
Towards efficient path planning of a mobile robot on
rough terrain *

Diogo Amorim
Institute for Systems and Robotics

Instituto Superior Técnico, Universidade de Lisboa
Av Rovisco Pais, 1

1049-001 Lisbon, Portugal
Email: diogo.amorim@ist.utl.pt

Rodrigo Ventura
Institute for Systems and Robotics

Instituto Superior Técnico, Universidade de Lisboa
Av Rovisco Pais, 1

1049-001 Lisbon, Portugal
Email: rodrigo.ventura@isr.ist.utl.pt

Abstract—Most path planning methods for mobile robots
divide the environment in two areas – free and occupied – and
restrict the path to lie entirely within the free space. However,
the problem of path planning in rough terrain for a field robot,
e.g. tracked wheel, is still a challenging problem, for which those
methods cannot be directly applied. This paper addresses the
problem of path planning on rough terrains, where the local
properties of the environment are used to both constrain and
optimize the resulting path. Finding both the feasibility and the
cost of the robot crossing the terrain at a given point is cast
as an optimization problem. Intuitively, this problem models
dropping the robot at a given location and determining the
minimal potential energy attitude. Then, a Fast Marching Method
algorithm is used to obtain a potential field free of local minima.
This field is then used to either pre-compute a complete trajectory
or to control in real time the locomotion of the robot. Preliminary
results are presented, showing feasible paths over an elevation
map of a rough terrain.

Keywords—Path planning, fast marching method, rough terrain,
robots

* This work was supported by the FCT project
[PEst−OE/EEI/LA0009/2013]

I. INTRODUCTION

This paper proposes a method to efficiently plan a path for
a mobile robot on rough terrain. There already are some path
planing methods that solve this type of problem in 2D, however
we intend to apply these tools to the same sort of problem, and
with the same goal, but with a different premise. This premise
is the type of map. This represents a rough surface with
information about the free space and insuperable obstacles but
also the elevation of each coordinate. The elevation variations
may imply new obstacles for e.g. if a slope is too steep the
vehicle will not be able to climb it. The purpose of this paper
is to show how to create a map in a (x, y) configuration
space where each coordinate is associated with a cost based
on the vehicle’s pose as if it were dropped on the floor at the
given coordinates. To determine the pose of the vehicle we
compute the minimal potential attitude at each location. The
robot’s attitude is the solution of an optimization problem that
solves the scenario of dropping the robot on the surface at
each point of the map. We can then apply a Fast Marching
Method (FMM) [1], [2] to the newly created cost map to
obtain a potential field with no local minima. This field is
then used to guide the robot to its goal smoothly and safely

Fig. 1. The mobile robot Raposa NG

away from obstacles or hazardous situations. The motivation of
this work is the implementation of an autonomous navigation
method on rough terrain on the search and rescue robot
RAPOSA-NG1 [3], a track wheel vehicle designed for urban
search & rescue operations. It is then necessary to develop a
path planning method for 3D environments capable of dealing
with sharp edges (discontinuities in map data) such as steps
or sharp debris, as could be the case when dealing with these
environments.

II. RELATED WORK

Path planning is a widely studied problem that has been
approached in many different ways over the years as literature
demonstrates, see for example the B. Siciliano and O. Khatib,
Springer Handbook of Robotics [4] and S. LaValle, Planning
Algorithms [5] for extensive reviews. However, most of these
methods assume a prior division of the environment between
free and occupied space, while robot movement is constrained
to the free space. Rough terrains, for which such a binary
division is not trivial, often require an alternative approach.
In [6] two path planning methods are compared to show
their ability to solve the same problem in different ways with
different degrees of satisfaction of the final resulting path.
The first uses a genetic path planner which only requires
an approximate description of the terrain and operates on

1http://raposa.isr.ist.utl.pt

2014 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
May 14-15, Espinho, Portugal

