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ABSTRACT

The majority of methods available to recover 3D structure from
video assume that a set of feature points are tracked across a large
number of frames. This is not always possible in real videos be-
cause the images overlap only partially, due to the occlusion and
the limited field of view. This paper describes a new method to re-
cover 3D structure from videos with partially overlapping views.
The well known factorization method [1] recovers 3D rigid
structure by factoring an observation matrix that collects trajecto-
ries of feature points. We extend this method 1o the more challeng-
ing scenario of observing incomplete trajectories. This way, we ac-
commodate not only the features that disappear, but also features
that, although not visible in the first image, become available later.
Under this scenario, the observation matrix has missing entries.
We develop three new algorithms to factor out matrices with miss-
ing data. Experiments with synthetic data and real video images
demonstrate the viability of our approach to recover 3D structure.

1. INTRODUCTION

The problem of recovering 3D structure (3D shape and 3D motion)
from video finds a wide range of applications in fields such as
robotics, digital video, and virtual reality. Since the strongest cue
to infer 3D structure from a sequence of images is the 2D motion
of the brightness pattern, the recovery 3D structure is commonly
refemred as structure from motion (SFM).

Obviously, the accuracy of the 3D reconstructions of station-
ary scenes improves with the number of video frames available. In
turn, the SFM problem becomes more difficult due to the larger
number of unknowns (the larger set of camera positions). An el-
egant well known approach to the multi-frame SFM problem is
the so called factorization method [1]. In {1], the authors collect
the trajectories of the projections of a set of tracked feature points
into an observation matrix. They show that the observation ma-
trix is highly rank deficient due to the 3D rigidity of the scene.
The 3D rigid shape of the scene and the 3D motion of the camera
are then computed from the best rank deficient approximation to
the noisy observation matrix. The factorization method was later
extended to more general geometric projection models [2] and to
more general parametric descriptions of the 3D shape [3].

Any of the works cited above assume that the projections of
the features to be processed are available in all frames, i.e., that
they are seen during the entire video sequence. In real world ap-
plications, this assumptions limits severely the feature candidates
because very often imporiant regions that are seen in some frames
are not seen in others due to the scene self-occlusion and the lim-
ited field of view. Under this scenario, the observation matrix

Work partially supported by FCT project POSL/SRI/41561/2001.

0-7803-7622-6/02/$17.00 ©2002 IEEE

III - 897

contains incomplete information, i.e., it misses the entries corre-
sponding to the unobserved projections. Very few attempts have
been done to extend the factorization methods to this more gen-
eral scenario. In fact, while the rank deficient matrix that best
appreximates a completely known matrix is easily obtained from
its Singular Value Decomposition (SVD), there is no equivalent for
matrices with missing elements. Reference {1] suggests a compu-
tationally heavy procedure, requiring O(max (#rames #features))
computations of the SVD [4], to “fill in", in a sequential way, the
missing values of the observation matrix. Reference [4] proposes
a sub-optimal method to combine the constrains that arise from
the abserved submatrices of the original matrix. A bidirectional
optimization scheme was proposed in [5].

In this paper, we propose three new algorithms to find the best
rank deficient approximation of a matrix with missing elements.
The first algorithm can be seen as an initialization - it computes
in an efficient way an initial estimate of the complete matrix. The
other two algorithms are iterative schemes that converge to the op-
timal solution when properly initialized. The first iterative algo-
rithm is based in a well known method to deat with missing data
- the Expectation-Maximization (EM) [6]. The second iterative
scheme computes, alternately, in closed form, two matrices whose
product is the sclution matrix. We call this the Two-Step (TS) it-
erative method. Our three algorithms are general in the sense that
they compute approximations of any rank. Thus, although devel-
oped under the framework of SFM, our algorithms are adequate to
ather signal/image processing tasks that require finding rank defi-
cient approximations of mairices with missing elements.

