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Abstract

Adaptive control of plants whose sensor measure-
ments are corrupted by outliers is considered. Out-
liers are large deviations of the signal being mea-
sured, only occurring in a few percent of the observa-
tions. For adaptive controllers relying on an implicit
Gaussian assumption, both the identification and the
underlying control law are yielded by the minimiza-
tion of quadratic losses. Therefore, although rare,
outliers heavily degrade performance due to their
large amplitude. This problem is tackled in this pa-
per. Methods for outlier removal which are suitable
for adaptive control applications are reviewed and il-
lustrated through an application to position control
in the ball and beam plant.1

1 Introduction.

A crucial factor for the success of feedback control
is the availability of a reliable measure, within the
bandwidth of the reference to track, of the variable
to be controlled. For feedforward control a similar

1The work of the first and third authors has been performed
within the projectFATOL – POSI/SRI/39643/2001. The work
was also performed within the POSI program of the 3rd EC
Framework. The authors thank prof. Mário Figueiredo of IST
for calling their attention to reference [5].

fact also holds, concerning the measure of the dis-
turbance to reject. Since sensors introduce noise, a
filtering of some kind is needed in order to prevent
unnecessary errors (in particular those falling out-
side the servo bandwidth) to propagate to control de-
cisions, causing these to be erroneous. For this sake,
a filter processing sensor measures is inserted, acting
as an estimator of the true value of the variable.

In most cases a Gaussian noise assumption is either
explicitly or implicitly made and the estimate is a
mean of the observations. This corresponds to mini-
mize an average quadratic loss, given by

J(x̂) = E[(x− x̂)2] (1)

wherex is the variable of interest and̂x is its esti-
mate.

Recall the statistical concept ofasymptotic relative
efficiencyof an estimator [18]. This is defined as the
ratio between the lowest achievable variance for the
estimated parameters (the Cramer-Rao bound) and
the actual variance provided by the estimator when
a large data sample is considered. The efficiency de-
pends on the noise model. Under Gaussian noise
the mean estimator has an asymptotic efficiency of
1, therefore achieving the optimum value, while the
median estimator efficiency is only 0.637. If the
noise is Gaussian, the mean should thus be preferred.

The situation is however different if the noise is non-
Gaussian, in particular if it presents outliers. Out-
liers [12] are large deviations of the signal being



measured, only occurring in a few percent of the ob-
served samples, but enough probable not to be ex-
plained by the tails of the Gaussian distribution. Out-
liers are due to unknown causes and they can hardly,
if at all, be modelled from first principles.

Although rare in time, due to their large amplitude,
outliers heavily contaminate the output of noise re-
moving filters designed on the basis of a Gaussian
assumption. As a consequence, the performance of
an adaptive controller may be seriously degraded be-
cause of two factors:

• First, the outliers are seen as fake disturbances;
while trying to counteract them, the controller
actually induces undesirable changes in the
plant output.

• Furthermore, the plant model identifier block
on which adaptation relies is mislead (if,e. g.,
based on recursive least squares, causing con-
troller gains to be severely detuned. This may
even lead to an unstable or highly oscillating
closed-loop.

The point is that, due to its very high amplitude, an
outlier will have a major influence on the quadratic
criteria (1) because the square will amplify it [12].

Since outliers are due to unknown causes and sel-
dom occur, the strategy followed in this paper is to
remove them from sensor data before processing this
signal by the controller.

Outlier detection and removal is a major issue in
statistics [6, 17]. A robust method, with respect to
deviations from normality, is defined as one which is
nearly as efficient as the classical procedure (based
on sample mean and variance) for a normal dis-
tribution, but is considerably more efficient over-
all for non-normal distributions [17]. While there
is a rich bibliography on robust methods for appli-
cations such as time series [16, 1, 3, 8], computer
vision [11] or system identification [?], robustness
with respect to outliers has apparently not received
much attention in the control literature. Neverthe-
less, the subject is of importance for plants for which
reliable sensors are hard to build. Internal combus-
tion motors and biomedic systems provide examples.
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Figure 1: Model of measurement with outliers.