978-1-4799-4254-1/14/$31.00 ©2014 IEEE 22

the basis of evolutionary process and stochastic search to
generate a near optimal path. The second is a global planner
which incorporates kinematics and dynamics of the robot,
and requires more knowledge about the environment and the
vehicle. In the work here presented we analyze the terrain in
detail and are not worried with the specifications of the vehicle
other than its general shape, contact points and center of mass.
So we can overlook these methods as we are developing a
path planning algorithm that generates the optimal path with
detailed information about the map. One relevant work is
described in a paper from S. Garrido and his team [7] that
applies the fast marching method to outdoor motion planing
on rough terrain. Despite the similarity in Garrido’s work
the terrain is locally approached by a plane, which may
pose problems for discontinuous terrains, e.g. stairs or other
discontinuities like debris. The premise is the same elevation
map but instead of working directly with the data, in first
place, Garrido and his team generate a Delaunay triangulation
and then add the third coordinate (elevation) to the mesh.
They obtain a triangulated surface and from that obtain three
characteristics they call: Spherical variance, Saturated gradient
and height. Our approach has the possibility of being much
faster as it works directly with the elevation map data and
it extracts both characteristics (pose and number of contact
points) in a single sweep of the map.

III. PROPOSED APPROACH

When planning the path for a mobile robot one needs to
ensure the path is safe and smooth all the way to the goal
point. We can also require speed or efficiency depending on,
for example, the mission energy budget. It is necessary to find
a way of determining the robot’s world characteristics in a fast
manner in order to, then, address the path planning issue. The
characteristics we have found relevant are the robot’s pose at
each point of the map and whether or not the contact with
the ground is stable. Defining the problem as a constrained
optimization problem with non-linear constraints it is possible
to determine the pose of the mobile robot as well as the
number of contact points with the ground, an important factor
to determine whether or not it is possible for it to stand on
that position. Our approach is based on a two-step process.
Firstly, a cost map is obtained by computing a cost of moving
at each point of a 2-D grid covering the environment. This
cost is set to infinity if that point is unfeasible for the robot
to cross. In this paper we set the cost to a function of the
rotation of the vehicle with respect to its pose on a horizontal
planar ground. Take for instance a vehicle on a ramp: the cost
is zero if the ramp is horizontal, and it increases with the
inclination of the ramp. To compute this deviation we consider
the robot dropped vertically at the given position, and then we
determine the robot attitude that minimizes its potential energy
i.e., the one that minimizes the height of the center of mass of
the vehicle. This problem is cast as an optimization problem
which is numerically solved for each point of the grid. The
second step corresponds to running a Fast Marching Method
algorithm over this cost map, for a given goal position. The
result is a potential field, with two fundamental properties, as
far as path planning is concerned:

1) it shows no local minima
2) the gradient descent over the field is the optimal path

to the goal, on given a cost map

A. Computing the cost map

The robot’s world is defined in a (x, y, z) configuration and
it is defined in the inertial frame of reference (I). The robot is
defined as an n points pj,R = (xj,R, yj,R, zj,R) structure Fig.
2, all fixed to its reference frame, the robot’s reference frame
(R) where the origin is set at the center of mass of the robot.

as the possible θ angles the robot can assume. All these matrices can form
a 3D matrix where each layer is a the map for a specific θ angle.

