in [6], a spherical retina would be advanta-
geous for the computation of ego-motion. The Jacobian
matrix presented in the previous section allows us to re-map
the (planar) image flow to the surface of a spherical retina.

To use the obtained spherical motion field for ego-
motion estimation, we still need to define the spherical mo-
tion field equation and show how it relates to the ego-motion
parameters. For a camera moving with linear and angular
velocities, T' = (T, Ty, T%) and Q = (wg, wy, w;), the ve-
locity of a 3D point P relative to the camera is given by:

P=-T-QxP (6)

The projection, P, on the unit sphere of the point P can
be computed using the spherical projection equation:

~ P
P=— 7
1Pl
If we differentiate Equation (7) with respect to time and
use Equation (6) to substitute P in the resulting expression,
we get the equation of the spherical retina motion field:
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This equation describes the velocity U at point P on the
unit sphere as a function of the camera motion (7°,(2) and
depth, || P||. Hence, our goal is to estimate 2 and 7', from
observations of the spherical motion field U.

As the depth || P;|| for each projected point P; on the unit
sphere is not usually known, Equation (8) cannot be used
directly, which makes the problem harder. When the lin-
ear velocity is different from zero, it is possible to re-write
Equation (8) to remove the depth dependence and use this
new formulation to estimate ego-motion.



In [14], several well know ego-motion algorithms de-
signed for planar perspective projection were adapted to
spherical projection. In this paper, we focus our attention
to one of those methods to illustrate the validity of our ap-
proach. We used the Bruss and Horn [18] algorithm and the
depth dependency on the spherical motion field Equation
(8) is removed by taking the cross product with P and the
dot product with T':

T-(Px(U+(QxP))=0 9)

Ego-motion is estimated through an iterative process.
From Equation (9), a set of velocity vectors on the unit
sphere are used to find a least squares estimate of (2 as
a function of 7. Then the result is substituted back into
(9), resulting in a non-linear constraint on 7'. The direction
of T is computed by non-linear minimization considering
IT|| = 1. The method used is basically the one described
in [20].

However, Equation (9) can only be used when the cam-
era translation 7' is different to zero. For pure rotation we
must resourt to the original Equation (8). In this case, the
dependence on depth disappears because of the absence of
translation and €2 can be obtained by a simple least square
estimation.

5. Experiments and Results

We have proposed a general approach for ego-motion
with omnidirectional images. We adopted a projection
model valid for all single center of projection cameras to
develop a general expression for the Jacobian that projects
(planar) image vectors onto the unit sphere. Then, motion
field on the spherical retina is used to calculate the camera
motion. In this section we show some experimental results
that demonstrate the utility of our approach.

The robot used in our experiments was a TRC Labmate
(see Figure 2-a). It is a differential-driven robot equipped
with an on board computer (Pentium Il MMX - 350 MHz
- 160 RAM). The vision system consists of an omnidirec-
tional catadioptric system, composed by the camera point-
ing upwards to a spherical mirror. This system is mounted
on top of the mobile robot with its axis coincident to the
platform’s rotation axis (see Figure 2-b).

Even though the camera with the spherical mirror does
not have a single projection center system, we have shown
in [19] that our sensor can be well approximated by the pro-
jection model presented in the Section 2. The parameters
values were identified to [ = 1.81521 and m = —6.8666.

The reference coordinate frame is defined by the camera
position. The Z-axis is coincident with the optical axis and

(b)

Figure 2. The robot (a) and the catadioptric
vision system (b).

points upwards, the X -axis points to the robot backward di-
rection and the Y'-axis points to the robot right hand side.
Thus, according to the adopted reference the forward mo-
tion of the robot corresponds to a negative velocity in the X
direction.

The first experiment corresponds to pure translational
motion. The robot moved along the X -axis in the negative
direction with a velocity of 50 mm/s. Images were taken
during motion and the image flow was calculated with a
tracker based on Lucas and Kanade approach [17]. A pair
of omnidirectional images used by the tracker and the re-
sulting motion field are shown in Figure 3.

Figure 3. Two images used for computing im-
age flow (top), selected points and vectors
obtained by the tracker (bottom).



The (planar) image vectors were projected onto the unit

. . . : Translation | T (T, T, T.
sphere using the general expression for the Jacobian defined (L Ty T:)
. . : - odometry T=[-100]
in Section 3. The camera motion was computed using the - .

. . . - estimated T = [—0.9990 0.0425 0.0109]
Bruss and Horn ego-motion algorithm. The error in the di-
. ; . error er = 2.5176°

rection of translation and rotation are calculated as shown - =
in Equation (10). As translation can only be recovered up Rotation Q (we wy w2) (°F)

odometry Q=100 0]

estimated € = [0.0024 — 0.0397 0.0281]
error eq = [0.0024 — 0.0397 0.0281]

e = arccos(T -T) || eq ||=0.0486

co = Q-0Q (10)

to a scale factor, only its direction is considered for the error
assessment, as we always keep ||7|| = 1:

Table 1. Ego-motion values and errors for
pure translation.

where T" and (2 stand for the values obtained by odometry
readings and 7" and 2 are the estimated translation and ro-
tation.

