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a b s t r a c t

We consider networked control systems in which sensors, actuators, and controller transmit through
asynchronous communication links, each introducing independent and identically distributed intervals
between transmissions. We model these scenarios through impulsive systems with several reset maps
triggered by independent renewal processes, i.e., the intervals between jumps associated with a given
reset map are identically distributed and independent of the other jump intervals. For linear dynamic and
reset maps, we establish that mean exponential stability is equivalent to the spectral radius of an integral
operator being less than one. We also prove that the origin of a non-linear impulsive system is (locally)
stable with probability one if its local linearization about the zero equilibrium is mean exponentially
stable, which justifies the importance of studying the linear case. The applicability of the results is
illustrated through an example using a linearized model of a batch-reactor.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Consider a networked control system in which a remote
controller communicates with a plant through two independent
communication links; for example, the actuation data may be sent
from the controller to the plant through a shared wired network
and the sensor data may be sent from the plant to the controller
through a shared wireless network. A reasonable assumption in
control over networks utilizing CSMA-type protocols, such as the
Ethernet or the Wireless 802.11, is to take the lengths of times
needed to gain access to the shared network and to transmit data
to be independent and identically distributed (see, e.g. Antunes,
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Hespanha, & Silvestre, 2012, Montestruque & Antsaklis, 2004 and
Tabbara & Nesic, 2008). In the present paper, we show that this
networked control system, and,more generally, networked control
systems where several sensors, actuators, and the controller,
are linked through different (wired or/and wireless) networks
operating asynchronously, can be modeled by impulsive systems
of the following form

ẋ(t) = a(x(t)), t ≥ 0, t ≠ tℓk , x(0) = x0,

x(tℓk ) = jℓ(x(tℓ−k )), k ≥ 1, ℓ ∈ L := {1, . . . , nℓ},
(1)

where the duration of the intervals {hℓk := tℓk+1 − tℓk |k ≥ 0}
between jumps times tk associated with a given reset map jℓ, are
independent and identically distributed and also independent of
the jump intervals {hj

k|k ≥ 0, j ≠ ℓ, j ∈ L}. In (1), the notation
x(tℓ−k ) indicates the limit from the left of x at the point tℓk and nℓ
denotes the number of reset maps.

We provide stability results for (1), fromwhich one can directly
infer stability properties for the networked control systems just
described. Ourmain result establishes that when the dynamicmap
a and the reset maps jℓ are linear, mean exponential stability is
equivalent to the spectral radius of an integral operator being
less than one, which can be efficiently tested numerically. To
prove this result, we first derive conditions for mean exponential
stability for (1) with general non-linear dynamic and reset maps.
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When specialized to linear dynamic and reset maps, these stability
conditions can be expressed in terms of the existence of a solution,
with certain properties, to an integro-differential equation, which,
in turn, is related to the spectral radius of an integral operator.
For the general non-linear case, we show that the origin of (1) is
(locally) stable with probability one if the linearization of (1) about
zero equilibrium is mean exponentially stable, which justifies the
importance of studying the linear case.

To illustrate the applicability of our results, we consider the
linearized model of a batch-reactor that appeared in Antunes,
Hespanha, and Silvestre (2009), where we assumed that the
sensors transmit in a round-robin fashion through a single shared
link. We can now test mean exponential stability in the case
where the sensors transmit through two asynchronous links
both introducing independent and identically distributed intervals
between transmissions.

Several references to related work on networked control sys-
tems can be found in Hespanha, Naghshtabrizi, and Xu (2007),
including systems with asynchronous data transmissions, e.g.,
Zhang, Branicky, and Phillips (2001), and systems with inde-
pendent and identically distributed intervals between transmis-
sion, e.g., Montestruque and Antsaklis (2004). See also Antunes
et al. (2012), Donkers, Heemels, Bernardini, Bemporad, and Shneer
(2012), Hespanha and Teel (2006) and Tabbara and Nesic (2008).
However, the networked control problem we consider here, and
the associated class of impulsive systems, seem to have not been
studied in the literature. Stability results for deterministic impul-
sive systems can be found in Goebel, Sanfelice, and Teel (2009) and
Lawrence (1997). The proof of our results builds upon results for
piecewise deterministic systems (Davis, 1993) and the stochastic
Lyapunov approach (Kushner, 1967).

The remainder of the paper is organized as follows. The
connection between (1) and networked control systems is given in
Section 2. In Section 3 we state and discuss our main results. Our
main result concerning the stability of linear impulsive systems,
is proved in Section 4; the results concerning mean exponential
stability and stability with probability one of (1), are proved in
the Appendix. An example is given in Section 5. Final conclusions
are given in Section 6. A subset of the results in this paper was
presented in the conference paper (Antunes, Hespanha, & Silvestre,
2010).
Notation: For vectors ai, (a1, . . . , an) denotes the column vector
[aᵀ

1 · · · aᵀ
n]

ᵀ. The notation 1n indicates a vector of n ones.

2. Modeling networked control systems with impulsive sys-
tems

Consider a continuous-time plant and a controller described by

Plant: ẋP = fP(xP , û), y = g(xP) (2)

Controller: ẋC = fC (xC , ŷ), u = h(xC , ŷ) (3)

where the maps fP , fC , g and h are assumed to be differentiable,
and fP and fC are assumed to be globally Lipschitz. The controller
is assumed to yield the closed-loop stable when the plant and the
controller are directly connected, i.e., û(t) = u(t), ŷ(t) = y(t).
However, sensors, actuators, and the controller may be spatially
distributed and linked via communication networks, in which case
this ideal assumption is not valid.

Suppose there are ñy sensors, among which, ny are linked to
the controller via ny communication networks, i.e., each sensor
transmits through a different network. Then we can partition y as
y = (yD, yD̄) := (gD(xP), gD̄(xP)) = g(xP)where

yD = (y1, . . . , yny),
Fig. 1. Networked control setup. Actuators Actj, 1 ≤ j ≤ nu , and sensors Seni, 1 ≤

i ≤ ny are connected to a remote controller though independent communication
networks CNℓ, 1 ≤ ℓ ≤ nℓ = nu + ny . Other sensors SenD̄ and actuators ActD̄ may
be directed connected to the controller.

comprises the measurement signals yi ∈ Rsi , 1 ≤ i ≤ ny
of the ny sensors linked to the controller via a network, and yD̄
comprises the measurement signals of the sensors whose connec-
tion to the controller is ideal. Therefore, partitioning ŷ as ŷ =

(ŷ1, . . . , ŷny , ŷD̄), ŷi ∈ Rsi , we have yD̄(t) = ŷD̄(t). Likewise, as-
suming that there are ñu actuators, among which, nu communicate
to the plant via a communication network, we can partition u as
u = (uD, uD̄) := (hD(xC , ŷ), hD̄(xC , ŷ)) = h(xC , ŷ), where

uD = (u1, . . . , unu),

comprises the actuation signals uj ∈ Rrj , 1 ≤ j ≤ nu of
the nu actuators linked to the controller via a network, and uD̄
comprises the actuation signals of the actuators whose connec-
tion to the controller is ideal. Also here, partitioning û as û =

(û1, . . . , ûnu , ûD̄), ûj ∈ Rrj , we have uD̄(t) = ûD̄(t). The setup in
depicted in Fig. 1.

