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Abstract

In this paper we present a general methodology for de-
signing mirrors of catadioptric omnidirectional sensors en-
compassing linear projection properties, the so called con-
stant resolution cameras. The linearity is stated between
3D distances (or angles) and pixel coordinates.

We include three practical cases of interest of linear con-
straints for both standard (cartesian pixel distribution) and
log-polar cameras: constant vertical, horizontal and angu-
lar resolution.

Finally, the formulation is applied in designing a camera
combining some of the presented practical cases. Resulting
images show that the design was successful as the desired
linear properties were obtained.

1. Introduction

Sensor design is an enabling key for developing, simpli-
fying or improving several applications in Computer Vision.
In the recent past some traditional problems like scene rep-
resentation, surveillance or mobile robot navigation, were
found to be conveniently approached using different sensors
and led to a significant effort in research and development
of omnidirectional vision systems, i.e. systems capable of
seeing in all directions [1, 2, 3, 4, 6, 7, 10, 12, 13, 15, 17].

There are many types of omnidirectional vision systems,
being mostly common the ones based on rotating cameras,
fish-eye lens or mirrors. The work described in this paper is
mainly concerned with the omnidirectional vision systems
combining cameras with mirrors, normally referred as cata-
dioptric systems in the optics domain, specifically in what
concerns the mirror profile design.

The image formation model of a catadioptric omnidirec-
tional camera is determined by the shape of the mirror. In

some cases, one can design the shape of the mirror in such
a way that certain world-to-image geometric properties are
preserved - which we will refer to aslinear projection prop-
erties.

The choice of the properties that should be preserved by
the catadioptric imaging system is naturally related to the
specific application at hand: e.g. tracking and visual navi-
gation. Specific details on the applications based on these
omnidirectional cameras can be found in [4, 6, 16]. The
desired linear projection properties, can be categorised into
three main types:

• Constant vertical resolution - This design constraint
aims to produce images, where objects at a (pre-
specified) fixed distance from the camera’s optical axis
will always be the same size in the image, indepen-
dent of its vertical coordinates. As a practical example
this viewing geometry would allow for reading signs
or text on the surfaces of objects with minimal distor-
tion. As another example, tracking is facilitated by re-
ducing the amount of distortion that an image target
undergoes when an object is moving in 3D. Finally, in
visual navigation it helps by providing a larger degree
of invariance of image landmarks w.r.t the viewing ge-
ometry.

• Constant horizontal resolution - The constant hori-
zontal resolution ensures that the ground plane is im-
aged under a scaled Euclidean transformation. As
such, it greatly facilitates the measurement of distances
and angles directly from the image as well as easier
tracking of points lying on the pavement thus having a
large impact on robot navigation algorithms.

• Constant angular resolution - Here it is desired to
ensure uniform angular resolution as if the camera had
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a spherical geometry. This sensor has interesting prop-
erties e.g. for ego-motion estimation [14].

Some of these designs have been presented in the litera-
ture, [2, 3, 7, 10] with a different derivation for each case.
In this paper, instead, we present aunified approach that en-
compasses all the previous designs and allows for new ones.
The key idea is that of separating the equations for the re-
flection of light rays at the mirror surface and the mirror
Shaping Function, that explicits the linear projection prop-
erties to meet.

In some applications, one may be interested in having
one type of projection properties in a certain area of the
visual field and other projection properties in other areas of
the visual field. We present a so-calledCombined Mirror
where the outer part of the image sensor is used to obtain
a constant vertical resolution image, while the inner part
is devoted to yield a constant horizontal resolution image.
In this case, both constraints on the mirror shape resulting
from the two design goals are combined together in a single
profile.

