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Abstract

In this paper we present a motion based segmentation algorithm to automatically
detect multiple planes from sparse optical ¤ow information. An optimal estimate
for planar motion in the presence of additive Gaussian noise is £rst proposed, in-
cluding directional uncertainty of the measurements (thus coping with the aper-
ture problem) and a multi-frame (n > 2) setting (adding overall robustness). In
the presence of multiple planes in motion, the residuals of the motion estimation
model are used in a clustering algorithm to segment the different planes. The
image motion parameters are used to £nd an initial cluster of features be-longing
to a surface, which is then grown towards the surface borders. Initialization is
random and only robust statistics and continuity constraints are used. There is
no need for using and tuning thresholds. Since the exact parametric planar ¤ow
model is used, the algorithm is able to cope ef£ciently with projective distortions
and 3D motion and structure can be directly estimated.

1 Introduction

Planes are common features in both man made and natural environments. The underlaying
geometry of induced homographies is well understood and used to perform different tasks:
video stabilization, visualization, 3D analysis (using for example plane + parallax [1]), ego-
motion estimation, calibration, just to cite few of them. In the continuous limit the homog-
raphy is replaced by the Flow Matrix [3]: this can be calculated from two views [4], or as
suggested more recently from Irani [5] in a multi-frame context to gain more stability and
precision.

Automatic detection of planar surfaces from ¤ow £elds belongs to the wider area of mo-
tion based segmentation, where the image is partitioned into regions of homogeneous 2D
motion based on continuity or on £tting a parametric motion model. There exist quite a large
amount of different approaches to the solution of this problem. Top-down techniques handle
the whole image as the estimation support. A global motion model is estimated and areas that
do not conform to such a model are detected, generating a two class partition [6]. The main
limitations are (i) the presence of a dominant motion is required and (ii) simply rejecting non
conforming pixels does not produce spatially compact regions. Segmentation in a Markovian
framework enables addition of spatial consistent constraints [7]. Simultaneous estimation
of models and supports is another approach useful when a mixture of motion models, none
of them dominant, is present. The EM algorithm has been used ef£ciently for this purpose
in [8]. A more general approach consists in partitioning the image into elementary regions
(intensity-based, texture-based regions or square blocks are often used) and searching mo-
tion based regions as clusters of these. A commonly used technique consists in £tting af£ne
motion to the regions and grouping them with a clustering process based on similarity of the
model parameters. In [9] a k-means algorithm was used in the motion parameters space.
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In this paper we present an automatic clustering technique that works on a sparse ¤ow
£eld and is able to £nd features laying on planar surfaces by analyzing the ¤ow matrix that
they generate. There are three main contributions:

• We £rst show that greater robustness in the estimation of the planar ¤ow parameters
can be achieved by re-weighting the linear least squares estimation by optical ¤ow
covariance matrix. Due to the aperture problem, errors in optical ¤ow computation
are rarely symmetric, but tend instead to be anisotropic and correlated along x and y
directions. In this case re-weighted least squares is the maximum likelihood estimator.
We show how to compute the covariance matrix directly from image gray levels.

• Further robustness can be obtained in the case in which multiple frames are available.
In such case, the fact that the underlying planar geometry is the same in all the views,
provides a rank constraint over the matrix obtained by stacking together the planar ¤ow
parameters for the couples of frames.

• Planar ¤ow is £tted to a cluster of points and the standard deviation of the residuals is
estimated by means of robust statistic. The consistency of each single feature image
motion with the planar hypothesis can now be established by comparing its residual
with the estimated standard deviation; features that have residuals larger than 2.5σ̂ are
discarded as outliers. Clusters of inliers so obtained are grown outwards as the model
allows using a nearest neighbor algorithm that takes into account continuity (i.e. points
closer to a cluster are more likely to belong to it than others) and robustness (i.e. is
better to begin to grow the algorithm in regions where ¤ow is estimated robustly). Since
the exact parametric planar model is used, 3D motion and structure can be estimated
directly from the segmentation information. As only robust statistic is used, there is no
need of tuning thresholds, eliminating the need for user interaction.

Unlike top-down techniques no dominant motion is required, unlike af£ne ¤ow £tting, the
method we propose is able to cope ef£ciently with projective distortions and works well
when objects are close to the camera.

Although random sampling and robust statistics are used, this is not a RANSAC-like algo-
rithm for the reason that we do not assume to have a dominant motion model. In general, we
allow any relative dimensions of planes, while RANSAC is based on a high inliers to outliers
ratio [10].