The obtained spherical motion field, expressed in (m/s),
and the calculated ego-motion are shown in Figure 4. Vec-
tors are scaled proportionally to their real size in order to fit
the graph. Table 1 shows the estimated values for the trans-
lation direction (7'), the rotation vector (€2) and the corre-
sponding errors.
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Figure 4. A 3D view and a top view of the pro-
jected maotion field on the unit sphere in the

camera reference frame. Motion vectors are Figure 5. Results for combined camera mo-
measured in (m/s). The vector in the center tion - translation along the X-axis and rota-
indicates the estimated direction of transla- tion around the Z-axis.

tion. The rotation vector is not seen because
it is almost zero. All vectors are scaled to fit

the graph. Translation | T' (T, T, T,)
odometry T =[-0.9922 — 0.1244 0]

For a second experiment, the robot was moved combin- estimated T'=1[-0.9953 —0.0876 0.0408]
ing translation and rotation: a negative translation along the error : o = 315407
X -axis (50 mm/s) and a positive rotation around the Z-axis Rotation Q (we wy w:) (°)
(= 2°/s). Results are presented in Figure 5 and Table 2. odc_)metry =0 0 1.9652]

In these experiments, the estimation errors both for the estimated | &= [0.1261 0.0286 2.0168]
angular speed estimate and the direction of translation are error e = [0.1261 0.0286 0.0516]
quite small, thus validating our approach. [l eo [|I=0.1392

In the final experiment, the robot moves with a pure rota-
tion. As mentioned before, for this special case when trans-
lation is zero 7°(0, 0, 0), Equation (9) cannot be applied. A
least square estimate for €2 is obtained using the original

Table 2. Ego-motion values and errors for the
combined motion.



Equation (8) which is no longer depended of depth. The
results for the pure rotation around the Z-axis (=~ 5°/s) is
shown in Figure 6 and Table 3.
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Figure 6. Results for pure rotation around the
Z-axis.

Rotation | Q (w, wy wz) (°/s)

odometry | Q =1[0 0 4.7498]

estimated | Q = [0.1261 0.1146 3.8560]

error eq = [0.1261 0.1146 — 0.8938]
|| eq [|= 0.9099

Table 3. Estimated value and error for pure
rotation.

Without knowing the camera motion in advance, it is
difficult to select amongst the two available models: the
combined motion model - Equation(9) - or the pure rotation
model - Equation(8) with 7" = 0.

One possibility is to apply first the pure rotation model
to estimate a (pure) rotation. The quality of the fitting can
be assessed by looking at the residuals, r, between the ob-
served flow and the reconstructed flow of the pure rotation
flow model:

r=U;+Qx P (11)

where €2 is the angular velocity estimate.

The mean residual vector, 7 = mean(r;) and standard
deviation o, = trace(cov(r;)), are used as performance
indexes of the model fitting procedure. In fact, if we use a
pure rotation model, when the camera is undergoing a pure

translation or a combined motion, one can expect that the
residuals will be biased and present a significant standard
deviation, when compared to the usage of the correct model.

Choosing 7 and o, as decision variables, a threshold
could be defined for model selection. When 7 and o,
exceed the defined limits, the combined motion model -
Equation(9)- should be used.

To illustrate this idea we applied the pure rotation model
- Equation (8) - to the three examples presented in the pre-
vious experiments. Table 4 shows that the values for 7 and
o, are much larger for the pure translation and combined
motion cases than for the pure rotation case. That observa-
tion shows the applied model does only fit the third test set.
A threshold could be defined somewhere between the ob-
served values. A numerous set of trials and measures should
be done from the motions of interest to define the those lim-
its, with statistical significance.

Flow error (m/s) | Pure Translation

Mean 7=1[0.0151 0.0010 — 0.0004]
| 7 ||= 0.0151

Standard deviation | o, =0.0234

Flow error (m/s) | Combined Motion

Mean 7 =[0.0152 0.0002 0.0004]
| 7 ||= 0.0152

Standard deviation | o, = 0.0235

Flow error (m/s) | Pure Rotation

Mean 7 = [-0.0007 —0.0003 — 0.0023]
| 7 ||= 0.0024

or = 0.0079

Standard deviation

Table 4. Mean and standard deviation values
for the residual between the reconstructed
spherical motion field (considering the pure
rotation model) and the observed motion.
The lowest values occur for the pure rotation
case.

6. Conclusion

We have addressed the problem of ego-motion estima-
tion from omnidirectional images. The original motivation
started from the observation that the observer motion pa-
rameters are easier to estimate when using a spherical retina
than with a planar one.

Previous research has shown how to project image ve-
locity vectors computed from omnidirectional images to
the surface of a (unit) spherical retina. Then existing ego-
motion algorithms designed for planar images could be
adapted to the spherical motion field. In [14], the transfor-
mation between (planar) image vectors to spherical vectors



is achieved by means of a Jacobian matrix which is specific
of the used omnidirectional system. Thus every time a dif-
ferent wide-angle imaging system is used, a new equation
for the Jacobian must be derived.

To overcome this limitation, we proposed a general ex-
pression for the Jacobian that can be used for many different
omnidirectional cameras, simply by setting two parameters.
We rely on a general image formation model, valid for all
single center of projection cameras. Therefore, the equation
of the back-projection to the unit sphere and the Jacobian
remain general for many different systems.

We demonstrate the validity of our approach by using the
Jacobian to project image velocity vectors from omnidirec-
tional images to the surface of the unit sphere. Then, an
ego-motion algorithm is used to estimate camera motion.

We also discussed the problem of choosing amongst two
models for ego-motion estimation. One model considers
rotational motion only, while the second encompasses si-
multaneous translation and rotation. The selection criterion
is based on the mean and standard deviation of the residu-
als between the reconstructed motion field and the observed
one. The results obtained were quite encouraging.
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