[15] describe how the use of a multiple model based
Kalman-Bucy filter may be employed for monitoring
(and ultimately making decisions) of patient condi-
tion after renal transplants using measurements cor-
rupted by outliers. Other examples are ill defined
process variables obtained from indirect measure-
ments. In this paper, the ball and beam laboratory
pilot plant is taken as an example in which outliers
play a major role.

The contributions of this paper are the following:
First, by means of an example (position control
of the ball and beam plant) the difficulties facing
adaptive algorithms relying on quadratic criteria are
demonstrated. Methods which are appropriate for
on-line outlier removal in adaptive control applica-
tions are then considered. One of these methods,
which amounts to the inclusion of a median filter ap-
plied to an over-sampled signal, is then tested with
an adaptive controller on the ball and beam plant.
It is shown that, without the outlier removal filter,
the controller gains converge to values leading to an
highly oscillating closed-loop.

2 On-line sensor outlier removal.

Two different approaches for the design of outlier
removal algorithms are considered. The first relies
on Bayes inference while the second is based on the
modification of the quadratic loss function of (1).

2.1 Bayes inference approach.

One possibility for modelling outliers is to assume
that the observations (sensor measures) are made ac-
cording to the model represented in fig. 1.



Lety(t) denote the observation made at discrete time
t and x(t) be the corresponding true value of the
variable to measure. It is assumed thatxmin ≤
x(t) ≤ xmax.

Under hypothesisHo, occurring with probabilitypo,
close to1, the observationy(t) is equal to the value
of the variable to measure,x(t), added by zero mean
white Gaussian noise of (constant) varianceσ2

e , de-
notede(t):

y(t) = x(t) + e(t) (2)

Under hypothesisH1, which occurs with probabil-
ity 1 − po, close to zero, an outlier occurs. In this
case, the observation is no longer related to the vari-
able being measured but, instead, is given by a ran-
dom variableη(t) with a probability density function
(p.d.f.) which is uniform in the range of measure-
ment, fromxmin to xmax.

According to a Bayesian approach, in order to de-
tect that a given observation is actually an outlier,
the probability of both hypothesis given the observa-
tions is computed. ForHo this is

P (Ho|y(t), Y t−1) = C · p(y(t)|Ho, Y t−1)po (3)

whereY t−1 is the set of observations up tot− 1 and
C is a normalizing constant. Given the model of the
observations whenHo holds, (3) reads

P (Ho|y(t), Y t−1) = C
1

σe

√
2π

e
− (y(t)−x(t))2

2σ2
e po (4)

For computing (4), the value ofx(t) is needed. Since
this is unknown, it is replaced by a convenient esti-
mate.

ForH1,

P (H1|y(t), Y t−1) = C
1

xmax − xmin

(1− po) (5)

with C the same constant as in (4).

Both probabilities P (Ho|y(t), Y t−1) and
P (H1|y(t), Y t−1) are then compared. If

P (H1|y(t), Y t−1)

P (Ho|y(t), Y t−1)
> 1 (6)

it is decided that an outlier has occurred.
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Figure 2: Probability density function of the obser-
vations in the presence of outliers.

Fig. 2 provides a graphic explanation, showing the
p.d.f. of the last observation given each of both hy-
pothesis. If the observationy(t) falls at, say, pointA,
the length of the segment[A, A′] is smaller than the
length of[A′′, A′′′] andHo is selected. The opposite
happens if the observation falls at pointB, in which
H1 (existence of an outlier) is decided.

If it is decided that an outlier has occurred, the ob-
servationy(t) is discarded and replaced by a forecast
x̂(t) of the true valuex(t), made from previous ob-
servations. For computing this forecast, several pos-
sibilities may be envisaged. If a model of the mech-
anism producingx(t) is available, Kalman-Bucy fil-
tering [9] (or equivalent based on i/o models) might
be used. Here, since the interest is on adaptive con-
trol, no model is assumed available. The choice is
then to computêx(t) by linear extrapolation of the
two previous estimates, yielding

x̂(t) = 2x̂(t− 1)− x̂(t− 2) (7)

Another possibility in this line would have been to
ressort to anα− β filter [7].