3 Results

The process explained above was applied to the already mentioned bump
like surface. This map of 1225 cells takes about 0.013 seconds/cell to be
processed but there is still room for speed improvement as we are still
developing concepts.
As we can see from the contour map on Figure 2 (a) of the bump the
cross sections are almost tear shaped and this explains the behavior of
Figure 2(b). The cost map obtained for θ = 0 from the algorithm is shown
in Figure 2(b), it shows cost values ranging from dark blue to dark red as
shown on the side bar. Higher cost values coincide with steeper uphill
slopes and lower cost figures translate steeper downhill slopes. This cost
map is only applicable to a robot travelling bearing θ = 0, so one could
imagine a robot starting from (0,−30) (bottom of the graph) and trav-
elling to (0,20) or in lines parallel to that. The light green/yellow line
demonstrates the beginning of the slope, until then the cost was constant,
but now the robot is climbing uphill the cost values will increase. The val-
ues go from green/yellow up to red (if the color does not change it means
the map has a constant inclination). Because the surface is rounded in all
edges the transition from uphill to downhill is translated by the green/light
blue line, and as the surfaces becomes steeper (downhill) again the blue
color darkens. At the end of the descent the color goes from light blue
to green and the cost represented by the green color is the same up to
the upper edge of the map indicating, again, a constant slope. The Scipy
package for python includes a function (f min_cobyla) that solves Con-
strained Optimization problems BY Linear Approximation (COBYLA)
[4] and it is one of the possibilities that was used to obtain the results here
shown. The fmin_cobyla respects the constrictions to a user defined error
margin which here was defined as a millimetre (although the authors do
not guarantee 100% accuracy in every constraint, the results for the tested
surfaces were always within the defined error).

4 Conclusions and Future work

Although being a different path planning problem, the presented conun-
drum can be solved with adaptations of technologies already in existence.
Simulating the structure of the robot and using an elevation map it is pos-
sible to create a cost map, by computing the robot’s pose in every map
cell. This cost map is a crucial tool for the task ahead, path planning.
We are still in an early stage of the solution and because of that, some
questions that arise when solving the main problem are not completely
answered yet. The future work will be about the use of the cost map as
an input for an already existing path planning method. It is theoretically
possible to apply a Fast Marching Method (FMM) [2, 5],rapidly explor-
ing random trees (RRT) [1, 3] or other path planning methods and obtain
an efficient path for the robot.

References

[1] S. Garrido, L. Moreno, and D. Blanco. Voronoi diagram and fast
marching applied to path planning. IEEE International Conference
on Robotics and Automation, 2006.

[2] S. Garrido, L. Moreno, D. Blanco, and F. Martin. Smooth path plan-
ning for non-holonomic robots using fast marching. IEEE Interna-
tional Conference on Mechatronics, 2009.

[3] S. M. LaValle and Jr. J. J. Kuffner. Randomized kinodynamic plan-
ning. The International Journal of Robotics Research, pages 378–
400, 2001.

[4] M. J. D. Powell. A view of algorithms for optimization without
derivatives. Technical report, Cambridge University, 2007.

[5] J. A. Sethian. Fast marching methods. SIAM Review, 41(2):199–235,
1999.

[6] Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza. In-
troduction to Autonomous Mobile Robots. The MIT Press, ISBN-13:
978-0262015356, 2011.

[7] Sebastian Thrun, Wolfram Bugard, and Dieter Fox. Probilistic
Robotics. The MIT Press, ISBN-13: 978-0262201629, 2005.

(a) (b)

(c)
Figure 1: Robot representation in (a) by 7 points as seen from the
top. Figure 1 (b) shows the positions of all 7 points in relation to the
r, the blue vector displays the origin and direction of the Zr, Yr and
Xr are represented by the red and green vectors, respectively, (c) show
the relation between the two frames, the robot has a pose defined by
(10,−13,0.659,−0.523,1.188,0.213) (note that the Z axis scale is not
the same as the X’s and Y’s to better visualize the relation between
frames)

(a)

(b)

(c)

(d)
Figure 2: (a) depicts an elevation map of the test surface, each contour
line defines a constant elevation value, dark blue for low values until dark
red for the higher figures. The 7 black dots represent the robot and its
scale. (b) shows a representation of the difficulty the vehicle bearing θ = 0
would have at each point of the test map if it were to pass by it. The
darker the red the harder, the darker the blue, the easier. Figure 2(c) and
(d) represent the same as Figure 2(b) bau for θ = π

4 and θ = π
2 . Note the

graphic representation is qualitative within each θ map.

2

Fig. 2. Representation of the mobile vehicle and its reference frame. Fig.
2 a illustrates the top view of the representation of the robot and Fig. 2 b
shows a perspective of the representation. In this case an approximation of
the representation of the robot in Fig. 1 is shown.

