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Abstract. Foveation and stereopsis are important features on active vi-
sion systems. The former provides a wide field of view and high foveal
resolution with low amounts of data, while the latter contributes to the
acquisition of close range depth cues. The log-polar sampling has been
proposed as an approximation to the foveated representation of the pri-
mate visual system. Although the huge amount of stereo algorithms pro-
posed in the literature for conventional imaging geometries, very few are
shown to work with foveated images sampled according to the log-polar
transformation. In this paper we present a method to extract dense dis-
parity maps in real-time from a pair of log-mapped images, with direct
application to active vision systems.

1 Introduction

Stereoscopic vision is a fundamental perceptual capability both in animals and
artificial systems. At close ranges, it allows reliable extraction of depth informa-
tion, thus being suited for robotics tasks such as manipulation and navigation.
In the last decades a great amount of research has been directed to the prob-
lem of extracting depth information from stereo imagery (see [25] for a recent
review). However, the best performing techniques are still too slow to use on
robotic systems which demand real-time operation. The straightforward way to
reduce computation time is to work with coarse resolution images but this re-
stricts the acquisition of detailed information all over the visual field. A better
solution, inspired in biological systems, is the use of ocular movements together
with foveated retinas. The visual system of primates has a space-variant nature
where the resolution is high on the fovea (the center of the retina) and decreases
gradually to the periphery of the visual field. This distribution of resolution is
the evolutionary solution to reduce the amount of information traversing the op-
tical nerve while maintaining high resolution in the fovea and a wide visual field.
Moving the high resolution fovea we are able to acquire detailed representations
of the surrounding environment. The excellent performance of biological visual
systems led researchers to investigate the properties of foveated systems. Many
active vision systems have adopted this strategy and since foveated images con-
tain less information than conventional uniform resolution images, one obtains
important reductions on the computation time.

jasv
2nd Workshop on
Biological Motivated Computer Vision, Tuebingen, Germany, Nov. 2002.



We may distinguish between two main methods to emulate foveated sys-
tems, that we denote by multi-scale uniform sampling methods and non-uniform
sampling methods. Uniform methods preserve the cartesian geometry of the
representation by performing operations at different scales in multi-resolution
pyramids (e.g. [17],[10],[13]). Sampling grids are uniform at each level but dif-
ferent levels have different spacing and receptive field size. Notwithstanding,
image processing operations are still performed on piecewise uniform resolution
domains. Non-uniform methods resample the image with non-linear transfor-
mations, where receptive field spacing and size are non-uniform along the image
domain. The VR transform [2], the DIEM method [19], and several versions of
the logmap [30], are examples of this kind of methods.

The choice of method is a matter of preference, application dependent re-
quirements and computational resources. Uniform methods can be easier to work
with, because many current computer vision algorithms can be directly applied
to these representations. However, non-uniform methods can achieve more com-
pact image representations with consequent benefits in computation time. In
particular the logmap has been shown to have many additional properties like
rotation and scale invariance [31], easy computation of time-to-contact [28], im-
proved linear flow estimation [29], looming detection [23], increased stereo reso-
lution on verging systems [14], fast anisotropic diffusion [11], improved vergence
control and tracking [7, 3, 4].

Few approaches have been proposed to compute disparity maps for foveated
active vision systems, and existing ones rely on the foveated pyramid represen-
tation [17, 27, 6]. In this paper we describe a stereo algorithm to compute dense
disparity maps on logmap based systems. Dense representations are advanta-
geous for object segmentation and region of interest selection. Our method uses
directly the gray/color values of each pixel, without requiring any feature extrac-
tion, making this method particularly suited for non-cartesian geometries, where
the scale of analysis depends greatly on the variable to estimate (disparity).

To our knowledge, the only work to date addressing the computation of stereo
disparity in logmap images is [15]. In that work, disparity maps are obtained by
matching laplacian features in the two views (zero crossing), which results in
sparse disparity maps.