2.2 Non-quadratic loss criteria.

An alternative approach is to assume that (2) always
holds but that the varianceσ2

e of the noisee is not
constant but has fluctuations which cause the outliers
[17, 5]. In particular the approach of [5], leading to
a modification of the loss (1) is considered.

Following [5], write the likelihood function

p(y|x) =

√
β

π
e−β(y−x)2 (8)



with

β
4
=

1

σ2
e

(9)

Small values ofβ (corresponding to noise with a
large variation) will model the outliers, while large
values model data which may be processed by a filter
designed using a quadratic criterion. Modelσe, and
thereforeβ, as a random variable with p.d.f.p(β)
and such thatp(β) = 0 for β = 0. In this setting, (8)
actually representsp(y|x, β), the actual likelihood
function being

p∗(y|x) =

∫ ∞

0

p(y|x, β)p(β)dβ (10)

or

p∗(y|x) =
1√
π

∫ ∞

o

e−β(y−x)2
√

βp(β)dβ (11)

Given an observationy, the MAP estimate [18] ofx
is obtained by maximizingp∗(y|x) with respect tox.
Taking the negative of its logarithm, this reads (for
just one observation, compare with (1):

x̂ = min
x

V (y − x) (12)

with theeffective potential[5] given by

V (z) = −ln

∫ ∞

0

e−βz2
√

βp(β)dβ (13)

If the noise variance has a precise value,p(β) is a
Dyrac delta function at that value and the quadratic
criterion (1) is recovered. If, instead,p(β) is such
that it models the occurrence of outliers, modifica-
tions of the loss function (1) are yielded, leading to
robust estimation algorithms. The two following ex-
amples, provided in [5], are relevant for the work to
follow.

2.2.1 Two different variances.

Assume first that the inverse of the variance,β,
may take only two different values,β1 andβ2. Let
β1 > β2 and assume thatβ2 is very small (i. e. the
corresponding value of the varianceσe,2 = 1/β2 is
very large) such as to model the existence of outliers.
Furthermore, letβ2 occur with a small probabilityε.
The p.d.f. of the inverse of variance is therefore

p(β) = (1− ε)δ(β − β1) + εδ(β − β2) (14)
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Figure 3: The loss corresponding to a p.d.f. of the
noise variance with two values (according to [5]).

Although different, this model has a close relation-
ship with the approach followed in section 2.1. In-
deed, instead of a uniform p.d.f. underH1 one could
also assume a Gaussian p.d.f. with a very large vari-
ance. Due to the high variability of the resulting sig-
nal, adding the true signal would not change much
the result in practical terms.

It is shown in [5] that the effective potential (13) be-
comes in the case of (14), apart from an unimportant
constant term:

V (z) = β1z
2 − ln[1 +

ε

1− ε

√
β2

β1

ez2(β1−β2)] (15)

This function is plotted in fig. 3 forε = 0.1, β1 = 4
and two values ofβ2, β2 = 0.1 andβ2 = 0.01. The
resulting effective potential has clearly two zones:
For small errors it behaves like a quadratic potential.
Far from the origin the behaviour is much flat so that
the large amplitude of outliers has not much weight
on the criterion.

2.2.2 The modulus loss.

Another possibility is to model the noise standard
deviation by

p(σe) = 2σee
−σ2

e
4 (16)

A plot of this function is seen in fig. 4. In this ex-
ample, the most likely value of the variance is close
to 1.5. However, higher values ofσe may also be
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Figure 4: Probability density function of the noise
variance leading to a modulus criterion (according
to [5]).

produced, although with a much lower likelihood,
thereby modeling outliers. For this situation, it is
shown in [5] that the corresponding effective poten-
tial is the modulus of the error:

V (x− x̂) = |x− x̂| (17)

This is a classical loss function [18], introduced
heuristically in order to prevent large deviations
from distorting the estimate. The result of [5] pro-
vides a link with a probabilistic model of the noise.

As is well known, the optimal estimate correspond-
ing to (17) is the median of the signal to estimate
[18].