The n − 1 points characterize each contact point
(p1,R, p2,R), ..., (pn−1,R) and the last point (pcm,R) represents
the vehicle’s center of mass, which, as previously mentioned,
was described as the origin of the frame. The robot’s pose is
defined as :

(xcm,I , ycm,I , zcm,I , θ, β, γ) (1)

where (xcm,I , ycm,I , zcm,I) are the coordinates of the R in
relation to I, and (θ, β, γ) are Euler angles Z − Y −X . The
first, θ (yaw) is the angle of rotation of the r around the
ZR axis, β (roll) the YR axis and γ (pitch) the XR axis.
To determine the coordinates of the points defining the robot
on the I their coordinates in R are multiplied by a rotation
matrix and then added the position of the R relative to the
I. The idea is, for every point of the map, to determine the
pose with which the robot would adopt if it were to rest on
the surface at that same point. The target is to minimize the
z coordinate of the robot’s center of mass, in relation to the
I but with the restriction that none of the points that define
the robot can pass through the surface. The vehicle also has
pose limitations, it cannot be upside down, cannot climb hills
steeper than γmax or roll more than βmax 2 so its roll and pitch
angle absolute maximums were set at that same value. These
limitations are translated as constrictions when inserted in an
optimization problem, and so, in order to solve this specific
problem one can resort to a constrained (multivariate) problem
solving routine.
In order to introduce constraints in the optimization function
it is necessary to formulate them as inequalities, functions
whose values are always positive which in this case means,
for example, that the z coordinate of each point defining the
robot minus the z coordinate of the point of the map directly
below must be positive, and this condition is respected by the
algorithm. There are n+ 2 constraints to this simple problem,
one per each point that defines the robot, one for the roll and
another for pitch angle limitations. More constrictions can and
will be added in order to better simulate the hull of the vehicle
more accurately depicting it. The task of determining the
robot’s pose can then be defined as a constrained optimization
problem in the following way:

2the value stipulated for the simulation was γmax = βmax = 45◦

2014 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
May 14-15, Espinho, Portugal

23

Minimize: zcm,I
Variables: zcm,I , β, γ
Subject to: ∀j(zj,I −mapxj,I ,yj,I ≥ 0)

π
4 − |β| ≥ 0
π
4 − |γ| ≥ 0

(2)

The optimization function minimizes the value of zcm,I by
manipulation of the three variables it has access to: (zcm,I , β
and γ). This means the closer the position of the robot before
the optimization is to its final position after the optimization
problem is solved, the faster the minimization is, as less itera-
tions are needed to determine the minimum zcm,I . To improve
the computational performance of the numerical optimization
we provide a warm start obtained in the following way. It is
determined by approximating a plane to the n−1 points that are
the projection of the points defining the vehicle, on the surface.
In this way we obtain an approximation of the pose. The next
step is to rotate the robot’s points to the approximated pose
and then translate vertically to the hight where only one point
touches the surface, usually the point that is above the highest
point of the surface bellow it. The constrictions determine that
the robot’s absolute pitch (γ) and roll (β) angles don’t reach
values greater than γmax and βmax. Another limitation is that
none of the z coordinates of the points defining the robot
(zj,I) can be lower than the elevation of the map directly
below (mapxj,I ,yj,I) thus zj,I − mapxj,I ,yj,I must be grater
than 0. The results are as expected, the robot touches the
ground with three or more of the n points depending on the
surface roughness. All those are valid positions, but if the
function returns that only two or less points are touching the
surface that means that the vehicle cannot be on that position
because of pose limitations introduced as constraints and that
same position on the map is considered an obstacle. It is now
possible to build a cost map where we use the pose angles
(pitch and roll) provided by the previous routine to determine
the horizontal deviation of the robot’s plane . For every cell
of the map, i.e., every time the optimization function returns a
pose, this value is processed in the following way: we create a
normalized vector v1 with the coordinate x = 0 which makes
a β degree angle with the Y axis and normalized vector v2
with the coordinate y = 0 which makes a γ degree angle with
the X axis. The vectors are added and the resulting vector’s
angle with the Z axis is stored in the equivalent cell of the cost
map. If we were to keep the absolute value of the resulting
angle, we would be admitting the cost of moving uphill or
downhill on a slope with equal inclination is the same. It is
intuitive to say the robot will struggle more going uphill then
going downhill and this is why we kept the information about
the sign of γ. We now have the information about where the
map, is up or downhill and how inclined the surface is, we
have also determined obstacles to the passage of the robot.