2 Planar Motion Estimation

2.1 Basic Model and Notation

The image motion of points on a planar surface, between two image frames can be expressed
as [3]:

u(x) = F (x) · b + n(x) (1)

where F (x) is a 2 × 8 matrix depending only on the pixel coordinates x = (x, y):

F (x) =
(

1 x y 0 0 0 x2 xy
0 0 0 1 x y xy y2

)
(2)
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n ∼ N(0, σ) is Gaussian additive noise and b8×1 is the vector of the planar ¤ow parameters
vector. The vector b can be factorized into a shape and a motion part as:

b = S8×6 ·
(
v
ω

)
(3)

with

S =




fpz 0 0 0 f 0
px 0 −pz 0 0 0
py 0 0 0 0 −1
0 fpz 0 −f 0 0
0 px 0 0 0 1
0 py −pz 0 0 0
0 0 −px

f 0 1
f 0

0 0 −py

f − 1
f 0 0




(4)

where p = (px, py, pz) is the normal to the plane, ω = (ωx, ωy, ωz) and v = (vx, vy, vz) are
the rotational and the linear velocities of the camera. The camera focal length is denoted by
f and we assume that it is constant over time.

2.2 Two Frames Re-weighted Estimation
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Figure 1: (a) Optical ¤ow warping respect to 4 points on the plane chosen according to
the nearest neighbor principle (the 4 points are marked with crosses). (b) Magnitude of the
residuals.

If N features are available, stacking the optical ¤ow vectors ui in the vector U2N×1, the
F (xi) into the matrix G2N×8 and the noise n into the vector η2n×1, Eq. (1) can be rewritten
as:

U = Gb + η (5)

The maximum likelihood estimation of the planar ¤ow parameters vector b is given by
the weighted linear least squares problem:

b̂ = arg min
b

{(U −Gb)TW (U −Gb))} (6)

The solution of the LLSE problem (6) is found by solving the re-weighted system of
normal equations:
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Figure 2: Performance of weighted linear
least squares for the estimation of the ¤ow
matrix. The average values of rλ for two
of the sequences used for tests are also re-
ported.
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Figure 3: B matrix estimation improve-
ment due to multi-frames integration. 10
frames were used.

GTWGb̂ = GTWU (7)

The weight matrix W is block diagonal and the diagonal blocks are 2 × 2 matrices that
represent the covariance of the estimated optical ¤ow vectors. The covariance matrix Σ can
be estimated (see [11]) as:

Σ−1 =
(
Ixx Ixy

Iyx Iyy

)
(8)

The introduction of re-weighting in Equation (6) is particularly important since, due to
the aperture problem, the errors are usually asymmetric. This approach has £rst been used
successfully by [12] in the context of orthographic factorization.

A set of simulated tests was performed in order to assess the improvements of this ap-
proach in the estimation of the planar ¤ow parameters. We randomly generated points on a
planar surface and then added Gaussian elliptical noise of randomly generated directions to
the ¤ow vectors. The shape of the elliptical uncertainty was varied changing the value of the

parameter rλ =
√

λmax

λmin
where λmax and λmin are the largest and smallest eigenvalues of

the covariance matrix Σ. We ran 20 trials for each of the values of rλ for 100 points on plane.
We de£ned the residual £eld as:

r = u − F b̂ (9)

The estimation error we used is then:

err = mean
i

(
‖ri‖Σ

‖ui‖ ) (10)

where i = 1 . . . N runs over the set features and ‖‖Σ is the Σ-norm. Results reported in
Figure 2 show clearly the superiority of the weighted approach.

2.3 Multi-frames Re-weighted Estimation

If m views of the same planar surface are acquired, m − 1 pairs can be formed between
the £rst and the jth images, j ∈ {2, . . . ,m}. If such pairs are close enough such that the
instantaneous approximation can be used, the set of ¤ow parameters vectors bj can still be
estimated by arranging them in a matrix B8×m−1 = [b2, ...,bm] and solving:
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Figure 4: The tea box sequence. (a) An Image from the sequence. (b) First Iteration of the
clustering algorithm. Crosses indicate the initial 5 points selected. (c) Segmentation obtained
starting from surface number 2. (d) Segmentation obtained starting from surface number 3.
(e) Ambiguous features. (f) Segmentation after ambiguous features removal.

GTWG ·B = GTW [U2, .....,Um] (11)

or in short C ·B = K. The matrixG depends only on the features positions in the £rst frame
and is de£ned in the previous section. The weight matrix W is estimated doing a temporal
average over all them frames. In this multi-frame setting B can be factorized as:

B = S8×6 ·
(
v2 ... vm

ω2 ... ωm

)
6×m−1

(12)

Solving for B in Eq. (11) is equivalent to solving independently for the bj of the image
pairs. This does not exploit the fact that the underlying plane geometry (expressed by the
matrix S) must be the same in all the views. Such constraint is expressed by the dimension-
ality of the matrices on the right side of Eq. (12) that £xes the rank of B to be smaller than
6. Lower ranks can be generated by special motion con£guration, for example rank(B) = 1
when the motion is constant over time.