2.3 Comparison.

As is apparent from the previous discussion, al-
though developed from different points of view, the
approaches for outlier removal considered have a
number of similarities. The key issue is that out-
liers are modelled in both cases by ”long tails” of
a pdf. Furthermore, in both cases the methods end
up by relying on the replacement of a quadratic loss
by a function which yields smaller values for high
amplitudes of the independent variable.

Both figs. 5 and 6 show (above) a low frequency
sinusoid corrupted with additive gaussian noise and
outliers generated according to the model of fig. 1,
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Figure 5: A sinusoid corrupted with gaussian noise
and outliers (above) and its filtering with outliers re-
moved by Bayesian inference.

and (below) the result of outliers suppressing with
the Bayesian inference algorithm described in sec-
tion 2.1 (fig. 5) and with a median filter (fig. 6).

Both approaches are much equivalent in practice,
with the median filter being a bit simpler to imple-
ment. It should be remarked that, if the ”true” signal
is lost for significant periods of time, the algorithm
relying on Bayes inference may be used with advan-
tage. In this case the procedure described in [9] may
be employed, but a model better then just (7) is to be
used.

When aiming at control applications, it should be
kept in mind that both classes of methods introduce
delay in the filtered signal. In order to prevent rela-
tive stability degradation of the control loop, the sig-
nal to filter should be sampled at a rate high enough
to allow recovering by decimation. In this respect,
it is also convenient to resort to an adaptive control
algorithm which is robust with respect to uncertainty
in delay.

3 The Ball and Beam Plant.

The ball and beam plant is a classic benchmark [2].
It consists (fig. 7) of a rail (the ”beam”) over which
a small metallic sphere (the ”ball”) is to be equili-
brated. The angle of the rail with respect to the hor-
izontal is changed by an electric DC motor, whose
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Figure 6: A sinusoid corrupted with gaussian noise
and outliers (above) and its filtering with a median
filter.
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Figure 7: The ball and beam system.

rotor tension is the manipulated variable. The posi-
tion y of the ball, as measured along the beam, is the
plant output. This position is sensed by measuring
the resistance of two resistive wires which are short-
cut by the metallic ball. Outliers arise because of
contact irregularities when the ball rotates along the
wires.

In a first approximation the movement of the ball
may be modelled by a double integrator in series
with a sine function nonlinearity [2]. This basic
model may be improved by taking into account the
motor dynamics and changes in the moment of iner-
tia due to the ball movement.

4 Adaptive Control.

Although the outlier removal methods described can
be coupled with a wide variety of control algorithms,
it is convenient to use a controller which is insen-
sitive to plant delay. Furthermore, considering the
difficulties associated with the ball and beam plant,
the controller chosen should be able to tackle issues
such as time varying and unmodelled plant dynamics
and low stability margins.

Bearing these difficulties in mind, the MUSMAR
control algorithm [10] was selected. This algorithm
has been used with advantage in a number of indus-
trial processes such as superheated steam tempera-
ture control in an industrial boiler [14], oil temper-
ature control in a distributed collector solar field [4]
and rate of cooling control in arc welding [13]. A
key issue is the fact that MUSMAR relies on mul-
tiple identifiers, the redundancy thereby introduced
being the key for its robustness properties [10].

4.1 The MUSMAR algorithm.

MUSMAR relies on the minimization of the multi-
step quadratic cost function:

JT = E

[
1

T

T−1∑
i=0

(y(t + i + 1)− r)2 + ρ.u2(t + i) | Ot

]

(18)
whereE[ ·|Ot] denotes the mean conditioned on the
σ−algebraOt induced by the observations made up
to time t, T is an integer hereafter referred as the
”prediction horizon” andρ ≥ 0 is a penalty in the
manipulated variable effort. The variablesu andy
denote the plant manipulated variable and output and
r denotes the reference to track.

