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Abstract

The detection and classification of moving objects
is a key task in many control systems. This paper
presents a solution for this problem based on a laser
range scanner. The method can be summarized as
follows. A set of 3D data points on the object sur-
face is obtained using the scanner. A small number
of features is then computed to represent the object
boundary. In fact, three alternative features are con-
sidered. Classification algorithms are then designed
and evaluated using real data. The experimental tests
show that the proposed techniques allow a robust
classification of moving objects based on range in-
formation.

1 Introduction

This paper addresses the detection and classification
of 3D moving objects. This problem has a variety of
applications e.g., in the context of quality control in
industry or for the classification of vehicles in high-
ways. For example, no verification of the vehicle
shape and volume is currently performed by the au-
tomatic tax collector system ”Via Verde” used in the
Portuguese highways.

The solution proposed in this paper is based on a
laser range scanner which is able to measure the lo-
cation of 3D data points on the object surface. In
a first step the output of the laser scanner is pre-

processed to separate the object measurements from
the background and to compute the 3D coordinates
of the points on the object surface. Then, a small
set of features is computed to characterize the ob-
ject shape. Three sets of features are considered
in this paper: volume/length, the object profile and
the approximation of the object surface by a set of
planes whose parameters are used for classification.
A modified EM algorithm is used on the planar sur-
face extraction, this being the main novelty of this
paper. The feature vector is then used to classify
the object using statistical and syntactic classifica-
tion methods.

The paper is organized as follows. Section 2 presents
the experimental setup and discusses the object de-
tection procedure. In Section 3 the three types of
features are described. Object classification and the
experimental results with 3D moving objects are
shown in Section 4. Section 5 concludes the paper
and presents directions for further work.

2 Data Acquisition and Object Detec-
tion

This section describes the experimental setup used
for the experiments, the object detection procedure
from the acquired range data and the data correction
to account for the object velocity.

The primary source of data is a laser range scanner
from SICK OPTICS (LMS-200 indoor version) con-
figured with a resolution of 0.5° over 180°, as rep-
resented in Figure 1. For each scan, the acquired



data is the set {(r;,6;),0° < 6; < 180°} where r;
is the range measurement corresponding to the scan-
ning angle ;. With a high speed serial port (MOXA
Card - 500kbaud), and using the protocol RS-422,
acquisiton is done at a rate of 38 scans per second,
with each scan containing 361 range measurements.
This corresponds to a time duration of 26 msec for a
scan.

The laser scanner is mounted in a fixed structure,
pointing down and oriented in such a way that the
plane spanned by the scan is vertical. Two frames are
used along the work: the laser frame {X',Y", Z'}
and the world frame { X, Y, Z} as represented in Fig-
ure 2.

Figure 1: Sick Laser Range Scanner - LMS 200
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Figure 2: Laser frame and world frame
The shape of the acquired range data results from

the crossing of the laser scanning plane by a mov-
ing 3D object and is a function of the object veloc-

ity. To relate successive range profiles from a 3D
moving object it is necessary to have an estimate
of the object velocity, ©. This is achieved by two
infra-red sensors (S7, S>) and the corresponding re-
flector mirrors (R;, R,) installed in the geometric
configuration represented in Figure 3 where d is the
known distance between them. The velocity estima-
tion is based on a time measurement. A PIC mi-
crocontroller (PIC16F84) measures the time elapsed
between the obstruction of the two beams, uses this
interval and the value of d to estimate the object’s
velocity and transmits its value to a PC via the par-
allel port. Furthermore, with the measurement of the
time of obstruction of each beam (At;,7 = 1,2) it
is possible to have two estimates (¢;) of the object’s
length:
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Figure 3: Velocity estimation

In the absence of objects, the laser scanner pro-
file corresponds to the background environment and,
apart from statistical variations, does not change.
When a vehicle moves along, the range image is
modified according to the object characteristics (e.g.,
shape). The object detection results from the com-
parison of the successively acquired range profiles
with that of the background, previously recorded in
the absence of any object. The comparison criteria
Is based on a statistical characterization of the back-
ground range data using, for each laser scanning an-



gle, #;, the mean p; and the standard deviation o;
of background measurements experimentally eval-
uated. This statistical characterization takes place
only once, before the objects move through.

A range measurement r;, obtained for the scanning
angle 0;, is considered to belong to the background
when it is within a 60; neighborhood of ;4;. This rela-
tively high threshold was chosen because the points
in the limits of the range image have a very large
variation. On the contrary, a point measurement is
considered to belong to an object if r; < p; — 603,
i.e., it does not belong to the background and lies be-
tween the sensor device and the background. If none
of these conditions is satisfied, the point is consid-
ered to be an outlier and discarded. This object de-
tection procedure is repeated for each data profile.