B. Path Planning

The path planning determines the best path, in the given
conditions, between the position of the robot and the goal
point. Rather than determining an explicit path we create a
potential field and then we are able to draw a path to the
goal from any position on the map, simply by following the
negative gradient of the field. The potential field cannot have
local minima and ensures the optimal path to the goal position

avoiding obstacles or difficult patches of terrain. This field
is obtained by considering, for each point x within the free
region Ω ⊂ R2 of the map, the minimal time it takes a wave
to propagate from the goal location to the current position. The
computation of this time for each point x in the free region Ω
results in a field u(x). It is well known that the path resulting
from solving the ODE ẋ = −∇u(x) from an initial x(0) = x0
results in the optimal path from x0 to the initial wave front. The
wave front Γ ⊂ Ω is set around the goal point. The propagation
of a wave, given an initial wave front Γ ⊂ Ω, can be modeled
by the Eikonal equation

|∇u(x)| = F (x)u(Γ) = 0 (3)

where x ∈ Ω is the free space of robot position, Γ ⊂ Ω
the initial level set, and F (x) is a cost function. This cost
function allows the specification, in an anisotropical way, that
is, in a directionally independent way, the speed of the wave
propagation. In particular, for a point x, the wave propaga-
tion speed is 1/F (x). This cost allows the resulting path to
maintain a certain clearance to the mapped obstacles, since the
optimal path tends to keep away from areas with higher costs.
To solve this equation we use the FMM algorithm, introduced
by J. A. Sethian [8], given a discretization of the map in a
grid, we supply to this method the region of free space Γ,
the cost function F (x), and the goal point, and in return
we obtain a numerical approximation to the solution of the
Eikonal equation on the grid points. The cost function F (x) is
obtained as described in the previous subsection. The FMM is
a numerical algorithm that approximates the viscosity solution
of the Eikonal Eq.3 which describes the moving boundary of
a disturbance and can describe light propagation in a non-
homogeneous medium. It is related with Maxwell’s equations
of electromagnetics, and provides a link between physical
(wave) optics and geometric (ray) optics. Constant values of
the Eikonal equation represent surfaces of constant phase, i.e.
wave fronts and the normals to these surfaces are rays. The
equation provides a mean of tracing a ray in a medium of
varying index of refraction. The FMM is designed for problems
in which the speed function never changes sign meaning there
are no reflections, diffractions or interferences. Inputing the
cost function previously created as a speed function in the
FMM we can now calculate the propagation time for every
cell of the map. The gradient vector field of the resulting time
function can be compared to a energy potential field. It is
lowest at the origin of the propagating wave (the goal) and
highest at the point of the map most difficult to pass through
or stand on, by the robot.

IV. PRELIMINARY RESULTS

Every result presented in this paper was obtained with
the use of a single process Python algorithm, run on an
Intel R© CoreTM i7-2630QM CPU @ 2.00 GHz processor. The
simulation is run on three test scenarios i) a representation of a
mountain area generated by software, the surface is rendered
from a gray scale image Fig.3 that represents an elevation
map, on ii) an image of irregular polygons at different heights
emulating debris and iii) a RoboCup Robot Rescue arena3. The

3This elevation map is derived from running octomap
in simulation over the RoboCup Robot Rescue arena,
http://www.isd.mel.nist.gov/projects/USAR/arenas.htm

2014 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
May 14-15, Espinho, Portugal

24

resulting surfaces are a representation of a rough terrain area as
shown in Fig.4 and a debris like structure in Fig.6. The maps
can be scale up/down for our convenience, so that the scale of
the robot is not too small. The first map is 248x248 in a total
of 61504 of cells to be processed, the second is 491x491 in a
total of 241081 cells and the last has a total of 117572 cells.