2 Real-Time Log-polar Mapping

The log-polar transformation, or logmap, l(x), is defined as a conformal mapping
from the cartesian plane x = (x, y) to the log-polar plane z = (ξ, η):

l(x) =
[
ξ
η

]
=

[
log(

√
x2 + y2)

arctan y
x

]
(1)

Since the logmap is a good approximation to the retino–cortical mapping in
the human visual system [26, 12], the cartesian and log-polar coordinates are
also called “retinal” and “cortical”, respectively. In continuous coordinates, a



cortical image Icort is obtained from the corresponding retinal image I by the
warping:

Icort(z) = I(l−1(x))

A number of ways have been proposed to discretize space variant maps [5]. We
have been using the logmap for some years in real-time active vision applications
[3, 4]. To allow real-time computation of logmap images we partition the retinal
plane into receptive fields, whose size and position correspond to a uniform parti-
tion of the cortical plane into super-pixels (see Fig. 1). The value of a super-pixel
is given by the average of all pixels in the corresponding receptive field.
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Fig. 1. The log-polar sampling scheme is implemented by averaging the pixels con-
tained within each of the receptive fields shown in the left image. These space-variant
receptive fields are angular sections of circular rings corresponding to uniform rectan-
gular super-pixels in the cortical image (center). To reconstruct the retinal image, each
receptive field gets the value of the corresponding super-pixel (right).

3 Disparity map computation

We start describing an intensity based method to find the likelihood of stereo
matches in usual cartesian coordinates, x = (x, y). Then we show how the
method can be extended to cope with logmap images. Finally we describe the
remaining steps to obtain the disparity maps.

Let I and I ′ be the left and right images, respectively. For depth analysis, we
are interested in computing the horizontal disparity map, but since we consider a
general head vergence configuration, vertical disparities must also be accounted
for. Therefore, disparity is a two valued function defined as d(x) = (dx, dy).
Taking the left image as the reference, the disparity at point x is given by
d(x) = x′ − x, where x and x′ are the locations of matching points in the left
and right images. If a pixel at location x in the reference image is not visible in the
right image, we say the pixel is occluded and disparity is undefined (d(x) = ∅).



3.1 Bayesian formulation

To obtain dense representations, we use an intensity based method similar to [32].
We formulate the problem in a discrete bayesian framework. Having a finite set
of possible disparities, D = {dn} , n = 1 · · ·N , for each location x we define a set
of hypothesis, H = {hn(x)} , n = 0 · · ·N , where h0(x) represents the occlusion
condition (d(x) = ∅), and the other hn represent particular disparity values,
d(x) = dn. Other working assumptions are the following:

1. Object appearance does not vary with view point (lambertian surfaces)
and cameras have the same gain, bias and noise levels. This corresponds to the
Brightness Constancy Assumption [16]. Considering the existence of additive
noise, we get the following stereo correspondence model:

I(x) = I ′(x + d(x)) + η(x) (2)

2. Noise is modeled as being independent and identically distributed with a
certain probability density function, f . In the unoccluded case, the probability
of a certain gray value I(x) is conditioned by the value of the true disparity d(x)
and the value of I ′ at position x + d(x):

Pr(I(x)|d(x)) = f(I(x)− I ′(x + d(x)))

We assume zero-mean gaussian white noise, and have f(t) = 1/
√

2πσ2e−t2/2σ2

where σ2 is the noise variance.
3. In the discrete case we define the disparity likelihood images as:

Ln(x) = Pr(I(x)|hn(x)) = f(I(x)− I ′n(x)) (3)

where I ′n(x) = I ′(x + dn) are called disparity warped images.
4. The probability of a certain hypothesis given the image gray levels (pos-

terior probability) is given by the Bayes’ rule:

Pr(hn|I) =
Pr(I|hn)Pr(hn)∑N
i=0 Pr(I|hi)Pr(hi)

(4)

where we have dropped the argument x since all functions are computed at the
same point.