Our general mirror design methodology is firstly devel-
oped for standard (cartesian) image sensors. However, a
different choice of the sensor pixel layout may bring addi-
tional geometric and computational benefits for the result-
ing image/processing. Due to the rotational symmetry of
the omnidirectional images, a natural choice is to use an
image sensor with a polar structure. In this work we use the
SVAVISCA [11] log-polar sensor developed at DIST, Uni-
versity of Genova. As a result of this mirror sensor combi-
nation, panoramic images can be directly read out from the
sensor with uniform angular resolution and without requir-
ing any additional processing or image warping. Our gen-
eral design methodology is applicable in exactly the same
terms to this sensor layout.

This paper is organised as follows: Section 2 introduces
the general approach for mirror profile design in the form of
a differential equation based on a mirror shaping function.
Section 3 shows shaping functions to set specific constant
resolution properties on the sensor. Section 4 details the de-
sign of a combined mirror for a log-polar camera, instantiat-
ing some of the presented constant resolution properties. In
Section 5 we analyse the resulting mirror. Images obtained
with the designed sensor are shown. Finally, in Section 6,
we present our conclusions and the future directions of our
research.

2. A General Differential Equation for Mirror
Profile Design

The image formation process is determined by the trajec-
tory of rays that start from a 3D point, reflect in the mirror
surface and finally intersect with the image plane. This pro-

cess depends on the projection function that specifies a type
of sensor.

Due to the rotational symmetry of the system we only
need to consider the design of the mirror profile. The ge-
ometry of the image formation of the omnidirectional cata-
dioptric camera is shown in Figure (1).

Figure 1. Main variables defining the projec-
tion equation.

Based on first order optics [9], and in particular on the
reflection law, the following equation is obtained:

φ = θ + 2.atan(F ′) (1)

whereθ is the camera vertical view angle,φ is the system
vertical view angle,F denotes the mirror shape (it is a func-
tion of the radial coordinate,t) andF ′ represents the slope
of the mirror shape.

Equation (1) is valid both for single [1, 7, 13, 15, 17], and
non-single projection centre systems [2, 3, 4, 6, 10]. When
the mirror shape is known, it provides the projection func-
tion. For example, considering the single projection centre
system combining a parabolic mirror,F (t) = t2/2h with an
orthographic camera [13], one obtains the projection equa-
tion,φ = 2atan(t/h) relating the (angle to the) 3D point,φ
and an image point,t. Conversely, Eq.(1) can also be used
to compute the mirror shape to achieve a desired projection
function.

To simplify the addition of some desired projection prop-
erties (constraints) into Eq.(1) it is advantageous to replace
the angular variables by cartesian coordinates. This is done
assuming the pin-hole camera model and calculating the



slope of the light ray hitting the mirror:

θ = atan

(
t

F

)
, φ = atan

(
− r − t

z − F

)
.

Then, expanding the trigonometric functions, one obtains a
differential equation on the variablesF, t:

t
F + 2 F ′

1−F ′2

1 − 2 tF ′
F (1−F ′2)

= − r − t

z − F
(2)

where (r, z) is a generic 3D point. This is Hicks and
Bajcsy’s differential equation relating 3D points to image
points,(t/F, 1) [10]. We assume without loss of generality
that the focal length,f is 1, since it is easy to account for a
different (desired) value at a later stage.

In order to numerically compute the solution of the dif-
ferential equation, it is convenient to have the equation as
an explicit expression forF ′ 1.

Re-arranging Eq.(2) results in the following second order
polynomial equation:

F ′2 + 2αF ′ − 1 = 0 (3)

whereα is a function of the mirror shape,(t, F ) and of an
arbitrary 3D point,(r, z):

α =
− (z − F )F + (r − t) t
(z − F ) t + (r − t)F

. (4)

We callα the mirrorShaping Function, since it ultimately
determines the mirror shape by expressing the relationship
that should be observed between 3D coordinates,(r, z) and
those on the image plane, determined byt/F . In the next
section we will show that the mirror shaping functions allow
us to bring the desired linear projection properties into the
design procedure.