Fig. 3. Gray scale image from where the testing surface was rendered. It is
an elevation map generated by the Terragen software available for anyone to
use

The simulated vehicle, a raw approximation to the tracked
wheel robot RAPOSA-NG Fig.1, is defined by 6 contact
points with the ground, 3 per each simulated track (one at
its beginning another at the end and one at the middle point),
and one other point that defines its center of mass as seen in
Fig.2. More points can easily be added, for better accuracy,
however at the expense of a larger computational burden.
The process explained before was applied to the already
mentioned surfaces Fig.4 and 6. The optimization function
used is available from the scipy package from python, it uses
the SLSQP (Sequential Least SQuares Programming) method
to minimize our function of a single variable (zcm,I) with
a combination of bounds and inequality constraints (Eq.2),
originally implemented by Dieter Kraft [9]. Processing the
surface from Fig.4 we obtain the equivalent to a energy
potential information that can be depicted as seen in Fig.5.
Fig.4 shows the surface as it exists, in shape, but it is scaled
down so that the highest peak is not bigger than the robot’s
length. Fig.5 shows the same physical space as the later but it
is already processed to allow path planning to occur. Notice
that, the surface is as if tilted to the right, this is because the
goal was set on the right side of the map and it is the point
with the lowest energy potential. The represented peaks are
softer than the Fig.4 and possibly not even in the same place
because they do not represent elevation but a higher difficulty
for the autonomous vehicle. The same reasoning applies to the
maps in Fig.6 and 8 and resulting energy potential in Fig.7 and
9 respectfully. The highest peaks seen in Fig.7 are representing
obstacles, points in space where the robot is incapable to
travel trough. The cost at those points is so high (the peaks
are scaled down to better visualize the results), the path will
never include them. Fig.8 represents a complex environment

Fig. 4. Rendering of the gray scale elevation map

Fig. 5. Energy potential representation of the processed Fig.4 with the goal
set at (220, 215)

and with a variety of obstacles as walls and steps. Taking the
world’s representation as in Fig.5, 7 or 9 the optimal path
to the goal corresponds to the gradient descent from a given
initial position.
From the representation of the potential we run the FMM to
obtain the optimal path, for the given cost map Fig.10 and
Fig.11. The path represented in Fig.10 was obtained from the
representation of the world depicted in Fig.5 and Fig.11 from
Fig.7. The maps show isochrone lines, which draw same travel
time distances to the goal, that represent same travel cost to the
goal from the lowest cost in dark blue to the highest in red. The
path planning algorithm chooses the minimal total cost route
based on the gradient of the lines. With this map representation
we can easily obtain the robot’s orientation and speed making
it theoretically easy to develop a controller for the vehicle. The
map in Fig.4 takes about 0.007 seconds/cell to be processed
(extracting the world characteristics) but there is still room
for speed improvement as we are still developing concepts.
To compute the entire path shown in Fig.10 it takes 0.0066
s, which means that after processing the environment the
vehicle can draw its own path in real time. The other scenario,
depicted in Fig.6 is processed in 0.0045 seconds/cell and the
computations of the path planning represented in Fig.11 took
a total of 0.17 seconds.

2014 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
May 14-15, Espinho, Portugal

25

Fig. 6. Rendering of an environment simulating debris, which includes
discontinuities

Fig. 7. Energy potential representation of the processed Fig.6 with the goal
set at (450, 50)

Fig. 8. Grey scale image of an elevation map of a real environment from
NIST

Fig. 9. Energy potential representation of the processed Fig.8 with the goal
set at (184, 203) which is the top of a simulated flight of stairs

Fig. 10. Path planning over the representation of the isochrone lines of the
processed surface represented in Fig.4

Fig. 11. Path planning over the representation of the isochrone lines of the
processed surface represented in Fig.6

Fig. 12. Path planning over the representation of the isochrone lines of the
processed surface represented in Fig.8

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a method for path planning for
field robots on a rough terrain. The method is based on a
gradient descend over a potential field. This potential field
is obtained using FMM over a cost map. This cost map is
computed by considering the robot attitude when placed at
each point of the grid. Preliminary results are promising, as
they show feasible paths over a reference map. As future work
we intend to address the computational efficiency, since not
all points of the grid need to be computed. We also intend to
perform experiments with a real robot, the RAPOSA-NG.