Due to the fact that rank(B) ≤ 6 we get that rank(K) ≤ 6. Hence before solving Eq.
(11) we can re-projectK over a lower dimensional linear subspace seeking the matrix K̃ with
rank(K̃) ≤ 6 that is closest toK in Frobenius norm [3].

Figure 3 shows the error in the estimation of B for a simulated data set. A set of 10 views
of the same plane was generated and matrixB estimated using Eq. (11) with or without using
the rank constraint. A total of 100 features and 20 trials were used. The estimation error was
de£ned as err = ‖B−B̂‖

‖B‖ where B is the ground truth. Error over optical ¤ow was varied
between 0.05 and 0.4 pixels. The rank constraint clearly increases the performance of the
estimation. The un-weighted multi-frame approach was £rst used in [5].
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Figure 5: The Linux box sequence. (a) A frame from the video sequence. (b) Estimated opti-
cal ¤ow. (c) Segmentation obtained at the £rst iteration. 4 of the 5 initial features (crosses) on
the surface nr.1 (dots) are rejected as too noisy. (d) Segmentation after ambiguous features
removal.
3 Planar Motion Segmentation

We have proposed an optimal solution to the problem of estimation of planar motion in the
presence of Gaussian additive noise. This method is now used as the core step of the segmen-
tation algorithm by £tting planar motion to a tentative cluster of points and rejecting outliers
by means of robust statistics.

3.1 Algorithm

The magnitude of the residuals r = ‖r‖ can be effectively used for segmentation purposes.
Figure 1 (a) shows the residual ¤ow when the planar ¤ow parameters are estimated from the
minimal con£guration of 4 points in the highlighted plane. A histogram of the norms of the
residual vectors is plotted in Figure 1 (b): the difference in magnitude between points on the
plane and off the plane is quite obvious. In the multi-frame setting a more robust estimate of
the features residual is de£ned as:

r̄i =

∑m
j=1 rije

−d2
j∑m

j=1 e
−d2

j

(13)

where j runs over the frames, i indexes the features and dj is the average motion of the
features between the frame j and the reference frame and measures the adequacy of the
instantaneous approximation.

The selection of inliers and outliers is based on a robust standard deviation estimate [13].
If a moderate amount of outliers is present in a set of Q features, a robust estimate of the
standard deviation of the residuals r̄q , q ∈ {1, . . . , Q} can be obtained as:
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Figure 6: The calibration grid sequence. (a) A frame from the video sequence. (b) Segmen-
tation obtained after three iterations of the clustering algorithm (c) Reassigned ambiguous
features (d) Segmentation obtained after reassignment of the ambiguous and the rejected fea-
tures.

σ̂ = 1.4826(1 +
5

Q− l )median
√
r̄2q (14)

where l is the number of £tted parameters, 8 in our problem. Inliers are those that satisfy:
r̄q ≤ 2.5σ̂.

The segmentation algorithm is outlined below.

1) Randomly select one point and determine an initial cluster of 5 points adding its 4
nearest neighbors. The nearest neighbor to a con£guration of points is de£ned as the
point closest to the center of mass of the con£guration. The center of mass is found as a
weighted mean of the features position where the weights are the minimum eigenvalue
of the covariance matrix of the ¤ow vectors: this ensures that the algorithm grows, at
the beginning, towards areas where the features are tracked robustly which, in turn,
helps to get a more precise initial estimation of the planar ¤ow parameters. At the
same time this procedure increases the probability that the initial cluster is located on
a plane: it is crucial that at each step the number of outliers is small so that Eq. 14 can
be used.

2) Fit the planar ¤ow parameters and select as good features those for which r̄q ≤ 2.5σ̂.
If less than 4 features are, left start over; otherwise go to the next step.

3) Add the nearest neighbor feature and start over. Growing the cluster adding re-
cursively the nearest neighbor exploits planes continuity, i.e. it is more likely that the
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Figure 7: The aquatic center sequence. (a) A frame from the video sequence. (b) Final
segmentation. Triangles mark unclassi£ed features.

nearest neighbor to the cluster belongs to the plane than another point far away. In
general, if no a priori information is available about the £lmed scene, this approach
turns to be very effective.