Concluding, to obtain the mirror profile first we specify
the shaping function, Eq.(4) and then solve Eq.(3), or sim-
ply integrate:

F ′ = −α±
√

α2 + 1 (5)

where we choose the+ in order to have positive slopes in
the mirror shape,F .

3. Setting Constant Resolution Properties

Our goal is to design a mirror profile to match the sen-
sor’s resolution in order to meet, in terms of desired image
properties, the application constraints. As seen in the previ-
ous section, the shaping function defines the mirror profile,
and here we show how to set it accordingly to the design
goal.

1E.g. having an explicit formula forF ′ allows to use directly matlab’s
ode45 function

Overall we want some world distances,D, to belinearly
mapped to (pixel) distances,p, measured in the image sen-
sor:

D = a0.p + b0. (6)

for some values ofa0 andb0 which mainly determine the
visual field.

When considering conventional cameras, pixel distances
are obtained by scaling metric distances in the image plane,
ρ. In addition, knowing that those distances relate to the
slopet/F of the ray of light intersecting the image plane
as:

ρ = f.
t

F
, (7)

the linear constraint may be conveniently rewritten in terms
of the mirror shape as:

D = a.t/F + b (8)

Notice that the parametersa andb can easily be scaled to
account for a desired focal length, thus justifying the choice
f = 1 previously done.

In the following sections, we will specify which 3D dis-
tances,D(t/F ), should be mapped linearly to pixel coor-
dinates, in order to preserve different image invariants (e.g.
ratios of distances or angles in certain directions).

3.1. Constant Vertical Resolution

The first design procedure aims at preserving relative
vertical distances of points placed at a fixed distance,C,
from the camera’s optical axis. In other words, if we con-
sider a cylinder of radius,C, around the camera optical axis,
we want to ensure that ratios of distances, measured in the
vertical direction along the surface of the cylinder, remain
unchanged when measured in the image. Such invariance
should be obtained by adequately designing the mirror pro-
file - yielding a constant vertical resolution mirror.

The derivation described here follows closely that pre-
sented by Gaechter and Pajdla in [5]. The main differences
consist of (i) a simpler setting for the equations describ-
ing the mirror profile and (ii) the analysis of numerical ef-
fects when computing the derivatives of the mirror-profile
to build a quality index (section 5). We start by specialis-
ing the linear constraint in Eq.(8) to relate 3D points of a
vertical linel with pixel coordinates (see Fig.2):

z = a.t/F + b, r = C.

Inserting this constraint into Eq.(4) we obtain the spe-
cialised shaping function:

α =
− (

a t
F + b− F

)
F + (C − t) t(

a t
F + b− F

)
t + (C − t)F

. (9)



Figure 2. Constant vertical resolution: points
on the vertical line l are linearly related to their
projections in pixel coordinates, p.

Hence, the procedure to determine the mirror profile con-
sists of integrating Eq. (5) using the shaping function of
Eq.(9), whilet varies from 0 to the mirror radius.

The initialization of the integration process is done by
computing the value ofF (0) that would allow the mirror
rim to occupy the entire field of view of the sensor.

3.2. Constant Horizontal Resolution (Bird’s Eye View)

Another interesting design possibility for some applica-
tions is that of preserving ratios of distances measured on
the ground plane. In such a case, one can directly use image
measurements to obtain ratios of distances or angles on the
pavement (which can greatly facilitate navigation problems
or visual tracking). Such images are also termedBird’s eye
views.

Figure (3) shows how the ground plane,l, is projected
onto the image plane. The camera-to-ground distance is
represented by−C (C is negative because the ground plane
is lower than the camera centre) andr represents radial dis-
tances on the ground plane. The linear relation to image
pixels is therefore expressed as:

r = a.t/F + b, z = C;

The linear constraint inserted into Eq.(4) yields a new shap-
ing function:

α =
− (C − F )F +

(
a t

F + b− t
)
t

(C − F ) t +
(
a t

F + b− t
)
F

(10)

Figure 3. Constant horizontal resolution:
points on the horizontal (radial) line l are lin-
early related to their projections in pixel co-
ordinates, p.

that after integrating Eq.(5) would result on the mirror pro-
file proposed in [10].