2014 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
May 14-15, Espinho, Portugal

26

REFERENCES

[1] S. Garrido, L. Moreno, D. Blanco, and F. Martin, “Smooth path planning
for non-holonomic robots using fast marching,” in Mechatronics, 2009.
ICM 2009. IEEE International Conference on, April 2009, pp. 1–6.

[2] J. A. Sethian, “Fast marching methods,” SIAM Review, vol. 41, no. 2,
pp. 199–235, 1999.

[3] C. Marques, J. Cristovão, P. Alvito, P. Lima, J. Frazão, M. I. Ribeiro,
and R. Ventura, “A search and rescue robot with tele-operated tether
docking system,” Industrial Robot, vol. 34, no. 4, pp. 332–338, 2007.

[4] B. Siciliano and O. Khatib, Springer Handbook of Robotics, ser. Gale
virtual reference library. Springer, 2008.

[5] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[6] M. Tarokh, Z. Shiller, and S. Hayati, “A comparison of two traversability

based path planners for planetary rovers,” Proc. i-SAIRAS99, pp. 151–
157, 1999.

[7] S. Garrido, M. Malfaz, and D. Blanco, “Application of the fast march-
ing method for outdoor motion planning in robotics,” Robotics and
Autonomous Systems, vol. 61, no. 2, pp. 106–114, 2013.

[8] J. A. Sethian, “A fast marching level set method for monotonically
advancing fronts,” Proceedings of the National Academy of Sciences,
vol. 93, no. 4, pp. 1591–1595, 1996.

[9] D. Kraft, A software package for sequential quadratic programming.
DFVLR Obersfaffeuhofen, Germany, 1988.

[10] R. Siegwart, I. Nourbakhsh, and D. Scaramuzza, Introduction to Au-
tonomous Mobile Robots, ser. Intelligent robotics and autonomous
agents. MIT Press, 2011.

[11] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, ser. Intelli-
gent robotics and autonomous agents. MIT Press, 2005.

[12] C. Castejón, B. L. Boada, D. Blanco, and L. Moreno, “Traversable
region modeling for outdoor navigation,” Journal of Intelligent and
Robotic Systems, vol. 43, no. 2-4, pp. 175–216, 2005.

[13] G. A. Pereira, L. C. Pimenta, A. R. Fonseca, L. D. Q. Corrêa, R. C.
Mesquita, L. Chaimowicz, D. S. De Almeida, and M. F. Campos,
“Robot navigation in multi-terrain outdoor environments,” The Inter-
national Journal of Robotics Research, vol. 28, no. 6, pp. 685–700,
2009.

[14] L. Ojeda, J. Borenstein, G. Witus, and R. Karlsen, “Terrain characteriza-
tion and classification with a mobile robot,” Journal of Field Robotics,
vol. 23, no. 2, pp. 103–122, 2006.

[15] J. Liang, “A path planning algorithm of mobile robot in known 3d
environment,” Procedia Engineering, vol. 15, no. 0, pp. 157 – 162,
2011, {CEIS} 2011.

[16] M. Tarokh, “Hybrid intelligent path planning for articulated rovers in
rough terrain,” Fuzzy Sets and Systems, vol. 159, no. 21, pp. 2927 –
2937, 2008, selected Papers from {NAFIPS} 2006 2006 Annual Con-
ference of the North American Fuzzy Information Processing Society.

2014 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC)
May 14-15, Espinho, Portugal

27