For the sake of minimizing (18), the plant is de-
scribed by the set of predictive models:

ŷ(t + i | t) = θiu(t) + Ψ′
is(t)

û(t + i− 1 | t) = µi−1u(t) + Φ′
i−1s(t)

i = 1, ..., T
(19)

whereŷ(t+i | t) andû(t+i−1 | t) are predictors in
least squares sense givenOt, of, respectivelyy(t+ i)
andu(t+i−1), ands(t) is the so called pseudo-state



defined by:

s(t) = [y(t) ... y(t− na + 1) u(t− 1) ... u(t− nb) r(t)]′

(20)
wherena and nb are integers to be selected. The
vectors(t) is called ”pseudo-state” [10] because, al-
though it is not a state, it is a sufficient statistic for
computing the control, even in the presence of cor-
related noise. The entries ofs(t) define the structure
of the controller.

The coefficientsθi, µi−1 and vectorsΨi, Φi−1 in
equation (19) are parameters to be online estimated
from measured plant input/output data by using Re-
cursive Least Squares (RLS). For that sake, the fol-
lowing equations are used:

Θ̂(k) = Θ̂(k−1)+K(k)[y(k)− Θ̂(k−1)′ϕ(k−1)]

K(k) =
P (k − 1)ϕ(k − 1)

1 + ϕ′(k − 1)P (k − 1)ϕ(k − 1)[1− α(k)]

P (k) = [I −K(k)ϕ′(k − 1)(1− α(k))]P (k − 1)

Here,Θ̂ represents the vector of parameter estimates
given, for each predictorj by

Θ̂ = [θj ψ′j]
′

and ϕ(k) represents the regressor, common to all
predictors, given by

ϕ(k) = [u(k) s′(k)]′

The amount of information to forget in the direction
of the current regressor,ϕ(k), is given by

α(k) = 1− λ +
1− λ

ϕ′(k − 1)P (k − 1)ϕ(k − 1)

whereλ is the directional forgetting factor, a number
between0 and1.

For eachi, i = 1, . . . , T , the above set of param-
eters describes the dynamic behavior of the process
output and manipulated variable fromt to t + i, as-
suming a constant feedback of the pseudo-state over
the prediction horizon. Minimization of (18) assum-
ing (19) yields the control law:

u(t) = F ′s(t) + η(t) (21)
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Figure 8: Adaptive control of the ball and beam plant
in the presence of outliers (ball position).

with the vector of optimal gains given by:

F = −

T∑
i=1

θiΨi + ρ
T−1∑
i=1

µiΦi

T∑
i=1

θ2
i + ρ

(
1 +

T−1∑
i=1

µ2
i

) (22)

and{η} a low power (with respect to the power of
{e}) dither noise injected in order to fulfil a persis-
tency of excitation condition.

4.2 Simulation results.

Figs. 8 and 9 show the result obtained when control-
ling the ball and beam plant with MUSMAR in the
presence of sensor outliers. Fig. 8 shows the plant
output while tracking a filtered square wave refer-
ence and fig. 9 plots the controller gains.

In order to prevent start-up adaptation transients, the
controller gains have been initialized at values which
lead to good performance. However, as seen in fig.
9, outliers force the RLS identifiers to be mislead
and the gains become severely detuned. As a conse-
quence a major oscillation arises in the output (8).

If, instead, a median filter is used to remove the out-
liers from the position signal fed to MUSMAR, the
gains are kept at the correct values (fig. 11) and the
output follows the reference 10).
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Figure 9: Adaptive control of the ball and beam plant
in the presence of outliers (controller gains).

0 20 40 60 80 100 120 140 160
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

re
f(

t)
, y

(t
)

t

Figure 10: Adaptive control of the ball and beam
plant with outliers removed by a median filter (ball
position).

5 Conclusion.

The paper addressed the problem of controlling
plants whose sensor measurements are corrupted by
outliers. It has been shown that outliers may seri-
ously disturb adaptive controllers but that this may
be overcome by including an outlier removing fil-
ter. It should be remarked that the work reported
in the paper suggests another approach for tackling
outliers,viz. to redesign the adaptive controller with
a ”robustifying” modification on the cost. This is
achieved by replacing the quadratic function in the
cost by an approximation of the function defined in
fig. 3 made of piecewise quadratic functions. This is
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Figure 11: Adaptive control of the ball and beam
plant with outliers removed by a median filter (con-
troller gains).

considered in a different paper.
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