Let nℓ := ny + nu, and for a given ℓ ∈ {1, . . . , ny}, let {tℓk |k ≥ 0}
denote the transmission times of the sensor yℓ and for a given
ℓ ∈ {ny + 1, . . . , nℓ}, let {tℓk |k ≥ 0} denote the transmission times
of the actuator uℓ−ny . Between transmission times we assume that
ŷi and ûj remain constant

ŷℓ(t) = ŷℓ(tℓk ), t ∈ [tℓk , t
ℓ
k+1), 1 ≤ ℓ ≤ ny, (4)

and

ûℓ−ny(t) = ûℓ−ny(t
ℓ
k ), t ∈ [tℓk , t

ℓ
k+1), 1 ≤ ℓ− ny ≤ nu, (5)

while at transmission times we have the following update
equations

ŷℓ(tℓk ) = yℓ(tℓ−k ), 1 ≤ ℓ ≤ ny, (6)

and

ûℓ−ny(t
ℓ
k ) = uℓ−ny(t

ℓ−
k ), 1 ≤ ℓ− ny ≤ nu. (7)

We assume that in each of the nℓ networks that connect
sensors and actuators to the controller, the intervals between
transmissions are independent and identically distributed, i.e.,
{hℓk = tℓk+1 − tℓk |k ≥ 0} are independent and identically distributed
random variables, and also independent of the transmission
intervals in the remaining networks. Defining,

e := (ey, eu) := (ŷD − yD, ûD − uD), (8)

and using the fact that we can write

ŷ =

ey + gD(xP), gD̄(xP)


, (9)
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we can model the networked control system (2)–(8) as an impul-
sive system taking the form (1), where x = (xP , xC , e) is the state;

a(x) = b(x)

fP

xP , (eu + hD(xC , ŷ), hD̄(xC , ŷ))


fC

xC , (ey + gD(xP), gD̄(xP))

 
, (10)

where

b(x) =


I 0 −

∂gD
∂xP

(xP)ᵀ −


∂hD

∂yD̄
(xC , ŷ)

∂gD̄
∂xP

(xP)

ᵀ

0 I 0 −
∂hD

∂xC
(xC , ŷ)ᵀ


ᵀ

and ŷ is described by (9), models the plant, controller, and error
dynamics; and

jℓ(x) = (xP , xC , ĵℓ(e1), . . . , ĵℓ(enℓ)), (11)

models the transmissions at which the error associated with the
transmitting sensor/actuator is reset to zero, i.e., ĵℓ(ei) = 0, if i = ℓ,
and ĵℓ(ei) = ei, if i ≠ ℓ.

3. Main results

We start by providing in Section 3.1 a stability result for (1)
with general non-linear dynamic and reset maps. Building upon
this result, we are able to establish our main result, presented
in Section 3.2, which provides necessary and sufficient stability
conditions when the dynamic and reset maps in (1) are linear.
In Section 3.3 we relate the stability of the non-linear impulsive
system with that of its linearization.

3.1. Non-linear dynamic and reset maps

In this section we consider (1) with general maps a and jℓ, not
necessarily taking the form (10), (11). Themaps a and jℓ, ℓ ∈ L are
assumed to be differentiable and globally Lipschitz and the origin is
an equilibrium point, i.e., a(0) = 0 and jℓ(0) = 0, ∀ℓ∈L. Note that
in the special case where a and jℓ are described by (10), (11), this
holds if fP and fC are differentiable and globally Lipschitz, the origin
is an equilibrium point of both (2) and (3), and g, h are linearmaps.
We denote by n the dimension of the state x ∈ Rn. We assume that
the intervals between jump times {hℓk = tℓk+1 − tℓk |k ≥ 0}, ℓ ∈ L,
are described by a probability density function fℓ(t) ≥ 0, with
support in the interval [0, γℓ], γℓ ∈ R>0 ∪ {∞}. Apart from the
special case of exponential distributions addressed in Section 3.2,
Theorem 7, we assume that the supports are bounded, i.e., γℓ ≠

∞,∀ℓ∈L. This is an important assumption and in Section 6 we give
further comments on this.We assume that the fℓ are differentiable2
on (0, γℓ) and we denote the survivor function by

rℓ(s) := Prob[hℓk > s] =

 γℓ

s
fℓ(r)dr, k ≥ 1, s ∈ [0, γℓ], (12)

and the hazard rates3 by

λℓ(τℓ) :=
fℓ(τℓ)
rℓ(τℓ)

, τℓ ∈ Bℓ, (13)

where

Bℓ := [0, γℓ], ℓ ∈ L. (14)
The system (1) is started at t = 0, with a deterministic initial

condition x0, where it is subsumed that a time τℓ := −tℓ0 has

2 We assume differentiability on most functions of interest in the paper to avoid
complicating the proofs of our main results.
3 Recall that the hazard rate can be interpreted as λℓ(τ ) = limδ→0

Prob[Jump in [tℓk +τ ,tℓk +τ+δ)| No jump occurred in [tℓk ,t
ℓ
k +τ)]

δ
.

elapsed since the last jump associated with map ℓ. In other words,
we consider that, for each reset map ℓ ∈ L, the first jump times tℓ1
satisfy

Prob([tℓ1 > s]) =
rℓ(τℓ + s)
rℓ(τℓ)

, s ∈ [0, γℓ − τℓ], (15)

which is the probability that the next jump after t = 0 occurs after
time s, given that at t = 0 a time τℓ has elapsed since the map j
was triggered.

We need to define the following auxiliary process

v(t) = (v1(t), . . . , vnℓ(t)), vℓ(t) := t − tℓkℓ , v(0) = τ , (16)

where kℓ := max{k ≥ 0 : tℓk ≤ t}. The process v(t) keeps
track of the time elapsed since the last jump associated with each
of the reset maps, and therefore at time t = 0, v(0) = τ =

(τ1, . . . , τnℓ) = −(t10 , . . . , t
nℓ
0 ). Note that v(t) ∈ B, where

B := B1 × · · · × Bnℓ (17)
and Bℓ is described by (14). We also define
x(t) := (x(t), v(t)), (18)
and
x(0) = x =: (x0, τ ). (19)
As we shall see, x is a Markov process, although, in general, x is
not. In fact, (18) can be constructed as a piecewise deterministic
process (cf. Theorem14 in the Appendix), which allows to establish
the following key result in what follows. The proof is given in the
Appendix. Letπ0

ℓ be amap inB that sets the component ℓof a vector
to zero, i.e.,

π0
ℓ : B → B, π0

ℓ (τ ) = (τ1, . . . , τℓ−1, 0, τℓ+1, . . . , τnℓ). (20)

Theorem 1. If V : Rn
×B → R is a differentiable function, such that

E


tℓk≤n

|V (x(tℓk ))− V (x(tℓ−k ))|

 < ∞, ∀n∈N, (21)

where ℓ ∈ L, then for the system (1), (16), (18) with initial
condition (19), we have that

E[V (x(t))] = V (x)+ E
 t

0
AV (x(s))ds, ∀t≥0, (22)

where

AV (x) :=
∂

∂τ
V (x)

+ XxV (x)+

nℓ
ℓ=1

λℓ(τℓ)[V ((jℓ(x), π0
ℓ (τ )))− V (x)], (23)

for x = (x, τ ) ∈ Rn
× B, and XxV (x) :=

n
i=1

∂V (x)
∂xi

ai(x). �

We consider the following definition of stability for (1).

Definition 2. We say that (1) is mean exponentially stable (MES)
if there exist constants c > 0, α > 0 such that for every initial
condition x0, the following holds

E[x(t)ᵀx(t)] ≤ ce−αtxᵀ
0x0, ∀t≥0. � (24)

The following result establishes general conditions for (1) to
be MES, providing a stochastic analog of a well known result for
deterministic non-linear systems (cf. Khalil, 2002, Theorem 4.10).
The proof can be found in the Appendix.