Besides their generality, the algorithms presented in this pa-
per have other advantages over the above mentioned ones. Our
initialization algorithm is a contribution by itself since it requires
a much smaller number of SVD computations than the “filling in”
method of [1]. Although the authors of [5] don‘t mention EM, their
bidirectional scheme is in fact an EM-like method. Our EM algo-
rithm relates thus to [5] but, as detailed below, our E-step is sim-
pler. Our TS algorithm proves to work as efficiently as the EM
with the advantage of being computationally cheaper. Finally, the
combination of a first estimate with iterative algorithms is also an
advantage of our method - while the good behavior of the iterative
algorithms makes unnecessary to find a very accurate starting ma-
trix (a computationally expansive task), the existence of an initial
estimate assures they converge in a few iterations,

MatLab® implementations of the algorithms we propose in
this paper are available at www.isr.ist.utl.pt/~aguiar.
Paper organization In section 2, we formulate the prablem of
approximating a matrix with missing data by a rank deficient ma-
trix. Sections 3, 4, and 5 describe, respectively, the initialization,
the EM, and the TS algorithms. In section 6 we describe experi-
ments with real and artificial data. Section 7 concludes the paper.
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2. FACTORIZATION WITH MISSING DATA

In the original factorization method [1], the authars track P feature
points over F frames and collect their trajectories in the 2F x
P ghservation matrix W. The observation matrix is written in
terms of the parameters that describe the 3D structure as

T
W=RST+t1=[R|t][Sl ] m

where R and t represent the rotational and translational compo-
nents of the 3D motion of the camera and S represents the 3D shape
of the scene. R is 2F x 3. It collects entries of the 2F 3D rotation
matrices that code the camera orientations. The 2F x 1 vector £
collects the 2F camera positions. S is P x 3. It contains the
3D coordinates of the P feature points. See [1] for the detatls.
The problem of recovering SFM is then: given W, compute R,
S, and ¢. Since in a noiseless situation the observation matrix W
in (1} is rank 4, the method in [1] recovers SFM by using the SVD
to compute the best rank 4 approximation to the matrix W',

Suppose now that we have an image stream in which some
feature points disappear due to the occlusion or the limited field of
view and/or new feature points become available along the video
sequence. This means that there are frames in which the coordi-
nates of some feature points are unknown, leading to an obser-
vation mairix W with missing data. To extend the factorization
method to this scenario, we must compute the best rank 4 approx-
imation W to the observation matrix W that is now partially un-
known. If the noise is white and Gaussian, the Maximum Likeli-
hood (ML) solution leads to the minimization problem

g | -@os, @

where S, denotes the space of the 2F x P rank 4 matrices; ®
represents the elementwise product, also known as the Hadamard
product; the matrix M is a binary mask that accounts for the
known entries of the observation matrix W, ie., mi; = 1if wy; is
known and m; = 0 otherwise; and ||.||  represents the Frobenius
norm. After solving (2) for W, the recovery of SFM is straight-
forward by using the factorization method of [1].

When the matrix M contains only ones, i.e., when the obser-
vation matrix W is completely known, the solution W of (2) is
obtained from the SVD of W afier selecting the 4 larger singular
values as in the factorization methad of [1]. We denote this optimal
rank reduction operation by W | S4:

Ww=w 1 84 =UzrxaZBaxaVaxp. 3
In opposition, the existence of unknown entries in W prevents us
to minimize (2) by using the SVD of W as in (3). This makes
nontrivial the recovery of SFM in our scenario. The following sec-
tions deal with the nonlinear minimization of expression (2). Note

that, although particularized for rank 4 matrices, our algorithms
are valid for any other order rank deficient approximations.

3. INITIAL ESTIMATE
Any rank 4 matrix W can be written as the matrix product

W = AspyxaBuxr € Sy, (4)

where A determines the celumn space of W and B its row space.
We find an initial estimate of W by computing in an expedite way
estimates of the matrices A and B from the data in W,
Suboptimal subspace estimation Before addressing the general
case, we consider the simpler case where a number of columns
of W are entirely known, i.e., a number of feature points are
present in all frames, and a number of rows of W are entirely
known, i.e., and a number of frames contain all feature projec-
tions. We collect those known columns in a submatrix W, and
those known rows in a submatrix W .. From the data in W, the
ML estimate of the column space matrix A is

A=W,_. |8, (9

From the data in W, and the column space matrix A, the ML es-
timate of the row space mairix B is the known Least Squares (LS)
solution that uses to the Moore-Penrose pseudoinverse, see [7],

B=(474,) T ATw, ®

where A, collects the rows of A that correspond to the rows
of W .. We see that the matrix AT A, must be nonsingular so
the matrix W, must have at least 4 linearly independent columns
and the matrix W, must have at least 4 linearly independent rows.
Subspace combination In the general case, however, it is not pos-
sible to find 4 entire columns and 4 entire rows without missing
elements in the matrix W. We must then estimate the column
and row spaces matrices A and B by combining the spaces that
correspond to smaller submatrices of W, We describe the algo-
rithm for combining two calumn/row space matrices. The process
is then repeated until the entire matrix W has been processed.

Select from W two submatrices W and W that have at
least 4 columns and 4 rows without missing elements. We fac-
torize Wy and W ; using (5) to obtain the cormesponding column
space matrices 4, and As. If the observation matrix W is in fact
well modelled by a rank 4 matrix, the submatrices of A; and A2
that correspond te common rows in W, denoted by A2 and A2,
are related by a linear transformation,

Alz o Ag]N, (7J

where IV is 2 4 x 4. We compuie IV from (7) as the LS estimate
-1
N = (A21A21) AL A (8

and assemble a combined column space matrix 4 for the rows
corresponding to W, and W, as

- Az\]N !

where Ag\; denotes the submatrix of A2 that collects the rows
that do not correspond to rows of W ;. We compute the combined
row subspace matrix B by using an analogous procedure with (6).

~ (0
We define the initial estimate of the matrix W as W( ) = AB.

4. EXPECTATION-MAXIMIZATION ALGORITHM

The EM approach to estimation problems with missing observa-
tions works by enlarging the set of parameters to estimate - the
data that is missing is jointly estimated with the other parameters.
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The joint estimation is performed iteratively in two alternate steps:
i) the E-step estimates the missing data given the previous estimate
of the other parameters; ii} the M-step estimates the other parame-
ters given the previous estimate of the missing data, see [6].

In our case, given the initial estimate W(O), computed as de-
scribed in section 3, the EM algorithm estimates in alternate steps:
i} the missing entries of the observation matrix W; ii) the rank 4
matrix W that best matches the data. The algorithm performs
these two steps until convergence, i.e., until the error measured by
the Frobenius norm (2) stabilizes.

E-step - estimation of the missing data Given W(k_l), the ML
estimates of the missing entries {w;; : mi; = 0} of W are simply

—~— (k=1
the corresponding entries zﬂff U of W( ). We then build a

=5 (k) -
complete abservation matrix W °, whose entry wf;-“) equals the
corresponding entry w;; of the observation matrix W if wy; was
observed or its estimate ﬁﬁc‘l) if w;; is unknown,

N ; ifmi; =1,
@) = {'”‘(in iy (10)
iy

“ W ifm; =0,

or, In matrix notation,

v owomMm+ W M on-mM. ap

M-step — estimation of the rank deficient matrix We are now

(k)
given the complete observation matrix W( with the estimates of
the missing data from the E-step, The ML estimate of the rank 4

— o (K

matrix Wm, i.e., the rank 4 matrix that best matches W( ) in the
—k

Frobenius norm, is then obtained from the SVD of W, see (3),

WS w8, (12)
In reference [5], the authors treat 3D translation separately,
rather than including it in the factorization process as we do, re-
member (1). Their bidirectional algorithm is then developed to that
specific strategy. In opposition, our EM algorithm is general, i.e,
it solves any rank defficient matrix approximation problem with
missing data. Furthermore, our E-step in (11) is simpler than the
corresponding step of [5] that requires inverting matrices,

5. TWO-STEP ALGORITHM

This section describes the TS algorithm, a new iterative scheme
to compute the rank 4 matrix that best matches the data. From
our experience, the TS algorithm is computationally cheaper then
EM - avoids SVD computations and exhibits slightly faster con-
vergence. For the TS algorithm, we parameterize the rank 4 ma-
trix W as in (4), and compute the column space matrix A and the
row space matrix B directly from the minimization of the global
cost (2),

min - .

5 (W - AB) © M|, (13)

Through this Pparamelerization, we map the constrained minimiza-
tion (2) wrt W € &4 into the unconstrained minimization (13)
wrt A and B.

We minimize (13) in two alternate steps. In step i), we assume
the column space matrix A is known and estimate the row space
matrix B. In step ii}, we estimate B for known A. The algorithm

(0
is initialized by recovering A from the initial estimate W( ) com-

puted in section 3, A = ﬁ;(o)184, and it runs until the value of
the Frobentus norm in {13) stabilizes. When there is no missing
data, our TS algorithm implements the power method {7] that is
widely used to find the best rank deficient approximation without
computing the SVD. We will see that, even when there is miss-
ing data, both steps i) and ii) admit closed-form solution and the
overall algerithm results very simple.

Step i} estimate of B for known A If 4 is known, minimiz-
ing (13) wrt each entry of B leads to a LS problem. We compute
the LS solution of each column b, of B as

by = [AT (Ao AT (w,om,),  (14)

where the lowercase boldface letters denote columns of the matri-
ces with the same uppercase letters and M, is a 2F x 4 matrix
with all 4 columns equal to my, M, = mplixs. The vector m,
in (14) selects from W the known data and from A the corre-
sponding relevant entries. Note that the setof p = 1. .. P equali-
ties like (14) is the generalization of the known LS solution based
on the pseudoinverse (6) for the possibility of having missing data.
Step ii) estimate of A for known B Given B, we estimate each
rowayof A, f =1,..2F, ina similar way,

a;=(w;Om;} BT [(BGMJ)BT]_I, (15)

where now, for commodity. the lowercase boldface letters denote
rows rather than columns, and M ; = 14,0y,

6. EXPERIMENTS

We describe three experiments. First, we demonstrate the effi-
ciency of our method to compute general rank deficient approx-
imations of matrices with missing data. The second experiment
recovers 3D shape and 3D motion from synthetic 2D trajectories
from which data was removed. Finally, we recover 3D structure
from a real-life video clip with partially overlapping images.
Rank deficient approximation We have generated rank deficient
matrices, added noise, and removed a subset of their entries. Then
we used our methods to recover the original matrix. We used ma-
trices of dimensions ranging from 2 to 50 and ranks from 1 to 6.
In all experiments both our methods estimate the original matrix
with a mean square error smaller than the variance of the obser-
vation noise. We illustrate the behavior of the algorithms when
recovering a 40 x 40 rank 6 matrix W from a noisy observa-
tion W {noise variance 0% = 1) with 30 x 30 missing entries.
Figure 1 shows plots of the evolution of the estimation error, mea-
sured by the Frobenius norm {2) for both the EM and TS algo-
rithms of sections 4 and 5. While for the left hand side plot we
used a random initialization, for the one in the right we used the
complete procedure, i.e., we initialized the process by using the
method of section 3. Since the error for the true matrix W is
givenby ||(Ws — W) O M|| . = 0402 — 307 = 26.5, we see
from the plots of figure 1 that both the EM and TS algorithms pro-
vide good estimates. From the right hand side plot, we conclude
that the initial estimate of section 3 enables a faster convergence
(in 2 or 3 iterations) to a solution with lower error.

3D Structure from 2D motion with missing data We synthesized
noisy versions of the 2D trajectories of 372 feature points located
on the 3D surface of a rotating cylinder. Then, we simulated oc-
clusion and inclusion by removing significant segments of those
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Fig. 1. Evolution of the estimation error {2) for a 40 x 40 rank 6
matrix with 30 x 30 missing entries, with a random initialization
(left plot) and with the initialization of section 3 (right plot).

trajectories. Figure 2 show one of the 50 synthesized frames. The
small circles denote the noiseless projections and the points denote
their noisy version, i.e., the data that is observed. Note that only an
incomplete view portion of the cylinder is observed in each frame.

Fig. 2. One frame of the cylinder sequence.

The data from the cylinder sequence was then collected on
a 100 x 372 observation matrix W with 9537 unknown entries
(=~ 26% of the total number). We appiied our method with the
TS algorithm to the matrix W and recovered 3D SFM by using
the factorization method [1]. Figure 3 plots the final estimate of
the 3D shape. We see that the complete cylinder is recovered. Due
to the incorporation of the rigidity constraint, the 3D positions of
the features points are accurately estimate even in the presence of
very noisy observations (compare Figures 2 and 3}.
Real video We used a real-life video clip available at the computer
vision sitewww-2.cs.cmu. edu/"cil/vision.html. This
ciip show a rotating ping-pong ball with painted dots. The left im-
age of figure 4 shows the first of the 52 video frames of the ball se-
guence. We tracked a set of 64 feature points. Due to the camera-
ball 3D rotation, the region of the ball that is visible changes across
time, leading to an observation matrix with ~ 41% missing en-
tries. We proceeded as described for the previous experiment and
recovered the 3D shape shown an the right image of figure 4, We
see that our method succeeded in recovering the spherical surface
of the ball.

7. CONCLUSION

We presented a new general, efficient, and computationally simple
method to find the best rank deficient approximation of a matrix

X Y

Fig. 4. Left: first frame of the ball video clip. Right: 3D shape
recovered from the ball video clip.

with missing data. Our method combines an expedite initializa-
tion with two iterative algorithms that converge in few iterations.
Our experiments demonstrate that this approach is well suited te
the recovery of 3D rigid structure from videos that, due to the oc-
clusicn and inclusion effects, exhibit partially overfapping views.
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