3.3. Constant Angular Resolution

One last case of practical interest is that of obtaining a
linear mapping from 3D points spaced by equal angles to
equally distant image pixels, i.e. designing a constant angu-
lar resolution mirror.

Figure 4 shows how the spherical surface with radiusC
surrounding the sensor is projected onto the image plane.
In this case the desired linear property relates angles with
image points:

ϕ = a.t/F + b

and the spherical surface may be described in terms ofr, z,
the variables of interest in Eq.(4), simply as:

r = C.cos(ϕ), z = C.sin(ϕ).

Then, replacing into Eq.(4) we finally obtain:

α =
− (

C sin(a t
F + b) − F

)
F +

(
C cos(a t

F + b) − t
)
t(

C sin(a t
F + b) − F

)
t +

(
C cos(a t

F + b) − t
)
F

.

(11)
Integrating Eq.(5), using the shaping function just ob-

tained (Eq.(11)), would result in a mirror shape like the one
of Chahl and Srinivasan [2] with the difference that in our
case we are imposing the linear relationship from 3D ver-
tical angles,ϕ directly to image points,(t/F, 1) instead of
angles relative to the camera axis,atan(t/F ).



Figure 4. Constant angular resolution: points
of the line l on the surface of a sphere of ra-
dius C, are linearly related to their projections
in pixel coordinates, p.

3.4. Shaping functions for Log-polar Sensors

Log-polar cameras differ from standard cameras both in
density and organisation of the pixels. While a standard
camera have equally sized pixels arranged in a matrix, a log-
polar camera consists of a set of concentric circular rings,
with a constant number of pixels, whose resolution decays
logarithmically towards the image periphery. Hence, the re-
lation of the linear distance,ρ, measured on the sensor’s
surface and the corresponding pixel coordinate,p, is speci-
fied by:

p = logk(ρ/ρ0) (12)

whereρ0 andk stand for the fovea radius and the rate of
increase of pixel size towards the periphery.

As previously stated, our goal consists in setting a linear
relation between world distances (or angles),D and corre-
sponding (pixel) distances,p (see Eq.(6)). Combining into
the linear relationship the pin-hole model, Eq.(7) and the
logarithmic law defining pixel coordinates, Eq.(12) results
in the following constraint:

D = a. log(t/F ) + b (13)

It is interesting to notice that the only difference in the form
of the linear constraint between conventional and log-polar
cameras, equations (8) and (13), is the replacement of the
slopet/F by its logarithm. Doing this same replacement
directly in the shaping functions, results in the desired ex-
pressions for the log-polar camera.

Hence, when using a log-polar camera the shaping func-
tion becomes, in the case of constant vertical resolution:

α =
− (

a.log t
F + b− F

)
F + (C − t) t(

a.log t
F + b− F

)
t + (C − t)F

, (14)

in the case of constant horizontal resolution:

α =
− (C − F )F +

(
a.log t

F + b− t
)
t

(C − F ) t +
(
a.log t

F + b− t
)
F

, (15)

and finally, in the case of constant angular resolution:

α =
− (

Csin(a.log t
F + b) − F

)
F(

Csin(a.log t
F + b) − F

)
t

...

...
+

(
Ccos(a.log t

F + b) − t
)
t

+
(
Ccos(a.log t

F + b) − t
)
F

. (16)

As in the case of standard cameras, the mirror shape
results from the integration of Eq.(5), only now using the
shaping functions just derived.

As concluding comments on the presented mirrors, the
constant vertical resolution is the same as in [5]. In the case
of the constant angular resolution sensor, it would be an im-
plementation of a spherical sensor giving a constant number
of pixels per solid angle. This is similar to the case of Con-
roy and Moore [3] with the difference that due to the nature
of the log-polar camera we do not need to compensate for
lesser pixels when going closer to the camera axis.