Theorem 3. The system (1) is MES if and only if there exists a
differentiable positive function V : Rn

× B → R≥0 which equals
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zero at zero, and positive constants c1, c2, r such that for every x =

(x, τ ) ∈ Rn
× B,

c1∥x∥2
≤ V (x) ≤ c2∥x∥2, (25)

AV (x) ≤ −r∥x∥2. � (26)

3.2. Linear dynamic and reset maps

In this subsection, we consider the following linear version
of (1)

ẋ(t) = Ax(t), t ≥ 0, t ≠ tℓk , x(0) = x0,

x(tℓk ) = Jℓx(tℓ−k ), k ≥ 1, ℓ ∈ L,
(27)

where {hℓk = tℓk+1 − tℓk |k ≥ 0} and tℓ0 are as described for (1) and
for which we consider (16) and (18) with initial condition (19).

Define a variable τ = (τ1, . . . , τnℓ) ∈ B where τj ∈ Bj.
Furthermore, let B̂j = B1 ×· · ·×Bj−1 ×Bj+1 ×· · ·×Bnℓ and define
the map πℓ that removes the component ℓ from the vector τ , i.e.,
πℓ : B → B̂ℓ, πℓ(τ ) = (τ1, . . . , τℓ−1, τℓ+1, . . . , τnℓ). Let Pa be the
Cartesian product space of nℓ measurable real symmetric matrix
functions, each defined in B̂ℓ, i.e., if P = (P1(τ̂1), . . . , Pnℓ(τ̂nℓ)) ∈

Pa, then Pℓ(τ̂ℓ)ᵀ = Pℓ(τ̂ℓ),∀τ̂l ∈ B̂ℓ. Sum and multiplication by
scalar in Pa are defined in a natural way and we consider the usual
inner product ⟨Q , R⟩ =

nℓ
ℓ=1


B̂ℓ

Qℓ(τ̂ℓ)ᵀRℓ(τ̂ℓ)dτ̂ℓ for Q , R ∈ P .
Then we define the space P as the space of elements P ⊂ Pa such
that ⟨P, P⟩ < ∞, which can be shown to be a Hilbert space. Let
L : P → P be the following integral operator
(Q1, . . . ,Qnℓ) = L(P1, . . . , Pnℓ) (28)

where Qℓ(πℓ(τ )) := R(π0
ℓ (τ )),

R(τ ) :=

nℓ
ℓ=1

 γ

0
(JℓeAs)ᵀPℓ(πℓ(τ )+ s1nℓ−1)

× JℓeAs
r̂ℓ(τ , s)
r̄ℓ(τ )

fℓ(τℓ + s)
rℓ(τℓ)

ds, (29)

r̂ℓ(τ , s) := Π
nℓ
j=1,j≠ℓrj(τj+s), r̄ℓ(τ ) := Π

nℓ
j=1,j≠ℓrj(τj), γ := min{γℓ−

τℓ|ℓ ∈ L} and 1nℓ−1 is a vector with nℓ − 1 components set to one.
For example for nℓ = 1, (28), (29) take the form

Q1 =

 γ1

0
(J1eAs)ᵀP1J1eAsf1(s)ds, (30)

where P1 and Q1 are symmetric matrices, and in this special case
P is a finite dimensional space since its elements are matrices and
not matrix-valued functions. For nℓ = 2, we have

Q1(τ2) =

 γ 1

0
(J1eAs)ᵀP1(τ2 + s)J1eAs

r2(τ2 + s)
r2(τ2)

× f1(s)ds +

 γ 1

0
(J2eAs)ᵀP2(s)J2eAsr1(s)

×
f2(τ2 + s)
r2(τ2)

ds, τ2 ∈ [0, γ2],

Q2(τ1) =

 γ 2

0
(J2eAs)ᵀP2(τ1 + s)J2eAs

×
r1(τ1 + s)
r1(τ1)

f2(s)ds

+

 γ 2

0
(J1eAs)ᵀP1(s)J1eAsr2(s)

×
f1(τ1 + s)
r1(τ1)

ds. τ1 ∈ [0, γ1],

(31)

where γ 1 = min(γ1, γ2 − τ2), and γ 2 = min(γ1 − τ1, γ2).
Since L operates in a real space P , to define its spectral radius
we consider the complexification ofP (cf. Krasnoselskii, Lifshits, &
Sobolev, 1989, p. 77), i.e., the space P̃ := {Q = P + iR : P, R ∈ P }.
For Q = P + iR ∈ P̃ , one defines L(Q ) := L(P) + iL(R). The
spectral radius is defined as follows:

rσ (L) := max{|λ| : λ ∈ σ(L)}, (32)

where σ(L) := {λ ∈ C : L − λI is not invertible in P̃ } denotes
the spectrum and I the identity. Note that, defining P as a real
space, and defining the spectral radius of L acting on P as in (32)
is generally different from considering P to be a complex space,
where the matrix components Pℓ of P = (P1, . . . , Pnℓ) ∈ P are
self-adjointmatrices, and defining the spectral radius ofL as usual.
We shall use the first construction since thiswill allowus to readily
use the results for positive operators given in Krasnoselskii et al.
(1989) to prove our results in Section 4.

The following is the main result of the paper.

Theorem 4. The system (27) is MES if and only if rσ (L) < 1. �

The theorem is proved in Section 4. We discuss next how one
can numerically compute rσ (L), and some special cases of the
impulsive system, for which one can provide alternative stability
conditions to Theorem 4.

Computation of the spectral radius of L

One can show thatL is a compact operator (using, e.g., Chatelin,
1983, p. 165, Theorem 4.1) and therefore its spectrum consists
either of a finite set of eigenvalues λ : LP = λP for some P ∈ P̃
or of a countable set of eigenvalues with no accumulation point
other than zero (cf., e.g., Chatelin, 1983, p. 117, Theorem 2.34). For
simplicity, consider first the case nℓ = 2, in which L is described
by (31). A numerical method to compute rσ (L) is the following.
Take a grid of points τ̄1j ∈ [0, γ1], 1 ≤ j ≤ nd1, and τ̄2j ∈

[0, γ2], 1 ≤ j ≤ nd2, and consider the map obtained by replacing
P1(τ2), P2(τ1) in (31) by interpolating piecewise polynomials at the
points {P1(τ̄2k), P2(τ̄1k)}, and evaluating the integrals (31) at the
grid points to obtain {Q1(τ̄2k),Q2(τ̄1k)}. This yields a finite rank
operator, from the chosen space of piecewise polynomials in P to
itself, and assuming nd1 = nd2 = nd, its matrix representation has
dimension 2n2

dn(n + 1)/2, since Pi,Qi, i ∈ {1, 2} are symmetric.
Denote by Lnd the finite rank operator obtained and by Pnd the
space of piecewise polynomials described above. The method just
described is known as the collocation method, a special case of
the projection method (cf. Chatelin, 1983, p. 177), and one can
conclude from the results in Chatelin (1983) that rσ (Lnd) → rσ (L)
as nd → ∞, for typical piecewise polynomial approximations,
such as the trapezoidal or the zero order approximation.4 For
general nℓ, the space of piecewise polynomials Pnd can be defined
in a similar way and this method involves computing the spectral
radius of a nnℓ

d nℓn(n + 1)/2 matrix, which means that computing
rσ (L) may require significant computational effort when the
number of reset maps is large.