5. If a pixel at location x is occluded in the right image, its gray level is
unconstrained and can have any value in the set of M admissible gray values,

Pr(I|h0(x)) =
1
M

(5)

We define a prior probability of occlusion with a constant value for all sites:

Pr(h0) = q (6)

6. We do not favor any a priori particular value of disparity. A constant prior
is considered and its value must satisfy Pr(hn) ·N + q = 1, which results in:

Pr(hn) = (1− q)/N (7)



7. Substituting the priors (5), (6), (7), and the likelihood (3) in (4), we get:

Pr(hn|I) =

{ Ln(I)PN
i=1 Li(I)+qN/(M−qM)

⇐ n 6= 0
qN/(M−qM)PN

i=1 Li(I)+qN/(M−qM)
⇐ n = 0

(8)

The choice of the hypothesis that maximizes (8) leads us to the MAP (maxi-
mum a posteriori) estimate of disparity1. However, without any further assump-
tions, there may be many ambiguous solutions. It is known that in the general
case, the stereo matching problem is under-constrained and ill-posed [25]. One
way to overcome this fact is to assume that the scene is composed by piece-wise
smooth surfaces and introduce spatial interactions between neighboring loca-
tions to favor smooth solutions. Later we will describe a cooperative spatial
facilitation method to address this problem.

3.2 Cortical Likelihood Images

While in cartesian coordinates the disparity warped images can be obtained by
shifting pixels by an amount independent of position, x′ = x + dn, in cortical
coordinates the disparity shifts are different for each pixel, as shown in Fig.2.
Thus, for each cortical pixel and disparity value, we have to compute the corre-

Retinal Shift Cortical Shift

Fig. 2. A space invariant shift in retinal coordinates (left) corresponds to a space
variant warping in the cortical array.

sponding pixel in the second image. Using the logmap definition (1), the cortical
correspondences can be obtained by:

z′n(z) = l
(
l−1(z) + dn

))
(9)

This map can be computed off-line for all cortical locations and stored in a look-
up table to speed-up on-line calculations. To minimize discretization errors, the
1 The terms in the denominator are normalizing constants and do not need to be

computed explicilty



weights for intensity interpolation can also be pre-computed and stored. A deeper
explanation of this technique can be found in [22].

Using the pre-computed look up tables, the cortical disparity warped images
can be efficiently computed on-line:

Icort′
n (z) = Icort′(zn(z))

From Eq. (3) we define N +1 cortical likelihood images, Lcort
n (z), that express

the likelihood of a particular hypothesis at cortical location z:

Lcort
n (z) = f(Icort(z)− Icort′

n (z))

Substituting this result in Eq. (8) we have the cortical posterior probabilities:

Prcort(hn|Icort) ∝
{

Lcort
n (I) ⇐ n 6= 0

qN/(M − qM) ⇐ n = 0 (10)

3.3 Cooperative spatial facilitation

The value of the likelihood images Lcort
n at each cortical location z can be in-

terpreted as the response of disparity selective neurons, expressing the degree
of match between corresponding locations in the right and left images. When
many disparity hypothesis are likely to occur (e.g. textureless areas) several
neurons tuned to different disparities may be simultaneously active. In a com-
putational framework, this “aperture” problem is usually addressed by allowing
neighborhood interactions between units, in order to spread information from
and to non-ambiguous regions. A bayesian formulation of these interactions leads
to Markov Random Fields techniques [33], whose existing solutions (annealing,
graph optimization) are still computationally expensive. Neighborhood interac-
tions are also very commonly found in biological literature and several coopera-
tive schemes have been proposed, with different facilitation/inibhition strategies
along the spatial and disparity coordinates [18, 21, 20]. For the sake of computa-
tional complexity we adopt a spatial-only facilitation scheme whose principle is
to reinforce the output of units at locations whose coherent neighbors (tuned for
the same disparity) are active. This scheme can be implemented very efficiently
by convolving each of the cortical likelihood images with a low-pass type of filter,
resulting on N + 1 Facilitated Cortical Likelihood Images, F cort

n . We use a fast
IIR isotropic separable first order filter, which only requires two multiplications
and two additions per pixel. We prefer filters of large impulse response, which
provide better smoothness properties and favor blob like objects, at the cost of
missing small or thin structures in the image. Also, due to the space-variant
nature of the cortical map, regions on the periphery of the visual field will have
more “smoothing” than regions in the center.