Figure 4 displays the result of the object detection
procedure for a single scan. Data was converted
from the polar coordinated frame associated with the
sensing device to the frame {X',Y"}. The raw data
corresponding to the backgroung is represented by
the dot points while the points of the object are dis-
played with diamond marks. The almost rectangu-
lar shape of the background results from the lateral
columns of the metalic support where the laser is
mounted (see Figure 2).
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Figure 4: Detection of object and background for a
single scan

The range data collected in consecutive laser scans
has a spatial distribution that corresponds to the
shape of the object that moves below the scanner.
This shape, in particular along the Z' axis, can be

recovered by applying the relationship between the
duration and the number of points in a scan and the
object velocity.

Let Z,.., b€ the time duration of each scan, Z,cqno, the
initial time instant of scan j, Npn:s the number of
points in each scan and ¢ the estimate of the object
velocity. Then, the relative translation along the Z'
axis of point ¢ of scan j, AZ'(z);, is obtained as:
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Figure 5 displays the raw range data after back-
ground removal and velocity correction for the case
when the object represented in Figure 6 moves below
the laser scanner with a velocity of 25¢m/sec. Data
was converted from the acquisition frame {r, 0} to
the laser frame {X',Y"} with Z' = 0 followed by
the velocity correction given by (2). A final conver-
sion from {X',Y",Z'} to {X,Y, Z} is performed.
The motion of the paper boxes in 6 is produced by a
mobile robot Nomad scout disguised with the boxes.
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Figure 5: Raw data representation in the world frame
after velocity correction and background extraction

The comparison of Figures 5 and 6 leads to the con-
clusion that the object detection process was suc-
cessful, since the shape obtained in the 3D recon-
struction is similar to the real one. Furthermore,
the estimated dimensions of the object are approx-
imately equal to the real ones as estimated in Sec-
tion 3. The top surfaces of the moving object are
clearly recognized in Figure 5 while its lateral planar
surfaces are not displayed. Instead, at the weight of
these surfaces a cloud of sparsely distributed points



Figure 6: Moving object

are present. These points may result from the Mixed
Point Problem, [6], that occurs when the laser foot-
print (resulting from the intersection of the cylinder
like laser beam with a surface) does not lie in a sin-
gle surface. When the laser beam is directed towards
the object edge, the footprint is partially in the top
surface and partially in the floor leading to a range
measurement at a random height.

3 Feature Extraction

The classification of moving objects is based on fea-
tures extracted from the raw range data. This sec-
tion discusses the extraction of three different fea-
ture vectors: Longitudinal View, Volume/Length and
Planar Surfaces.

The availability of different types of features will
support the choice of the best classifier as described
in Section 4 as well as leading to an easier visualiza-
tion of the results.

3.1 Longitudinal view

This feature is extracted directly from data as it cor-
responds to the longitudinal profile of the moving
object. Fixing a emission angle of the laser, usually
6 = 90° that corresponds to X' = 0, the longitudi-
nal view is the vector that contains the distances ac-
quired over the object, in X’Y’Z’ frame, along that
angle. The number of range points in this feature is a
function of the object length and also of its velocity.
Aiming at using this feature for object classification,

it will be useful to render it independent of the object
length and thus F equally spaced points are chosen
along the referred raw data.

Figure 7 shows the feature extraction over the object
in Figure 6 for the case of F' = 11. In this last figure,
the real longitudinal view is marked, on top of the
real photograph, by a black solid line.
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Figure 7: F point feature vector of the object in the
world frame

Figure 7 displays three different distances to the sen-
sor corresponding to the three top surfaces of the ob-
ject.

3.2 Volume/Length

Volume and length characteristics emerge as natural
features since they have a physical interpretation.

The length estimate, ¢, is the mean of the two esti-
mates given by (1), presented in Section 2.

The volume, V, is iteratively computed using a
trapezoidal approximation of the area in each scan.
The area associated to each scan is estimated by
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where the index ¢ defines the emission angle of the
laser, 6;. The volume estimation is then obtained,
assuming a constant height between two consecutive
scans, jand j + 1:
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where N,.., is the total number of scans over the
object.

Vo= 4)

The object in Figure 6 has length ¢ = 1.0234m
and volume V' = 0.327m?, which are close to the
real values. The number of scans over the object is
Niyean = 143.

3.3 Planes

The reconstruction of 3D objects has been the sub-
ject of recent research, [6], and different methodolo-
gies have been used. Some methods are based on
the representation of the object boundary e.g., us-
ing splines, polygonal meshes or planes. Surface ap-
proximation by a set of planes is used in this paper.
This choice is appropriate for representing several
classes of objects (e.g., vehicles). The planes coef-
ficients are considered as features for object classifi-
cation.

Consider a set of 3D points z; € R3 belonging to a
plane. They all verify the equation

()

where n € R? is the unit normal and d € R is the
distance from the plane to the origin.

vin=d

To estimate the plane parameters 6 = (n, d) it is as-
sumed that each z; is a realization of a random vari-
able x with normal distribution N (u, ), where p is
the mean vector and ¥ the covariance matrix. Fur-
thermore, since the data belongs to a 2D subspace
(plane) the covariance matrix has rank 2 and the unit
normal n is defined by the null subspace of X.

Using the mean square error method, the plane pa-
rameters are obtained by minimizing

e’ = E{lld —«"n|"} (6)

Assuming that ||n|| = 1, % is minimum when n is
the eigenvector associated with the smallest eigen-
value of ¥ and d = E{z}"n.

This method allows to approximate a set of data
points {x;} by a plane. In practice a single plane is
not enough to describe the object boundary. There-
fore, multiple planes must be considered. In this
case, the estimation problem becomes harder.

The estimation of multiple planes is related to the es-
timation of a mixture of M probability density func-
tions, each of them being represented by a normal
distribution N (1;,%;),7 = 1,..., M. The Expecta-
tion Maximization (EM) algorithm has been used to
estimate the mixture parameters [1], [4].

The EM algorithm is an iterative method based on
two steps. The E-step computes the probability of
each of the components being active, assuming that
a data point x; is observed and an initial estimate of
the mixture parameters ©' is available

_ogpy(i | 0))
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where w;(l) = P(y; =1 | x;,©") and yi denotes the
active component associated to xi.

The M-Step updates the mixture parameters as fol-
lows

0 S wi(l)a;
Zz'Nzl wi(l) ,
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The plane parameters are easily computed using
L, 2 as before.

The application of the EM algorithm in surface ap-
proximation raises several difficulties. First, the
number of planes is unknown and has to be estimated
from the data. Second, the EM algorithm often con-
verges towards local minima i.e., some of the com-
ponents approximate data from two or more planes
or sometimes a single plane is represented by more
than one mixture component. To overcome these dif-
ficulties a more complex procedure is adopted in this
paper based on 3 steps: i) modified EM algorithm; ii)
model separation and iii) model fusion.

The first step provides a first estimate of the plane
parameters, avoiding the representation of multiple



planes by a single component. This step is briefly
described bellow adopting an initial number of com-
ponents M=2.

Modified EM algoritm

1. Mixture parameters are initialized by randomly
selecting a set of data points for each class;

2. Update the mixture parameters using equations

(7)-(8);

3. Test if the smallest eigenvector of one of the
covariance matrices is smaller than a threshold:

e YES: Go to Step 4,
e NO: Go to Step 5;

4. Save the mixture components which meet the
criterion. Eliminate from the data set the points
which are well represented by the saved planes.
Go to Step 6;

5. The method has converged and the smallest
eigenvector is greater that the threshold?

e YES: Return to Step 1, creating one more
model: M = M +1;

e NO: Go to Step 2;

6. Does the model describe 95% of the initial data
points?

e YES: Terminate the algorithm;
e NO: Go back to Step 1,

Figure 8 shows the results obtained with the modi-
fied EM algorithm, applied to the object in Figure 6.
In this Figure several mixture components are used
to represent the data points on the highest plane, each
one corresponding to one grey level.

Model separation

Step 1 approximates the data points by a set of
planes. However, it does not consider the spatial
distribution of the data. For example, two separate
regions may be represented by a single model if all
the data points belong to the same plane. However,
this is not convenient for classification purposes. We
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Figure 8: Result of EM algorithm

wish to have disconnected regions modeled by dif-
ferent components. A plane separation algorithm
was used as described bellow (Step 2):

1. Find the plane with the highest eigenvalue
(highest variance);

2. Sort the original data in the direction of highest
variance and sort the data by projecting it in this
direction;

3. Check for each model computed in the EM al-
gorithm if the data represented by the model can
be considered as a connected set;

4. Separate the data in different models if the data
is not connected,

5. Repeat this algorithm, finding another vector in
the plane orthogonal to the vector previously
found.

Figure 9 illustrates the result obtained with the pro-
posed separation technique. In Figure 8, two sepa-
rate regions with the same height had been consid-
ered as belonging to a single plane. The separation
algorithm splits them as shown in Figure 9 where
different grey levels represent different planes.

Model fusion

Some of the mixture components estimated in Steps
1, 2 represent data from the same region and have
similar parameters. The third step performs compo-
nent merging as follows:
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Figure 9: Result of the plane separation algorithm

For each two models mq, mo, test until m; =
Nmodels — 1

1. Check if the m;, my models are similar using
the Euclidean distance

e if the models are distinct, go to Step 3.

e if the models are similar, go to Step 2.

2. Check if the m; and ms models were created
by the separation algorithm:

e YES: do not merge the models and go to
Step 3.

e NO: replace the two models by a single
one, with parameters:

Ny iy + Niny iy

d = 9
N, £ N, ©)
lenml + Nm2nm2
= 10
n le + Nm2 ( )

where N,,. is the number of points de-
scribed by the i"* model, d,,, and n,,
are the distance to the origin and the nor-
mal vector of the plane, respectively, with
1 =1,2. Goto Step 3.

?

3. mo = Nmodels-

e YES: m; =mi;+1,my =m;+1andgo
back to Step 1.

e NO: my = my + 1 and go back to Step 1.

Figure 10 illustrates the output of the model fusion.
It is clear that all the very similar planar models rep-
resented in Figure 9 and corresponding to the highest
surface of the object were merged in a single plane.
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Figure 10: Results after mode merging

4 Results

The proposed features were used to classify 3D mov-
ing objects from measurements obtained using the
laser range scanner. Six types of objects were con-
sidered in these experiments. The objects were ob-
tained by covering a Nomad scout mobile robot with
boxes of different sizes. The data set used in these
experiments consists of 30 range sequences of each
object to be classified.

Several classification algorithms were considered
[2], [5]- In the case of the volume/length parameters
and longitudinal view, the following methods were
used: Bayes classifier, k-nearest neighbor (KNN)
and Parzen method. The Bayes classifier was used
assuming that the feature vector is a random variable
with normal distribution. For this classifier, two dif-
ferent parameter estimation were used: one, named
gaussl, estimates the mean vectors and covariance
matrices for each class of the training set, using
the maximum likelihood method; another, named
gauss2, estimates the mean vectors for each class
and one covariance matrix for all the training set.
The KNN and Parzen classifiers are non paramet-
ric methods that make no assumption about the dis-
tribution of the data. The KNN classifier was im-
plemented with k=7, for volume/length parameters
and k=1 for longitudinal view, and Gaussian win-



dows were used in Parzen method.

The classification of 3D objects using the plane pa-
rameters was performed adopting a syntactic clas-
sifier, [3], based on a set of grammars obtained us-
ing the Crespi-Reghizzi algorithm and an error cor-
rector parser for classification. This method as-
sumes that the patterns are symbolically described.
This was achieved using the k-means clustering al-
gorithm which converts the planes parameters into a
sequence of symbols.

Feature | volume/ [ Tongitudinal | planar
Classifier length view surfaces
Gaussl 0.0857 0.1620 -
Gauss? 0,0714 0.007 -
KNN 0.0571 0 -
Parzen 0.1643 0 -
Syntactic - - 0.100

Table 1: Classification Errors

Table 1 shows the classification errors achieved by
each method in these experiments. The classification
error was estimated using the leave one out method.
The best results (0%) were obtained with the KNN
classifier and by the Parzen classifier using longi-
tudinal views. Comparable results were also ob-
tained by one of the Bayes classifiers. The planar
description of the objects and the syntatic classifier
lead to acceptable results, similar to those obtained
with volume/length description, but the process is far
more complex than the others.

These results show that the proposed system is able
to accurately classify moving objects using 3D shape
information. The best features were the longitudinal
view.

5 Conclusions

This paper describes methods for the detection and
classification of 3D moving objects using a laser
range scanner. Three types of features were con-
sidered (volume/length, longitudinal view and sur-
face approximation by a set of planes). Different
types of classification strategies were used namely
the Bayes classifier, the K-nearest neighbor method,
the Parzen method and a syntactic classifier based on

grammars. The best results were achieved with lon-
gitudinal view using the KNN and Parzen classifiers.

The methods described in this paper can be used in
several applications namely for the automatic classi-
fication of vehicles in highways. This is an important
issue since no verification of the vehicle size and vol-
ume is currently performed in Portuguese highways
namely in Via Verde system.

The work presented in this paper can be extended by
the use of two laser sensors aiming at a complete 3D
reconstruction of moving objects.
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