The initial 5 points can be discarded during the growing process. This makes the al-
gorithm more ¤exible and performing even in the case in which the initial 5 points lie on
different surfaces: the Nearest Neighbor growing moves into one of the planar surfaces and
the initial points that do not lie on such surface are later discarded as outliers. The algorithm
ends naturally when all the features have been analyzed and no more inliers are found. Since
the detected outliers can belong to another planar surface the algorithm can be restarted for
the next plane detection.

3.2 Final Re£nement: Resolving Ambiguities

The growing algorithm can sometimes be greedy, including into a given planar area ambigu-
ous points, which belong to a neighboring plane, but whose ¤ow is similar to that of the £rst
plane. This is the case of the three sequences shown in Figures 4, 5 and 6, where planes are
incident. The ambiguous points close to the intersection of the surfaces can easily be found
by recursively running the clustering algorithm.

Let us call the three surfaces α, β and γ (see Figure 4 (a)) and the 3 clusters obtained
running a £rst time the clustering algorithm G1

α,G1
β ,G1

γ . At this point we know approximately
features belonging to the 3 planes up the ambiguous ones close to the incidence. We re-run
the algorithm taking as initial feature the one closest to the center of mass of the features in
G1

β . In this way the plane β is, in the new run of the algorithm, detected as the £rst one and
the cluster will tend to invade the surfaces α and γ close to the borders. The algorithm £nds 3
more clusters over the 3 surfaces: G2

α,G2
β ,G2

γ . We get that the ambiguous features of surfaces
α, β are de£ned as:

Bαβ = G1
α ∩ G2

β (15)

Running the algorithm a third time starting from the center of mass of the plane γ the
ambiguous features close to the three intersections can be de£ned as:
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Bαβ = G1
α ∩ G2

β (16)

Bαγ = G1
α ∩ G3

γ (17)

Bβγ = G2
β ∩ G3

γ (18)

The £nal clusters of points that lie on the three surfaces are de£ned as :

Gα = G1
α \ (Bαβ ∪ Bαγ) (19)

Gβ = G1
β \ (Bαβ ∪ Bβγ) (20)

Gγ = G1
γ \ (Bαγ ∪ Bβγ) (21)

The £nal planar ¤ow parameters b for the three planes are found by re£tting the clusters
according to Eq. (11).

Ambiguous points can eventually be reassigned by checking their residual respect each of
the £nal plane hypotheses and assigning the feature to the plane respect to which the residual
is minimum and veri£es Eq. (14) where σ̂ is calculated just from the points already in the
cluster. Eventually, rejected points can be also assigned using this principle. The reason is
that the ef£ciency of assigning a point to a cluster depends on how large the cluster is (i.e
how many points the cluster has) due to the fact that the statistical precision of the £t of the
B matrix grows in function of the number of points in the cluster. This means that points
that are erroneously discarded when the cluster size is small can be successfully assigned
when the cluster is completely growth. An example is shown in Figure 6 where we applied
reassignment to the calibration grid sequence. Figure 7 shows an application of the algorithm
to segment the surfaces of a building. Features marked with triangles are not assigned to any
surface.

4 Results

We tested our algorithm extensively on real images and simulated data.
Figure 4 shows the process of iterating three times the clustering and the ambiguous

features detection and removal. The process of £nding ambiguous features £nds not only
features at the intersection of planes but also eventual outliers. A total of 10 frames was
integrated and 237 features used; the number of features rejected was zero and 83 ambiguous
features were found.

Figure 5 shows another application for a different sequence made of 11 frames and 254
features. Only 9 features were rejected and 44 features were removed as ambiguous.

Figure 6 illustrates an application to a very noisy sequence of 10 frames. Aperture prob-
lem is very serious due to the massive presence of edges (see also Figure 1). In this case
we decided to reassign ambiguous and rejected features. We found that 76 of the 220 fea-
tures were removed as ambiguous and all of them were reassigned correctly; 53 features were
rejected of which 13 were reassigned and the reassignment was correct.

5 Conclusions

In this paper we presented a new motion based segmentation technique able to automatically
£nd planar surfaces when a sparse optical ¤ow £eld is given.
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We £rst formulated an optimal solution to the estimation of planar ¤ow parameters in
presence of gaussian addictive noise. Experiments on simulated data show the improvement
of performance we obtained compared with previous approaches.

We then showed how the planar geometry induces a constraint between planar ¤ow pa-
rameters estimated using different couples of frames and stated the performance improvement
we can obtain by applying such constraint.

Robust estimation of planar ¤ow parameters is the core of the segmentation algorithm.
A cluster of points is initialized randomly and then grown on a plane by mean of robust
statistics, i.e. £nding and eliminating outliers, and proximity constraints, i.e. using the fact
that planes are mostly continuous surfaces.

Results with real images were presented to illustrate the performance of the proposed
method.
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