4. Combining Constant Resolution Properties

In some applications, one may be interested in having
different types of mappings for distinct areas of the visual
field. This is typically the case for navigation where the
constant vertical resolution mirror would facilitate tracking
of vertical landmarks, while theBird’s eye view would make
localization with respect to ground plane features easier.

For this reason, we have done a combined mirror de-
sign for the SVAVISCA log-polar camera (see Appendix A
for details), where the central and inner parts of the sensor
(fovea and inner part of the retina) are used for mapping the
ground plane while the external part of the retina is used for
representing the vertical structure. These three regions are
represented respectively byR1, R2 andR3 in Figure 5 and
the corresponding mirror sections asM1, M2 andM3.

As detailed in the appendix, the central part of the
SVAVISCA camera, the fovea, has equally sized pixels
while the external part,R2 andR3 in the figure, has an ex-
ponential growth of the pixel size in the radial direction.

In the process of computing the mirror profile each of
the parts is obtained individually using the shaping func-
tion encompassing the desired constant resolution property
and the local pixels distribution. Therefore, for(R3,M3)
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we used the shaping function as given in Eq.(14) to impose
constant vertical resolution in the case of a log-polar cam-
era, while for(R1,M1) and(R2,M2) the expressions were
respectively Eq.(10) and Eq.(15) to impose constant hori-
zontal resolution for equally sized and exponentially grow-
ing pixels.

The field of view for each part of the sensor is determined
by the corresponding parameters,a andb, which determine
the vertical/horizontal segments that must be mapped onto
the image. Conversely minimal and maximal distances on
the ground, heights on the vertical direction or angles to
points on a sphere, determine thea, b parameters.

Figures 6 and 7 show the obtained mirror comprising the
three sections, the first two designed to observe the ground
plane within distances48cm to117cm from the sensor axis,
and the third one to observe−100 to +250 around the hori-
zon line. The camera height was defined as70cm, the ra-
dius of the cylinder as200cm and the focal length used was
25mm. The mirror radius was set to3cm.

Figure 7. Manufactured mirror.

5. Analysis of the Mirrors and Results

The combined mirror described in the preceding section
is composed by three parts. Here we analyze the quality of
the outer part, designed to have constant vertical resolution.
The other two parts would have similar analysis.

There are two main factors whose influence is important
to discuss:

• Numerical Errors - As we do not have an analytic de-
scription of the mirror shape and the actual profile is
obtained through numerical integration it is important
to verify the influence of numerical integration errors
in the overall process.

• Sensitivity - As the designed sensor does not have a
single center of projection, the linear mappings ob-
tained between pixel distances and world distances is
only valid for specific world surfaces (e.g. specific ver-
tical cylinders or horizontal planes in our case). How
do the linear projection properties degrade for objects
laying at distinct distances than those considered for
the design ?

As proposed in [5], the analysis of the mirror profile is
done by calculating a quality index,q(ρ). This quality in-
dex is defined as the ratio between the numerical estimate
of the rate of variation of the 3D distances,D, with respect
to distances in the image plane,[∂D/∂ρ]n, and the corre-
sponding theoretical value,[∂D/∂ρ]t:

q(ρ) =
[∂D(ρ)/∂ρ]n
[∂D(ρ)/∂ρ]t

(17)

In the case under analysis, the theoretical value is obtained
from Eq.(13) (noting thatt/F = ρ/f ) and the numerical
value from the back-projection [8], which results directly
from Eq.(2) given that the mirror shape is known.