From the results in Chatelin (1983, Sections 6.1, 6.2), one
can conclude that, for the projection method just described, the
distance between an eigenvalue λnd of Lnd and the corresponding
eigenvalue λ of L that λnd approximates is dictated by

αnd := sup{(∥(I −Πnd)ψ∥)|ψ ∈ Mλ, ∥ψ∥ = 1},

4 In fact, from the spectral characterization of compact operators described
above, one can conclude from Chatelin (1983, p. 232, Theorem 5.5 and p. 250,
Example 5.14), that the eigenvalues of the compact operators Lnd converge to the
eigenvalues of the compact operator L which allows us to conclude that rσ (Lnd ) →

rσ (L).
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where Πnd is the projection from P̃ to Pnd , and Mλ ⊆ P̃ is the
invariant subspace associated with the eigenvalue λ, which in the
special case in which the algebraic and geometric multiplicities of
λ coincide (see Chatelin, 1983, pp. 97, 108 for the definitions) is
described by

Mλ := {Ψ ∈ P̃ : LΨ = λΨ }. (33)

In fact, the convergence of λnd to λ as nd → ∞ and αnd → 0 is at
least of order αnd (cf. Chatelin, 1983, Lemmas 6.9, 6.10), i.e.,

|λ− λnd | ≤ c1αp
nd , p = 1, (34)

for some constant c1 > 0, and often quadratic with αnd (p = 2
in (34)) undermild assumptions on the projectionΠnd (cf. Chatelin,
1983, Theorem 6.11). Due to the spectral characterization of
compact operators this implies the same convergence properties
for |rσ (Lnd) − rσ (L)|. The impact that the number of grid points
nd has on the approximation of rσ (L) is therefore encapsulated
on the dependency of αnd on nd. As an example, suppose that
nℓ = 2,Pnd corresponds to the set of zero-order interpolating
piecewise polynomials, and that there exists only one eigenvalue
with the same norm as the spectral radius λ : |λ| = rσ (L) and
with the same geometric and algebraic multiplicities. Then it is
possible to conclude that a function Ψ ∈ Mλ, i.e., a function of
the form Ψ (τ ) = (Ψ1(τ2),Ψ2(τ1)) ∈ P̃ such that LΨ = λΨ ,
where L is described by (31), must be differentiable. Since, for
a differentiable function Ψ , the norm of the error of a piecewise
zero order approximation ∥(I − Πnd)(Ψ )∥ is bounded by a linear
function of 1

nd
(cf., e.g., Chatelin, 1983, p. 167) one can conclude that

αnd ≤
c2
nd
,

for some c2 > 0. We refer to Chatelin (1983) for more elaborate
techniques to compute the spectral radius of an integral operator,
including the iterative refinementmethod, and further error bound
results.

Special cases

A first special case is when there is only one reset map, i.e.,
nℓ = 1. In this case P is simply the finite dimensional space of
symmetric matrices and L is the linear map P1 → Q1 between
two finite dimensional space defined in (30). In this case rσ (L) < 1
reduces to testing if the spectral radius of the following matrix is
less than one

M1 :=

 γ1

0
(J1eAs)ᵀ ⊗ (J1eAs)ᵀf1(s)ds.

This condition is also obtained in Antunes et al. (2012), where
the case nℓ = 1 is analyzed using a different approach, based
on Volterra equations, which does not appear to generalize to the
problem considered in this paper.

A second special case is when the maps A, Jℓ commute, i.e.,
AJℓ = JℓA, and JℓJr = Jr Jℓ, ∀ℓ,r∈L. Although this is generally not the
case for the linear matrices obtained from (10) and (11) when the
dynamics of (2) and (3) are linear, this special case is still of interest
for the general model (27). In this case, the following result,
proved in the Appendix, provides alternative stability conditions
to Theorem 4.

Theorem 5. When the maps A and Jℓ, ℓ ∈ L commute, the system
(27) is MES if

2λ̄+

nℓ
ℓ=1

αℓ < 0, (35)
where λ̄ is the maximum real part of the eigenvalues of A and the αℓ
are given by

αℓ =


−∞, if rσ (J

ᵀ
ℓ ⊗ Jᵀℓ ) = 0

a ∈ R :

 γℓ

0
e−asfℓ(s)ds =

1
rσ (J

ᵀ
ℓ ⊗ Jᵀℓ )

,

otherwise

(36)

where ⊗ denotes the Kronecker product. �

It is important to emphasize, that even for the commuting case,
the condition (35) is sufficient but not necessary, as shown in the
following example.

Example 6. Suppose that A = [0]2×2, nℓ = 1, J1 =


a1 0
0 0


, and

J2 =


0 0
0 a2


, where a1 > 1, a2 > 1. Then, λ̄ = 0 and, from (36),

we can conclude that α1 > 0 and α2 > 0. Thus, (35) does not hold.
However, since the state remains constant between jump times
tℓk , ℓ ∈ {1, 2}, and component i is reset to zero when the reset map
i is triggered, i ∈ {1, 2}, we conclude that E[x(t)ᵀx(t)] = 0, t >
max(γ1, γ2) and therefore (27) is MES. �

A third special case is when the probability densities fℓ
correspond to exponential distributions, i.e., rℓ(y) = e−βℓy. Since
the support of the probability density functions is not bounded we
assume the following

2λ̄ <
nℓ
ℓ=1

βℓ, (37)

where λ̄ is the maximum real part of the eigenvalues of A. This
assumption can be shown to assure that the expected value
of a quadratic function of the state of the system does not go
unbounded between jump times. This assertion can be obtained
using a similar reasoning to Antunes et al. (2012, Theorem 3). The
next theorem states that, in this case, we can provide stability
conditions in the form of LMIs. The proof is omitted due to space
limitations but can be found in Antunes (2011, Chapter 4).

Theorem 7. Suppose that rℓ(y) = e−βℓy and that (37) holds. Then
the system (27) is MES if and only if

∃P>0 : AᵀP + PA +

nℓ
ℓ=1

βℓ(J
ᵀ
ℓPJℓ − P) < 0. � (38)

3.3. Stability with probability one

The following definition is adapted from Kushner (1967).

Definition 8. We say that the origin of the system (1) is (locally)
stable with probability one if for every ρ > 0 and ϵ > 0 there is a
δ(ρ, ϵ) > 0 such that, if ∥x0∥ < δ(ρ, ϵ) then

Prob{ sup
∞>t≥0

∥x(t)∥ ≥ ϵ} ≤ ρ. (39)

The following result shows that one can assert stability
with probability one of the origin of (1), by establishing mean
exponential stability for its linearization, which can be tested by
Theorem 4. The proof is provided in the Appendix.

Theorem 9. If (27) is MES with A =
∂
∂xa(x)|x=0 and Jℓ =

∂
∂x

jℓ(x)|x=0 , ℓ ∈ L where a and jℓ are the non-linear maps in (1), then
the origin of (1) is stable with probability one. �

This theorem allows us to conclude a property analogous to the
one proved in Lawrence (1997) stating that a standard periodic
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sampled-data connection of a non-linear plant and a non-linear
controller is locally stable if the sampled-data connection of the
linearization of the plant and of the linearization of the controller
is stable. In fact, from Theorem 9, we can conclude that in the setup
of Section 2, the non-linear networked control system described
by (10), (11) is stable with probability one, if the networked
control system obtained by replacing fP , g, fC , and h, by their local
linearizations about the zero equilibrium is mean exponentially
stable, which can be tested by Theorem 4.

4. Proof of Theorem 4

We prove Theorem 4 through three steps: (i) we show that
specializing the stability conditions of Theorem 3 to the system
(27), yields mean square stability conditions for (27) in terms of
the existence of a solution, with certain properties, to an integro-
differential equation; (ii) we establish that these conditions are
equivalent to the existence of a solution, with certain properties,
to a Fredholm equation; (iii) we prove that (ii) is equivalent to the
spectral radius of the integral operator of the Fredholm equation
being less than one.

(i) MES for linear impulsive systems

The Theorem 3 can be specialized to (27) as follows.