At this point, it is worth noticing that since the 70’s, biological studies show
that neurons tuned to similar disparities are organized in clusters on visual cortex
area V2 in primates [8], and more recently this organization has also been found
on area MT [9]. Our architecture, composed by topographically organized maps
of units tuned to the same disparity, agrees with these biological findings.



3.4 Computing the solution

Replacing in (10) the cortical likelihood images Lcort
n by their filtered versions

F cort
n we obtain N + 1 cortical disparity activation images:

Dcort
n =

{
F cort

n (I) ⇐ n 6= 0
qN/(M − qM) ⇐ n = 0 (11)

The disparity map is obtained by computing the hypothesis that maximizes
the cortical disparity activation images for each location:

d̂(z) = arg max
n

(Dcort
n (z))

In a neural networks perspective, this computation is analogous a winner-
take-all competition between non-coherent units at the same spatial location,
promoted by the existence of inhibitory connections between them [1].

4 Results

We have tested the proposed algorithm on a binocular active vision head in
general vergence configurations, and on standard stereo test images. Results are
shown on Figs. 3 and 4. Bright and dark regions correspond to near and far
objects, respectively. The innermost and outermost rings present some noisy
disparity values due to border effects than can be easily removed by simple
post-processing operations.

Fig. 3. The image in the right shows the raw foveated disparity map computed from
the pair of images shown in the left, taken from a stereo head verging on a point midway
between the foreground and background objects.

Some intermediate results of the first experiment are presented in Fig. 5,
showing the output of the cortical likelihood and the cortical activation for a
particular disparity hypothesis. In the likelihood image notice the great amount
of noisy points corresponding to false matches. The spatial facilitation scheme
and the maximum computation over all disparities are essential to reject the
false matches and avoid ambiguous solutions.

A point worth of notice is the blob like nature of the detected objects. As
we have pointed out in section 3.3, this happens because of the isotropic nature



Fig. 4. The disparity map on the right was computed from the well known stereo test
images from Tsukuba University. In the left we show the foveated images of the stereo
pair. Notice that much of the detail in the periphery is lost due to the space variant
sampling. Thus, this result can not be directly compared with others obtained from
uniform resolution images.

and large support of the spatial facilitation filters. Also, the space variant image
sampling, blurs image detail in the periphery of the visual field. This results
in the loss of small and thin structures like the fingertips in the stereo head
example and the lamp support in the Tsukuba images. However note that spatial
facilitation do not blur depth discontinuities because filtering is not performed
on the disparity map output, but on the likelihood maps before the maximum
operation.

The lack of detail shown in the computed maps is not a major drawback for
our applications, that include people tracking, obstacle avoidance and region of
interest selection for further processing. As a matter of fact, it has been shown
in a number of works that many robotics tasks can be performed with coarse
sensory inputs if combined with fast control loops [24].

Fig. 5. Intermediate results for the experiment in Fig.3. This figure shows the cortical
maps tuned to retinal disparity di = 26, for which there is a good match in the hand
region. In the left group we show the likelihood images Lcort

i (left) and Dcort
i (right)

corresponding to the cortical activation before and after the spatial facilitation step.
In the right group, the same maps are represented in retinal coordinates, for better
interpretation of results.

The parameters used in the tests are the following: log-polar mapping with
128 angular sections and 64 radial rings; retinal disparity range from −40 to 40
pixels (horizontal) and from −6 to 6 pixels (vertical), both in steps of 2; q = 0.1



(prior probability of occlusion); M = 256 (number of gray values); σ = 3 (white
noise standard deviation); facilitation filtering with zero-phase forward/reverse
filter y(n) = 0.8y(n− 1) + 0.2x(n).

The algorithms were implemented in C++ and take about three seconds to
run in a PII 350MHz computer.

5 Conclusions

We have presented a real-time dense disparity estimation algorithm for foveated
systems using the logmap. The algorithm uses an intensity based matching tech-
nique, which makes it easily extensible to other space variant sampling schemes.
Some results were taken from an active stereo head and others obtained from
standard test images. Many robots are currently equipped with foveated ac-
tive vision systems and the availability of fast stereopsis will drastically improve
their perceptual capabilities. Obstacle detection and tracking, region of interest
selection and object manipulation are some possible applications.
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