For the perfect design process we should haveq(ρ) =
1. Computingq(ρ) involves numerically differentiating the
profile F (t). Figure (8) shows some results obtained with
different discrete approximations to derivatives.
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These results show two main aspects. Firstly, the influ-
ence of varying distance with respect to the desired mapping
properties does not seem to be too important, which sug-
gests that we are close to the situation of a single projection
center. Secondly, the way derivatives are computed is very
important in terms of quality analysis. The simplest form
of numerical differentiation leads to an error of about 10%,
while a better approximation shows that the computed pro-
file meets the design specifications up to an error of about
1%. Variations when the distance changes from the nominal
d = 200cm to 1m or 4m are not noticeable.

Figure 9 shows the combined mirror assembled with the
camera and mounted on top of a mobile robot. The world
scene contains vertical and ground patterns to test for the
linear properties. Figure 10 shows an image as returned by
the camera.

Figure 9. Svavisca camera equipped with the
combined mirror (left) and world scene with
regular patterns distributed vertically and
over the floor (right).

Figure (11) shows resulting images. The panoramic im-

Figure 10. Image acquired with the Svavisca
camera equipped with the Combined Mirror.

age results as a direct read out of the sensor (see Fig.11,
top) and the bird’s eye views are obtained after a change
from cartesian to polar coordinates (Fig.11, bottom left and
right). In the panoramic image the vertical sizes of black
squares are equal to those of the white squares, thus show-
ing linearity from 3D measures to image pixel coordinates.
In the bird’s eye views the rectilinear pattern of the ground
was successfully recovered (the longer side is about twice
the size of the shorter one).

Figure 11. Images obtained from the original
image in Fig.10: (top) panoramic and (bot-
tom) bird’s eye views. The bird’s eye view at
right originated from the fovea area.

6. Conclusions

In this paper we have described a general methodology
to design and evaluate the profile of mirrors encompassing
desired constant resolution properties. A function defining
the mirror shape, theShaping Function, was introduced and
through it were presented formulas to achieve the following
specifications:

• Constantvertical resolution mirror - distances mea-
sured in a vertical line at a fixed distance from the
camera axis, are mapped linearly to the image, hence
eliminating any geometric distortion.



• Constanthorizontal resolution mirror - where radial
lines on the floor are mapped linearly in the image.

• Constantangular resolution mirror - equally spaced
points on a meridian of a sphere are mapped linearly
in the image plane.

The methodology considers also the case of log-polar
cameras. The difference with the standard cameras case is
an additional logarithmic relation that appears in the shap-
ing function.

A prototype of a combined mirror has been built where
the outer part of the sensor’s retina is used for constant ver-
tical resolution design; the inner part of the sensor’s retina is
used to generate the constant horizontal resolution criterion
and the log-polar sensor’s fovea has also been used, in spite
of the reduced number of pixels, to generate a bird’s eye
view of the ground floor. Resulting images show that the
design was successful as the desired linear properties were
obtained.

In the future, we plan to use the new sensor for robot
navigation and object tracking.
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A. SVAVISCA log-polar camera

In this section we briefly revise the characteristics of the
SVAVISCA log-polar sensor developed by DIST [11].

Inspired by the resolution of the human retina, the log-
polar sensor is divided in two parts: the fovea and the retina.
The fovea is the inner part of the sensor, with uniform pixel
density and a radius ofρ0 = 0.273mm. Instead, the retina
is the outer part of the sensor, consisting of a set of concen-
tric circular rings, with a constant number of pixels, whose
resolution decays logarithmically towards the image periph-
ery. The sensor main specifications are summarized below:

• The fovea has 42 rings. The fovea has a constant pixel-
size; the distribution of pixels is such that we have 1
pixel in the first ring, 6 in the second, an then 12, 18,
24, etc, until reaching the number of 252 pixels in the
42nd ring; The fovea radius isρ0 = 272.73µm;

• The retina has 110 rings, with 252 pixels each; The
increase rate of pixel in the retina isk = 1.02337;

• The total number of pixels is 33.193 with 5.166 in the
fovea; The minimum size of pixel is6.8 × 6.45µm2;
In the fovea the minimum pixel height is 6.52µm; The
diameter of sensor isρmax = 7, 135.44µm.
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