Theorem 10. The system (27) is MES if and only if for every
differentiable symmetric matrix functions Y (τ ) and Z(τ ) such that
a1 ≤ Y (τ ) ≤ a2, ∀τ∈B, and b1 ≤ Z(τ ) ≤ b2, ∀τ∈B, there
exists a differentiable symmetric matrix function X(τ ), such that c1 ≤

X(τ ) ≤ c2, ∀τ∈B, and for every τ ∈ B,
nℓ
ℓ=1

∂

∂τℓ
X(τ )+ AᵀX(τ )+ X(τ )A

+

nℓ
ℓ=1

λℓ(τℓ)[J
ᵀ
ℓX(π

0
ℓ (τ ))Jℓ − X(τ )+ Z(τ )] + Y (τ ) = 0, (40)

where π0
ℓ is defined by (20), and ai, bi, ci, i ∈ {1, 2} are positive

constants. �

Proof. To prove sufficiency we use Theorem 3 and consider the
function V (x(t)) = xᵀ(t)X(v(t))x(t) where x = (x, v) and
X(τ ), τ ∈ B satisfies (40) and the remaining conditions of the
theorem. Then from (23) we have that

A(xᵀX(v)x) = xᵀ


nℓ
ℓ=1

∂

∂τℓ
X(v)+ AᵀX(v)+ X(v)A

+

nℓ
ℓ=1

λℓ(vℓ)[J
ᵀ
ℓX(π

0
ℓ (v))Jℓ − X(v)]


x. (41)

Using (40) we obtain

A(xᵀX(v)x) = −xᵀ


nℓ
ℓ=1

λℓ(vℓ)Z(v)+ Y (v)


x ≤ −a1∥x∥2,

and since c1I ≤ X(v) ≤ c2I , we have that c1∥x∥2
≤ V (x) ≤ c2∥x∥2.

Using Theorem 3, applied to (27), we conclude that (27) is MES.
Necessity follows by using the same arguments as in the proof

of Theorem 3 and noticing that the function (75) takes the form
V (x) = xᵀ

0X(τ )x0, for x = (x0, τ ) ∈ Rn
× B,

X(τ ) = X1(τ )+ X2(τ ), (42)
where

X1(τ ) =


+∞

0
Eτ [Φ(t)ᵀY (v(t))Φ(t)]dt, (43)

X2(τ ) =


k>0,ℓ∈L

Eτ [Φ(tℓk )
ᵀZ(v(tℓk ))Φ(t

ℓ
k )],

Φ(t) is the transition matrix of the system (27), i.e.,

Φ(t) = eA(t−tℓrr )Jℓr−1 · · · Jℓ1e
Ah
ℓ1
1 Jℓ0e

Ah
ℓ0
0 , (44)

where {ℓj ∈ L, j ≥ 0} is the triggered sequence of reset maps, r =

max{k : tk ≤ t} andEτ emphasizes that expectation subsumes that
the processΦ(t) depends on the initial conditions τ of the process
v(t). Since from Theorem 3, c1∥x0∥2

≤ V (x) ≤ c2∥x0∥2 it follows
that c1I ≤ X(τ ) ≤ c2I . From Davis (1993, p. 92, Theorem (32.2)) it
follows that

A(xᵀ
0X1(τ )x0) = −xᵀ

0Y (τ )x0

and from Davis (1993, pp. 90, 91) we have that

xᵀ
0X2(τ )x0 = E


∞

0
λT (v(t))x(t)ᵀZ(v(t))x(t)


,

where

λT (τ ) :=

nℓ
j=1

λj(τj), (45)

from which one can conclude again from Davis (1993, p. 92,
Theorem (32.2)) that

A(xᵀ
0X2(τ )x0) = −λT (τ )x

ᵀ
0Z(τ )x0.

Thus, for every (x0, τ ), we have

A(xᵀ
0X(τ )x0) = −xᵀ

0(Y (τ )+ λT (τ )Z(τ ))x0. (46)

Computing A(xᵀX(v)x) from (23) we obtain (41) which must be
equal to (46) when x = (x0, τ ) is replaced by x = (x, v), from
which we conclude (40). �

(ii) Fredholm equation

Let U be the space of elements (U1(τ̂1), . . . ,Unℓ(τ̂nℓ)) ∈ P
for which Uℓ(τ̂ℓ) ≥ 0,∀ℓ∈L, ∀τ̂ℓ∈Bℓ . The space V ⊂ U is defined
similarly but requiring Uℓ(τ̂ℓ) > 0,∀ℓ∈L, ∀τ̂ℓ∈Bℓ .

Theorem 11. The system (27) is MES if and only if for every
differentiable symmetric matrix functions Y (τ ) and Z(τ ) such that
a1 ≤ Y (τ ) ≤ a2, ∀τ∈B, and b1 ≤ Z(τ ) ≤ b2, ∀τ∈B, there exists
a solution P ∈ V to the Fredholm equation

P = L(P)+ U, (47)

where U = (U1, . . . ,Unℓ),

Uℓ(πℓ(τ )) := W (π0
ℓ (τ )), (48)

and

W (τ ) :=

nℓ
ℓ=1

 γ

0
eA

ᵀsZ(τ + s1nℓ)e
As r̂ℓ(τ , s)

r̄ℓ(τ )

×
fℓ(τℓ + s)
rℓ(τℓ)

ds +

 γ

0
eA

ᵀsY (τ + s1nℓ)

× eAsΠnℓ
ℓ=1

rℓ(τℓ + s)
rℓ(τℓ)

ds,

and ai, bi, i ∈ {1, 2} are positive constants. �
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Proof. Suppose that (27) is MES and therefore there exists a
solution X to (40) given by (42). Let

P(πℓ(τ )) := X(π0
ℓ (τ )), πℓ(τ ) ∈ Bℓ. (49)

We prove next that X(τ ) satisfies

X(τ ) = W (τ )+

nℓ
ℓ=1

 γℓ

0
(JℓeAs)ᵀX(π0

ℓ (τ + s1nℓ))

× JℓeAs
r̂ℓ(τ , s)
r̄ℓ(τ )

fℓ(τℓ + s)
rℓ(τℓ)

ds. (50)

Then sufficiency follows by directly using (50) in (49), and
noticing that the fact that X(τ ), given by (42), satisfies X(τ ) ≥

c1I, ∀τ∈B, c1 > 0, implies that P ∈ V .
To this effect, we start by conditioning the integrand in (43) on

the time of the first jump t1 := min{tℓ1 , ℓ ∈ L},

Eτ [Φ(t)ᵀY (v(t))Φ(t)] = Eτ [(Φ(t)ᵀY (v(t))Φ(t))1[t1>t]]

+

nℓ
ℓ=1

Eτ [(Φ(t)ᵀY (v(t))Φ(t))1Cℓ(t)] (51)

where Cℓ(t) = [min{t j1, j ∈ L} = tℓ1 = t1 ≤ t] ∧ [t j1 > t1, j ≠ ℓ],
is the event that jump ℓ is the first to trigger, given that a trigger
occurred before time t . Using (15) the first term on the right hand
side of (51) is given by eA

ᵀtY (τ+ t1nℓ)e
AtΠ

nℓ
ℓ=1

rℓ(τℓ+t)
rℓ(τℓ)

. Note that for
a function G(t1),

Eτ [G(t1)1Cℓ(t)] =

 t

0
E[G(s)1

[t j1>s,j≠ℓ]|t
ℓ
1 = s]

fℓ(τℓ + s)
rℓ(τℓ)

ds

=

 t

0
G(s)

r̂ℓ(τ , s)
r̄ℓ(τ )

fℓ(τℓ + s)
rℓ(τℓ)

ds

and that Φ(t) = Φ̂ℓ(t − t1)(JℓeAt1) when the transition ℓ ∈ L is
first triggered, where Φ̂ℓ(t − t1) is the transition matrix from t1 to
t starting the process at π0

ℓ (τ + s1nℓ)where π0
ℓ is defined by (20).

Thus

Eτ [Φ(t)ᵀY (v(t))Φ(t)1Cℓ(t)]

=

 t

0
(JℓeAs)ᵀ · · · Eπ0

ℓ
(τ+s1nℓ )

[Φ̂(t − s)ᵀY (v(t − s))

× Φ̂(t − s)]JℓeAsαℓ(τ , s)ds, (52)

where αℓ(τ , s) :=
r̂ℓ(τ ,s)
r̄ℓ(τ )

fℓ(τℓ+s)
rℓ(τℓ)

. By construction of the process

Eπ0
ℓ
(τ+s1nℓ )

[Φ̂ℓ(t − s)ᵀY (v(t − s))Φ̂ℓ(t − s)]

= Eπ0
ℓ
(τ+s1nℓ )

[Φ(t − s)ᵀY (v(t − s))Φ(t − s)]. (53)

Replacing (53) in (52), (52) in (51) and (51) in (43) we obtain

X1(τ ) =

nℓ
ℓ=1

X̂ℓ1 (τ )+

 γ̄

0
eA

ᵀtY (τ + t1nℓ)

× eAtΠnℓ
ℓ=1

rℓ(τℓ + t)
rℓ(τℓ)

dt (54)

where

X̂ℓ1 (τ ) =


∞

0

 t

0
Eπ0

ℓ
(τ+s1nℓ )

[(JℓeAs)ᵀΦ(t − s)ᵀY

× (v(t − s)) · · ·Φ(t − s)(JℓeAs)αℓ(τ , s)]dsdt.
Changing the order of integration in the latter expression we have
that (54) can be written as

X1(τ ) =

 γ

0
eA

ᵀtY (τ + s1nℓ)e
AtΠ

nℓ
ℓ=1

rℓ(τℓ + t)
rℓ(τℓ)

dt

+

nℓ
ℓ=1

 γ

0
(JℓeAs)ᵀX1(π

0
ℓ (τ + s1nℓ))Jℓe

As r̂ℓ(τ , s)
r̄ℓ(τℓ)

×
fℓ(τℓ + s)
rℓ(τℓ)

ds.

With similar computations one can conclude that

X2(τ ) =

nℓ
ℓ=1

 γ

0
eA

ᵀsZ(τ + s1nℓ)e
As r̂ℓ(τ , s)

r̄ℓ(τ )
fl(τℓ + s)
rℓ(τℓ)

ds

+

nℓ
ℓ=1

 γ

0
(JℓeAs)ᵀX2(π

0
ℓ (τ + s1nℓ))Jℓe

As r̂ℓ(τ , s)
r̄ℓ(τ )

×
fℓ(τℓ + s)
rℓ(τℓ)

ds.

Since X(τ ) = X1(τ )+X2(τ ) adding X1(τ ) and X2(τ )weobtain (50).
Conversely, suppose that there exists a solution P ∈ V to (47).

Then one can verify that

X(τ ) = W (τ )+

nℓ
ℓ=1

 γℓ

0
(JℓeAs)ᵀPℓ(π̂ℓ(τ )+ s1nℓ−1)

× JℓeAs
r̂ℓ(τ , s)
r̄ℓ(τ )

fℓ(τℓ + s)
rℓ(τℓ)

ds (55)

satisfies all the assumptions of the function X(τ ) of Theorem 10,
and therefore (27) is MES. In fact, if there exists a solution P ∈ V to
(47) one can obtain an explicit expression for the solution to (47)
(cf. Theorem 12), which is given by

P =

∞
i=0

Li(U), (56)

where Li denotes the composite operator obtained by applying i
times L, e.g., L2(P) = L(L(P)) and L0(P) := P . From (56) we can
conclude that P is bounded and differentiable with respect to τ ,
since we assume that the fℓ are differentiable. Then, it is clear that
X(τ ) is bounded, X(τ ) ≥ W (τ ) ≥ c1I,∀τ∈B, for some c1 > 0 and
(40) can be obtained by direct computation. �

(iii) Positive solution of the Fredholm equation

As a prelude to the next result, we note that U is a cone in
the Hilbert space (and hence Banach space, with the usual norm
inherited by the inner product) P , in the sense of Krasnoselskii
et al. (1989) since (i) it is closed; (ii) ifU,W ∈ U thenα1U+α2W ∈

U for α1 ≥ 0 and α2 ≥ 0; and (iii) the set5−U := {−P : P ∈

U} intersects U only at the zero vector. Moreover, this cone is
reproducing in P , i.e., if Z ∈ P , then there exists U,W ∈ U
such that Z = U − W (take for example, Ui(τ ) = Zi(τ ) + ϵI and
Wi(τ ) = ϵI for sufficiently large ϵ > 0 such that Pi(τ ) + ϵI > 0
for all i ∈ {1, . . . , nℓ}, τ ∈ B). The operator L is a positive operator
with respect to U, i.e., L(U) ∈ U if U ∈ U.

Theorem 12. The Eq. (47) has a solution P ∈ V if and only if
rσ (L) < 1. �

5 Recall that addition and multiplications by scalar are defined in a natural way
in P , e.g. if P = (P1, . . . , Pnℓ ) ∈ P then −P := (−P1, . . . ,−Pnℓ ).
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Note that the main result, Theorem 4, can be concluded from
Theorems 11 and 12.

Proof. Sufficiency follows from the fact that if rσ (L) < 1 then
P =


∞

i=0 Li(U) exists which is the solution to P = L(P) + U .
SinceL is a positive operatorwith respect toU, P is a summation of
U ∈ V plus elements inU. Thus, taking into account the definitions
of U and V , we conclude that P belongs to V .

To prove necessity, we start by noticing that it is possible to
prove that the dual cone (cf. Boyd & Vandenberghe, 2004, Sec-
tion 2.66) ofU can be identifiedwith itself, i.e., using the nomencla-
ture of Boyd and Vandenberghe (2004, Section 2.6), U is self-dual.
The proof follows similar arguments used to prove that the cone
of positive semi-definite matrices is self-dual (cf. Boyd & Vanden-
berghe, 2004, p. 52), and is therefore omitted. From Krasnoselskii
et al. (1989, p. 22, Theorem 2.5), we conclude that the adjoint op-
erator L∗ is also a positive operator with respect to U, and using
Krasnoselskii et al. (1989, Theorem 9.2) which states that a com-
pletely continuous positive operator with respect to a reproduc-
ing cone has an eigenvalue that equals the spectral radius and an
eigenvector that belongs to the solid cone, we conclude that there
existsW ∈ U (other than the zero element) such that

L∗(W ) = rσ (L∗)W . (57)

In fact, L∗ is a compact operator, since L is a compact operator
(cf. Conway, 1985, p. 178), which can be concluded from Chatelin
(1983, p. 165, Theorem 4.1), and a compact operator in a Banach
space is completely continuous (cf. Conway, 1985, p. 177). Suppose
that rσ (L) ≥ 1 and (47) has a solution P ∈ V . Then rσ (L∗) =

rσ (L) ≥ 1. Taking the inner product on both sides of (47) with
W ∈ U, such that (57) holds, yields

⟨W , P⟩ = ⟨W ,L(P)⟩ + ⟨W ,U⟩ ⇔

⟨W , P⟩ =

L∗(W ), P


+ ⟨W ,U⟩ ⇔

⟨W , P⟩ (1 − rσ (L∗)) = ⟨W ,U⟩ . (58)

Now ⟨W , P⟩ ≥ 0, since W , P ∈ U. Moreover, one can conclude
that ⟨W ,U⟩ > 0, since W is different from the zero element in U
and one can conclude from (48) that U ∈ V . Thus, from (58) we
conclude that rσ (L∗) = rσ (L) ≥ 1 leads to a contradiction. �

5. Batch reactor

This example considers the control of a linearized model of an
open loopunstable two-input two-output batch reactor, controlled
by a PI controller. It is a widely used example in networked control
(see, e.g., Hespanha & Teel, 2006 and Walsh & Ye, 2001). The plant
and controller take the form (2) and (3), with fP(xP , û) = APxP +

BP û, g(xP) = CPxP , and fC (xC , ŷ) = ACxC + BC ŷ, h(xC , ŷ) = CCxC +

DC ŷ. The expressions for (AP , BP , CP) and (AC , BC , CC ,DC ) can be
found in Antunes et al. (2009). The actuator is directly connected
û(t) = u(t). However, the sensors are linked to the plant through
communications networks.

In Antunes et al. (2009), it is assumed that the outputs
are sent in a round-robin fashion through a single shared
communication network. When the distribution of the intervals
between consecutive transmissions is assumed to be, e.g., uniform
with a support γ , we can use the results in Antunes et al. (2009) to
study the stability of this system.

Suppose now that, instead of transmitting the two measure-
ments in a round robin fashion through the same communication
network, the two sensors transmit data through two independent

6 The nomenclature used in Krasnoselskii et al. (1989, Chapter 2) is adjoint cone
instead of dual cone.
Fig. 2. MES for various values of the support of a uniform distributions of the
transmission intervals of two independent links.

communication links. We assume that both links are shared with
other users and that the intervals between consecutive transmis-
sions can be modeled by independent processes with support in
the interval [0, γℓ] for the link associated with the output yℓ, ℓ ∈

{1, 2}. We can cast this system in the framework of Section 2, and
use the techniques developed in this paper to study the stability in
this latter case.

When two links are used to transmit the measurements of the
two sensors, we can use Theorem 4 to investigate the stability of
the system as a function of the distributions for the intersampling
times on each network. The results obtained are summarized in
Fig. 2 for the case of uniform distributions with different supports.
If the distributions of the two links have the same support then
stability is preserved for every γ1, γ2 ∈ [0, γ ], with γ = 0.18.
It is interesting to compare this with the case of a round-robin
single-link protocol where it was shown in Antunes et al. (2009)
that the maximum support of a uniform distribution for which
stability could be guaranteed was γ = 0.11. With a round-robin
protocol, this would lead to a distribution between consecutive
samples for the same sensor that is triangular with support 0.22.
However, note that in this case the duration of the intervals
between transmissions of the two outputs are not independent,
and a different approach must be used to assert stability (see
Antunes et al., 2009). If the two links have different supports one
can conclude from the Fig. 2 that the mean exponential stability
of the closed-loop is lost for a lower value of the support of the
distributions associated with the output y2 than the value of the
support associated with the output y1.

6. Final remarks and future work

We provided several stability results for impulsive systems
with several reset maps triggering asynchronously at independent
and identically distributed spaced times, motivated by their
applications to networked control systems. Since our main
focus was to capture the asynchronous nature of the resets
corresponding to transmissions in independent networks, we
considered several assumptions for simplicity. We point out here
some directions to drop three of these assumptions. First, we
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considered finite supports for the probability distributions that
model the intervals between resets, except in the special case
where these distributions are exponential. In a previous work
(Antunes et al., 2012), we provided necessary and sufficient
stability conditions for the case in which the dynamic and reset
maps are linear, there is only one reset map (nℓ = 1), and the
supports may be unbounded, using an approach based on Volterra
equations, which does not appear to generalize for nℓ > 1. As in
Antunes et al. (2012), and as in the case of exponential distributions
considered in the present paper, besides the stability condition
provided in Theorem 4, other conditions are required that take
into account inter-jump behavior (condition (37) in the case of
exponential distributions). However, it is not clear to the authors
how to obtain necessary and sufficient conditions for stability (in
a stochastic sense) as in Antunes et al. (2012) for the case of
unbounded support when nℓ > 1. Second, we considered no
packet drops in the networked control setup and we assumed that
no two nodes share the same network, in which case a protocol
such as round-robin would be required. Taking into account
these features would entail considering stochastic transitions to
model packet drops and including auxiliary discrete modes to
model the protocol (cf., e.g., Antunes et al., 2010). Since piecewise
deterministic processes allow to take into account discrete modes
and stochastic rest maps, it is reasonable to believe that one can
take these features into account, generalizing the results in the
present paper to this case. Third, we considered no disturbances
acting on the plant. Piecewise deterministic processes do not
allow to model for example stochastic disturbances between
resets. To capture this, (Hespanha & Teel, 2006) considers a so-
called model jump diffusions with state-dependent intensities.
Combining the ideas presented here and in Hespanha and Teel
(2006) can therefore be a direction for future work to capture
stochastic disturbances in the model. Another possible direction
for future work is to exploit in-network processing schemes
(Chaillet & Bicchi, 2008; Quevedo & Nešić, 2012) to enhance the
stability properties and performance of the networked control
systems considered in the present paper.

Appendix

Proof of Theorems 1 and 3

We start by describing a construction for the process x,
described by (18), which mimics the construction of a piecewise
deterministic process, as described in Davis (1993, p. 59). Let
Ω := {u1

k, u
2
k, k ≥ 0} where {u1

k, k ≥ 0} and {u2
k, k ≥

0} are mutually independent and identically distributed random
variables uniformly distributed in the interval [0, 1]. Let also
φx(s, x(tk)), φv(s, v(tk)) be the flows at time s of the systems
described by ẋ(t) = a(x(t)) and v̇(t) = 1 with initial conditions
x(tk) and v(tk), respectively. Note that φv(s, v(tk)) = v(tk)+ s1nℓ .
Set k = 0 and t0 = 0, x(t0) = (x0, τ ), and consider the process
x(t) = (x(t), v(t)) obtained by iteratively repeating:

(I) Obtain hk from

hk = inf{t : e−
 t
0 λT (φv(s,v(tk)))ds ≤ u1

k} (59)

where λT is described by (45). Set tk+1 = tk + hk, and for
t ∈ [tk, tk+1)make

x(t) =

φx(t − tk, x(tk)), φv(t − tk, v(tk))


. (60)

(II) Make x(tk+1) = ψ(u2
k, x(t

−

k+1)), where

ψ(w, (x, τ )) = (jℓ(x), π0
ℓ (τ ))χ

w∈

ℓ−1
j=1

λj(τj)
λT (τ )

,
ℓ

j=1
λj(τj)
λT (τ )

, (61)
and χx∈A denotes the characteristic function, i.e.,

χw∈A =


1 ifw ∈ A
0, ifw ∉ A. �

(62)

Remark 13. Note that (59) simply states that

Prob[hk > s|x(tk)] = Π
nℓ
j=1rj(s + vj(tk)), ∀k≥0

and (61) simply states that

Prob[x(tk) = (jℓ(x(t−k )), π
0
ℓ (v(t

−

k )))|x(t
−

k )] =
λℓ(τj(t−k ))
λT (τ (t−k ))

.

Wechoose to use the description (I) and (II) tomimic the piecewise
deterministic process construction in Davis (1993, p. 59), which
allows us to use the results from Davis (1993). �

The next theorem establishes the connection between (1), (16),
and piecewise deterministic processes.

Theorem 14. The stochastic process (x(t), v(t)), described by (1)
and (16), can be realized in the probability spaceΩ and constructed as
the piecewise deterministic process defined by steps (I) and (II). �

Proof. For the process (x(t), v(t)), described by (1), (16), define
{tk ≥ 0} with tk < tk+1,∀k≥0 as a set containing the union of
all the jump times in (1), i.e., {tk ≥ 0} = ∪

nℓ
ℓ=1{t

ℓ
rℓ , rℓ ≥ 0}, let

{hk := tk+1 − tk, k ≥ 0}, h−1 := 0, and consider the following
discrete-time process

zk := (hk−1, x(tk), v(tk)). (63)

There exists a one to one relation between zk and x(t), described
by (1) and (16). In fact, given a sample path (x(t), v(t)) one can
identify the jump times tk by the times at which vℓ(tk) = 0 for
some ℓ, and from these construct hk−1 and hence zk. Conversely,
from zk we can obtain hk and hence tk, and construct (x(t), τ (t))
from x(tk), (v(tk)) as

(x(t), v(t)) = (φx(t − tk, x(tk)), φv(t − tk, v(tk))),
tk ≤ t < tk+1. (64)

Moreover, zk is a discrete-time Markov process. To see this, it
suffices to prove that

Prob(zk+1 ∈ D|zr , 0 ≤ r ≤ k) = Prob(zk+1 ∈ D|zk), ∀k≥0, (65)

where D is a measurable set. Since at tk, a time τℓ(tk) has elapsed
since the last jump associated with the reset map ℓ ∈ L, the time
tk+1 equals tk+1 = tk + hk, where

hk := min
ℓ∈{1,...,nℓ}

{wℓk},

andwℓk are random variables such that Prob(wℓk > s) =
rℓ(vℓ(tk)+s)
rℓ(vℓ(tk))

,
where the rℓ are described by (12). Thus,

Prob(hk+1 > s|zr , 0 ≤ r ≤ k) = Π
nℓ
ℓ=1

rℓ(vℓ(tk)+ s)
rℓ(vℓ(tk))

. (66)

Let ξk+1 denote which reset map triggers at tk+1, i.e.,

ξk+1 := argmin
ℓ∈{1,...,nℓ}

{wℓk}.

Then,

Prob[ξk+1 = ℓ|hk ∈ [s, s + ϵ) ∧ zr , 0 ≤ r ≤ k]

=
Prob[hk ∈ [s, s + ϵ) ∧ ξk+1 = ℓ|zr , 0 ≤ r ≤ k]

nℓ
j=1

Prob[hk ∈ [s, s + ϵ) ∧ ξk+1 = j|zr , 0 ≤ r ≤ k]
. (67)
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Now,

Prob[hk ∈ [s, s + ϵ) ∧ ξk+1 = ℓ|zr , 0 ≤ r ≤ k]

= Prob[wℓk ∈ [s, s + ϵ) ∧ w
j
k > wℓk, ∀j≠ℓ|zr , 0 ≤ r ≤ k]

=

 s+ϵ

s
Π

nℓ
j=1,j≠ℓ

rj(vj(tk)+ q)
rj(vj(tk))

fℓ(vℓ(tk)+ q)
rℓ(vℓ(tk))

dq. (68)

Replacing (68) in (67), taking the limit as ϵ → 0, and dividing
the numerator and denominator of the right hand side of (67) by
Π

nℓ
j=1rj(vj(tk + s)), we obtain

Prob[ξk+1 = ℓ|hk = s ∧ zr , 0 ≤ r ≤ k]

=
λℓ(vℓ(tk)+ s)
λT (v(tk)+ s1nℓ)

=
λℓ(vℓ(t−k+1))

λT (v(t−k+1))

where λT (v(t−k+1)) :=
nℓ

ℓ=1 λℓ(vℓ(t
−

k+1)). Thus, we conclude that

Prob[(x(tk), v(tk)) = (jℓ(x(t−k )), π
0
ℓ (v(t

−

k )))|hk ∧ zr , 0 ≤ r ≤ k]

=
λℓ(vℓ(t−k ))
λT (v(t−k ))

. (69)

From (69) and (66), we conclude that

Prob[hk ∈ [c, d], x(tk+1) ∈ Ex, v(tk+1) ∈ Ev|zr , 0 ≤ r ≤ k]

=

nℓ
ℓ=1

 d

c
χjℓ(φx(s,x(tk)))∈Ex∧φv(s,x(tk))∈Ev · · ·


Π

nℓ
j=1,j≠ℓ

rj(vj(tk)+ s)
rj(vj(tk))


fℓ(vℓ(tk)+ s)
rℓ(vℓ(tk))


ds, (70)

where χ(···) denotes the characteristic function (62). Note that (70)
depends only on zk = (hk−1, x(tk), v(tk)) and thus the Markov
property (65) holds.

Consider now the piecewise deterministic process defined by
steps (I) and (II) and let

yk := (hk−1, x(tk), v(tk))

where h−1 = 0, and hk−1, tk, x(tk), v(tk) are now the variables
defined in steps (I) and (II). Then, by construction of the process and
Remark 13, we immediately obtain that (66) and (69), also hold for
this process, and this implies that (70) also holds for this process.
Thus yk is a Markov process with the same transition probability
function, i.e., an alternative realization to zk. Since there is a one-
to-one relation between zk and the process defined by (1), (16), and
there is a one-to-one relation between yk and the process defined
by the piecewise deterministic process construction described by
steps (I) and (II), and both processes are completed in the sameway
between jump times (see (60), (64)), we conclude that the process
(1), (16) can be constructed as the piecewise deterministic process
specified by steps (I) and (II). �

Proof of Theorem 1. Theorem 14 allows us to apply the results
available in Davis (1993). In particular, Theorem 1 follows
directly from Davis (1993, p. 33, (14.17)), Davis (1993, p. 66,
Theorem (26.14)) andDavis (1993, p. 70, Remark (26.16)), provided
that we can prove that the assumption in Davis (1993, p. 60,
(24.4)) that the expected value of the number of jumps up to a
given time t is bounded, which when specialized to the stochastic
process (x(t), v(t)), described by (1), is equivalent to saying that
E[
nℓ

ℓ=1 Nℓ(t)] < ∞, where

Nℓ(t) := max{k ∈ N : tℓk ≤ t}. (71)

This is in fact true, since each Nℓ(t) is a renewal process
(Resnick, 1992) with intervals between renewal times following a
probability density function fℓ with no atom points, and therefore
E[Nℓ(t)] < ∞ (cf. Resnick, 1992, p. 186). From this latter fact,
one can also conclude that there is zero probability of an infinite
number of jumps occurring in finite time (cf. Resnick, 1992, p. 186),
which precludes Zeno phenomenon (cf. Goebel et al., 2009). �

Proof of Theorem 3. To prove sufficiency, we use Theorem 1
applied to the function

W (x(t), t) := er1tV (x(t))

where V is a positive function, which equals zero at zero, and
satisfies (25) and (26), r1 is a positive constant such that r1 >
r
c2
, and it is implicit that the process (x(t), t) is a piecewise

deterministic process if x(t) is a piecewise deterministic process
(cf. Davis, 1993, p. 84).We need to show thatW satisfies (21). Since
we assume that a and jℓ are globally Lipschitz, we have ∥a(x)∥ ≤

L1∥x∥, ∀x∈Rn and for every ℓ ∈ L, we have ∥jℓ(x)∥ ≤ L2∥x∥, ∀x∈Rn .
Thus, between jump times,

∥x(t)∥2
≤ e2L1(t−tℓk )∥x(tℓk )∥

2, t ∈ [tℓk , t
ℓ
k+1),

(cf. Khalil, 2002, p. 107, Exercise 3.17) and at jump times,
∥x(tℓk )∥

2
≤ (L2)2∥x(tℓ−k )∥2. Thus,

E[∥x(t)∥2
] ≤ E[e2L1tΠnℓ

ℓ=1(L2)
2Nℓ(t)]∥x0∥2 (72)

where Nℓ(t) is the number of jumps associated with the reset map
ℓ up to the time t , described by (71). We also have

E


tