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Abstract—Existing robot localization methods often rely on
particular characteristics of the environment, such as vertical
walls. However, these approaches loose generality once the envi-
ronment does not show that structure, e.g., in domestic environ-
ments. This paper addresses the problem of absolute online self-
localization in a known map, where the only required structure
in the environment is a planar ground. In particular, we rely
on the transitions between the ground and any other non-planar
structure. The approach is based on the ground point-cloud and
plane model perceived by a depth-camera. The ground detection
algorithm is robust to small shifts on camera orientation during
the robot motion, by determining the calibration parameters on-
the-fly. Then the edges of the ground are estimated, which can
be originated by obstacles in the environment. The localization is
obtained using a particle filter fusing to odometry with a novel
observation model reflecting the quality of the match between
the ground edges and the nearest obstacles. For this purpose, a
cost function was implemented based on a distance-to-obstacles
grid map. Experimental results using the ISR-CoBot robot are
presented, ran in different scenarios, including a bookshop during
working hours.

I. INTRODUCTION

The use of autonomous assistance robots in home environ-
ments is becoming increasingly necessary. Their use is also
imperative in other places where they can help or provide
general information related to their environment. As far as the
home use is concerned, robots are able to help in daily tasks
or assist elderly people. As far as non-home use, robots can
give access to information, serve as an intermediary over long
distance or even improve the quality of life of patients with
motion restrictions. One of the fundamental capabilities from
this kind of applications is the self-localization. This paper
addresses this problem for general indoor environments.

A number of publications have addressed the localization
problem in a variety of different approaches. Nowadays there
are two major approaches: the former is based on Kalman filter
solutions [1] and its more recent developments [2] resorting to
local sub-maps to solve the unbounded growth of the filter state
overtime or [3] tackling its difficulty to recognize already seen
features resourcing to a joint compatibility data association.
The latter is based on the Particle Filter solutions [4] and
its more recent developments [5] resorting to a statistical
approach to adapt the size of the particle set on-the-fly or
[6]. A comparison of the two approaches can be found in
[7]. The appearance of cheap depth-cameras, despite often
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computationally complex to process, provide a good resolution
and perception of the 3D environment at a low price.

Recent work has been done on the localization problem
using 3D data sensors. Some methods based their observation
model on wall-planes features, like in [8] and in [9], which
use the depth information to detect walls or other vertical
planes features and project them on a 2D map. However,
besides their remarkable performance, these algorithms show
some limitations, particularly in environments where walls
are difficult to detect - hidden by furniture or not present
(open-spaces). Furthermore, since they consider the pose of
the camera relatively to the ground plane to remain constant,
they are not robust to oscillations that naturally occur during
robot motion. Other methods approach the problem from a
different perspective, by using the 3D data for building 3D
maps of indoor environments and consequently estimating the
pose by data matching [10], but the computation effort of these
algorithms is very high, unpractical to be used in real-time.

We tackled the localization problem using the RGB-
Depth camera and the particle filter method to address some
challenges found in the literature: generality and robustness.
The developed system assumes a semi-structured environment
based on a flat floor. An RGB-Depth camera is mounted on a
differential wheel robot, pointing forward slightly down. The
camera outputs a point-cloud, which is composed of a list of
points, defined by their 3D position in space and their colour.
Each 3D point of the set is associated to one pixel on the image
plane. The robot used, the ISR-CoBot robot [11], is equipped
with the aforementioned RGB-Depth sensor, a joystick for
motion control and a differential drive kinematics.

The approach taken is thus performing the localization
based on the ground point-cloud. We assume that the camera
is always pointing both forward and to the floor, while fixed
to the robot (see Fig.2). The most important features of the
floor are its boundaries, as these are the elements that perfectly
define it. The localization system is then implemented by
combining a dead reckoning based estimation with an absolute
localization system based on the ground point-cloud bound-
aries. The absolute localization system is implemented with the
particle filter algorithm using the ground floor boundary seen
by the camera, extracted from the previously detected ground
point-cloud. Therefore, in this work, a full-resolution ground
point-cloud detection system was developed, which made the
detection of the ground plane model, the estimation of a
robust point-cloud boundary and the creation of an innovative


yoda
Typewritten Text

yoda
Typewritten Text
This work was supported by the FCT project
[PEst - OE/EEI/LA0009/2013]

yoda
Typewritten Text


2014 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
May 14-15, Espinho, Portugal

Camera
frame

Camera
frame

(a) Raw point-cloud.
filter.

Fig. 1. Tllustration of the ground point-cloud detection algorithm steps.

method possible, which merges these environment features on
the particle filter, by resorting to a special cost function. Our
approach uses a ground detection algorithm that is not sensitive
to the absence of planar vertical features, usable for semi-
structured environments and work in real-time.

This paper is structured as follows: Section II is devoted
to the aspects of the ground point-cloud detection. In Section
IIT the implementation of the ground-Plane Boundary Estima-
tion, using the resulting ground point-cloud, is evaluated by
proposing the general detection algorithm and an outliers filter.
Section IV presents the localization system and explains how
we combined the ground boundary edges with it. Section V
presents the tests and results of this work using ISR-CoBot
in the Barata® bookshop, and it with two other localization
algorithms. Finally, Section VI presents our conclusions.

II. GROUND POINT-CLOUD DETECTION

The ground point-cloud detection algorithm (see Fig. 1)
has three main steps: 1) detect the ground point-cloud on
the sensor space; 2) estimate the ground plane model based
on the ground point-cloud; and 3) evaluate the transformation
between the sensor frame and a newly defined frame coupled
with the ground, based on the plane parameters. But before
going into the ground point-cloud detection algorithm, an
explanation of the framework used and the problem geometry
in this algorithm will be provided in II-A which will be used
ahead. In II-B we will explain how we detected the ground
point-cloud from the raw point-cloud data and the plane model
parameters used in this mathematical framework.

A. Ground Point-cloud Detection Framework

The ground is modeled as a plane and parametrized using
the implicit normalized form of a plane equation defined below
in the camera frame {C'}:

aCrge + b yge + Czge +d€ =0, (1)

where [aC b¢ CC]T is the normal vector T, rgce, ygce
and zgc are the coordinates of a point G belonging to the
ground-plane, and d° = —T -G is the distance of the origin
OF the plane along . It has to be noted that the (1) is in fact
a specification of the equation of the distance of an arbitrary
point to the plane (points have zero distance), and therefore
we have:

height(P€) = o - P¢ + d°

=a%zpc + bCpe + cCzpc +d°, ()
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where P¢ = [zpc  ypo zpc]T is an arbitrary point. This
equation will be particularly useful to estimate the height of a
point in the point-cloud (the distance from the ground).

Fig. 2 pictures the geometry of the problem, where
one can see the robot base frame {R} (represented by
{x® y® z7}); the RGB-Depth camera frame {C} (repre-
sented by {x®,y®,z“}) observing the floor; and the new
camera-projection frame {C' P} coupled to the ground (rep-
resented by {x°F y©P zEFY}). The {CP} frame is defined
with its origin equal to the projection of the {C'} origin in the
ground-plane, the x“ axis with the same horizontal direction
of z€, the y©F left and the z¢F pointing up.

The ground-plane parameters are used to estimate the
coordinates of the {C'P} basis axes in the {C'} frame to then
compute the rigid transformation between the two, completely
describing the geometry of the problem as in Fig. 2. Therefore,
considering the ground-plane model (a®,b%, c%,d“) as in (1),
the estimation of the {C P} basis in {C}, denoted x%p, y&p
and z&p, is performed in two steps: first it is computed its
origin O%p in the {C} frame. Since O% is the projection
of O =[0 0 O]T, it is obtained by translating the latter in
the direction of T and with the distance equal to the camera
height, which equals d®. Therefore Og p is:

0&p =07 — (d) . 3)

The second step is estimating the Xgp unitary vector by
projecting the z® vector on the plane to obtain its horizontal
orientation and then normalize the result. Following the same
procedure as in (3), the projection of z€ = [0 0 1]T is
translating it in the direction of o by the distance of its height.
Using (2), we obtain:

o _ 20— (€ +d)H - 0F,
cp = 128 — (cC + dC)ﬁ _ ngH :

o
& U~ Camera frame
y d o

zR d+c

CP|
’
i XxCP

Ground plane

“

W= [C 0 )"
IR =1

Robot frame Camera projection frame

Fig. 2.

Ground-plane estimation geometry.

(d) Point-cloud after the rigid transforma-
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Fig. 3. Calibration Setup. (a) RGB camera perspective, (b) 3D view.

Since zg p is defined as pointing up, it is equal to the normal
plane vector, or in other words:
T
zép = [a® bC C] . Q)
Finally, the y& 5 is the result of the external product of z&
and X¢p:

c c c
Ycp = Zcp X Xcp- (©)

The rigid transformation between the two frames is then
computed using the orthogonal Procrustes problem [12]. Con-
sidering that A is the orthogonal basis matrix of {C'P} and
B is the orthogonal basis matrix of {C'}, we have:

A= [XgP ygp ZgP] )
B=[x% y9 z¢ =133, ®)

where the orthogonal Procrustes problem states that finding the
orthogonal matrix CgR (rotation matrix), which most closely
maps A to B, is equal to:

CCR =UV*, )
where M = ATB = UXV*,

The translation vector can be estimated directly from the
geometry of the problem since is performed only along z¢* by
the absolute value of the height of the camera. The translation
©Ft is equal to:

Ce=1[0 0 [a°]". (10)

Using the transformation equations (9) and (10), the ground
point-cloud is transformed from the original frame ({C}) to
the camera-projection frame. Since {C' P} is contained within
the ground-plane, the resulting component of z€% of the point-
cloud is equal to zero. Therefore, discarding z¢T we obtain
a 2D representation of the ground point-cloud that is more
suitable given the aim of this work. Fig. 1(d) illustrates the
transformation.

B. Ground Point-cloud Detection Algorithm

An initial calibration of the floor to obtain pre-established
values for the ground plane model is required. The calibration
also serves for the estimation of the camera orientation and
height on the robot. The calibration process is shown in Fig. 3,
where a chess pattern is placed in the line of sight of the depth
camera, maintaining the robot still. A chess pattern detection
algorithm is used to detect the corners pixels on the image.
Then we obtain the corresponding 3D points from the point-
cloud, that we know are part of the ground-plane.
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Fig. 4. Dynamic Threshold Filter definition

Denoting ¢ = [GY -+ GY G¢] as the list
of 3-D points in the camera frame found, we estimate the
calibrated ground-plane parameters (a’ € el d C) using
the linear least squares (LLS) estimator [13] to find the values
which best fit the data. A rescale of the parameters was
performed since the number of DOF of the plane model (1)
used is bigger than the space it is defined in. This way, to
solve the LLS we have:

X-B=y (In
C
C
/C

L

" _
. B=b y=1": (12)
. _

B=XTX)"'XTy.

1
(13)

After obtaining the non-normalized solution (a’“, &/ ¢ eC, 1),

we multiply the result by its normalized factor, 1/|n’|,
obtaining the final normalized calibrated ground-plane model
parameters.

The problem of detecting the ground point-cloud and es-
timating the ground-plane parameters, during the robot move-
ments, is solved by analyzing the point-cloud, filtered by a
dynamic threshold function, using a RANSAC algorithm [14].
The dynamic threshold filter is defined as two planes symmet-
rical along the calibrated ground-plane model. The distance
between the planes and the calibrated ground-plane model
gradually improves as one moves further away from the robot,
as shown in Fig. 4 where the orange/dashed line represents the
calibrated ground-plane, the green/dotted line stands for the
true position of the ground and the red line indicates the value
of the threshold function. Since the position of the ground-
plane changes significantly in relation to the camera during
robot motion due to the vibrations, the calibration process
by itself is not enough to detect the floor point-cloud on-the-
fly. The design of this dynamic threshold filter ensures a very
robust and trustworthy detection system.

The framework described in Section II-A is equally ap-
plicable to the calibrated plane model, and so we denote
0'“" as the camera origin projection on the calibrated model,
the corresponding orthonormal basis as {x’ OF y1OF o CP}
and {xX'Sp,y'Sp,25p) as the same basis but in {C}. The
dynamic threshold function equation is the following:

Thr(P€) = a,PC - X'Ep + as, (14)
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Fig. 5. Example the -shape output result with red Xs being the edges, black
points the point set and green lines the polygon.

where P is an arbitrary point in the {C} frame, the oy is
the slope of the dynamic threshold function and s is the
maximum height allowed at the origin projection. P® is then
discarded by the filter if its height is higher then the value of
its threshold (like Py but not P, and P3). After applying this
filter, we obtain a point-cloud composed mostly by ground-
plane points and some outliers.

To filter these outliers and to estimate the real ground
model parameters, (a®,b%, ¢, d), a RANSAC algorithm is
used with the model characterized in (1). The result incor-
porates the ground point-cloud (points considered as inliers).
Fig. 1(d) shows the resulting point-cloud after the dynamic
threshold filter and the resulting point-cloud inliers after the
RANSAC algorithm.

Using the methodology already explained in Section II-A,
we then estimate the true {C'P} frame basis, the transforma-
tion between {C'} and {C'P}, and more importantly, the 2D
ground point-cloud.

III. BOUNDARY EDGES ESTIMATION
A. Estimation Algorithm

After the ground detection, a boundary edges estimator was
designed using the resulting 2D ground point-cloud obtained.
This estimation is based on the concave hull algorithm, also
known as «-shape [15]. Given a set of spacial points, it
estimates the polygon with the minimum surface that best
describes the enclosed shape of the points. Applying the
concave hull algorithm to the 2D ground point-cloud, we
obtain the list of edges forming the shape polygon. Following
the example of Fig. 1(d) , the output of the algorithm is shown
in Fig. 5, where the black points are the entire point set, the
red Xs represent the points belonging to the polygon shape,
which are highlighted in green line.

To remove the presence of edges normally produced by
the limitation of the FOV and by ‘“shadows” produced by the
obstacles occlusion an outliers filter was designed. In order to
obtain this filter, the FOV model of the camera is estimated and
posteriorly it’s intersection with the ground-plane, evaluating
its location on the floor.

B. Outliers Filtering Algorithm

The FOV edges were modeled as a four planes system,
all intersecting the focal point of the camera and forming
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Fig. 6. Example of the output after the outlier filter execution.

angles equivalent to the camera viewing angles. This planes
are estimated by the 3D positions of the left-hand and right-
hand upper and lower corners of the camera image. Given
these points and that all four plane intersect the origin of
{C}, the model estimation come through the definition of
the plane with three points. The normal for i** FOV plane,
n = [aic b;© cic} is then:

ﬁi = (Cic — OC) X (Ci+1c - OC) s (15)

where C;© and Ci+1c are the 3D points of the image corners
and O the camera origin. Since d;¢ represents the distance
from the plane to the origin, it is equal to zero (planes intersect
the origin). The four FOV planes are therefore represented with
the equations in {C'} by:

a;%rpo+b%po+cCpec=0 i=1,...,4, (16
where F;¢ is an arbitrary point belonging to the i** FOV
plane.

The lines of the intersection of the FOV planes with
the ground-plane are easier to compute in 2D space, so a
transformation of the FOV parameters space is first performed.
By using the transformation equations from {C} to {C'P},
we transform the parameters in equation (16) into the {C'P}
frame to subsequently estimate the parameters of the lines in
{x“P y©P1 The new normal vectors of the planes in {C P},
[a P b,“F P }T are computed by the rotation “ER
estimated before:

aiCP aiC
LT | =C%ER- [p,C| ., i=1,...,4. A7)
CiCP CiC

Next, the distance to the camera-projection origin, i.e the
parameters d;°T, is estimated by substituting the coordinates
of a know point belonging to the plane in the plane model
equation. A point that is shared by all planes is the camera
origin, O¢. The camera origin in {C' P}, denoted as OEL, is
equal, by the geometry of the problem, to the translation Cgt
estimated in (10). And therefore, diCP is then:

oc =l o |dC|]T (18)
a;Progr + bicpyogp +ci%P2ocr + 4.’ =0

= d;9F = —¢;,°F . |d], (19)
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resulting in the complete FOV planes equation defined in the
camera-projection frame {CP}:

aZ-CPxFicp + biCPyFicp + ciCPzFicp + dZ-CP =0, (20)

where F;“F is an arbitrary point belonging to the i*" FOV
plane in the frame {C'P}.

The intersection is mathematically performed by replacing
in the FOV equation (20) the ground-plane equation (zgcr =
0) and so we have:

Piper +d;°F =0, Q1)

where 1¢% is an arbitrary point belon }glng to the i*" intersection
line on the 2D frame and (a;“, ;%" , d;°T) are the respective
it line parameters.

a,CleCP + blc

To filter the FOV limit outliers the previous estimated lines
are used, so if the distance from the edge points to one of
the four lines is lower than a fixed threshold, it is discarded.
Following the examples before, a result of the filter is shown
in Fig. 6 with the FOV intersection lines in blue as indicated.

The outliers raised from the “shadows” produced by the
obstacles have the characteristics of forming a constant angle
with the origin, i.e they are aligned with each other and with
the origin, as seen in Fig. 7a. Therefore, the remaining edges
points are transformed to a polar coordinate system and then
the group of points that present a constant value of azimuth are
filtered out. The profile of the azimuth of the previous example
and the group of points filtered out is shown in Fig. 7b.

IV. ROBOT LOCALIZATION SYSTEM

The localization system problem for a vehicle operating in
a known environment is addressed resorting to a particle filter
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Fig. 8. Example of a distance-to-obstacles grid map.

algorithm [16]. The particle weight estimation is based on the
particle cost defined as:
Cp

) (22)

wp = exp( kmax(cp) +e
where ¢, is the cost of particle p, w), is the weight of p and €
is a small number for numerical stability. The bigger the value,
the better the particle hypothesis is. Therefore, the probability
of a particle being sampled is higher the smaller its cost is.
At the update step, the system obtains the point-cloud from
Kinect, estimates the ground point-cloud, performs the edges
detection and computes each particle’s weight value. For the
estimation of the particle weight an occupancy grid map matrix
of the environment and a new, with similar size and resolution,
matrix called distance-to-obstacles D, where each cell contains
the distance from that respective cell to the nearest occupied
cell, are used. D is obtained by using the Euclidean Distance
Transform algorithm [17] over the occupancy grid map matrix
obtained by a mapping algorithm. In our case, the source
points of the close curve are the obstacles, i.e. the closed curve
propagates in the free areas. As a result, a matrix is obtained
where each cell D; indicates the distance between the i*" cell
and the nearest occupied cell. A D close up is shown in 8
with a color range from red, for bigger distances, to blue, for
smaller distances.

Consider a particle p at pose [:cZV y;,/v F)ZV " and
the set of points of the ground edges polygon L¢F. The
cost estimation of particle p starts by transforming the set

LEP into the World frame using the pose of the particle p,
[V ylV HW] the pose of the camera in robot and the

transformation from {C} to {C'P}, obtaining the list L}V. L}V
is therefore the observed list of edges in the world frame if
the robot were in the particle p (hypothesis). The cost function
is therefore meant to reflect the match between the robot
observation and the predictable observation of p. The cost of
p is defined as the L'-Norm of all the distances between the
ground edges L’ZV and the nearest obstacles. We can describe
mathematically the cost function with the following equation:

=2 D), (23)

where 7 is the number of points in £}V, £}V (i) the i'" point
list and D(L}"(i)) the distance from the point L)' (i) to
the nearest occupied pixel. The cost of the particle is then
converted to its weight. The conversion is done using the
exponential function (22). After, the resampling is performed
and the particle set is updated as in standard particle filter.
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Fig. 9. Estimated path by the AMCL, CGR and GPBL algorithms.
TABLE L MEANS AND STANDARD DEVIATIONS OF THE
LOCALIZATION DIFFERENCES BETWEEN ALGORITHMS.

Alg.

CGR AMCL
|XRr[GPBL] — Xg[Alg.]| [m] | 0.077 0.082
o(|Xr[GPBL] — Xg[Alg]|) [m] | 0078 0.079
|YR[GPBL] — Yr[Alg.]| [m] | 0.118 0.105
o(|Yr[GPBL] — Ygr[Alg.]]) [m] | 0.128 0.086
|Or[GPBL] — ©r[Alg.]| [deg] | 3.04 2.69
o(|Or[GPBL] — ©r[Alg.]|) [deg] | 2.60 2.53

V. RESULTS

The real-time experimental results of the Ground Plane
Based Localization (GPBL) here presented were obtained in a
bookshop during the normal opening hours. The sensor data
collected is composed by the depth image, the odometry and a
laser range finder (LRF). The first localization algorithm used
for comparison took as input odometry and laser data only, the
other took, like GPBL, odometry and depth image data. The
experiment consists of a robot moving around the bookshop
at an average speed of 0.4m/s. The general manoeuvre is
approximately a 8-shaped path. More data sets and their results
can be found online'. The algorithms chosen were respectively
the AMCL [5] and the CGR [9].

Fig. 9 illustrates the robots estimated trajectory in a 2D
map for the CGR, the AMCL and the GPBL. It is possible
to visualize that during the experience, even in this crowded
environment, the pose estimation gives a correct result, since
the three algorithms present roughly the same outcome.

The observed uncertainty (particles standard deviation)
of our algorithm maintained a stable, low level, during the
experience. The averages and standard deviations divergence
with the other algorithms are presented in Table I. The average
processing time per iteration of the GPBL was around 0.17 s
with a standard deviation of 0.13s, using a Intel Core i5-
2520M @ 2.5 GHz processor. Note that while the other two
algorithms used the books on the shelves for localization, ours
on the other hand did not consider them. We did not remove
them for practical reasons.

Uhttp:/fusers.isr.ist.utl.pt/~mvaz/thesis
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VI. CONCLUSIONS

In this paper we described a localization system based on a
depth camera using a novel observation model. The proposed
system was implemented based on the sensor perception of the
ground, having shown that this method is robust and generally
applicable in semi-structured environments. An evaluation in a
real-life scenario with a real robot was performed, as well as a
comparison with the state of the art. The algorithm estimated
the position of the robot in a satisfactory way, corroborating
our goal. In the future we intend to challenge our system with
environments where other systems are unable to cope with,
such as in the absence of vertical walls.
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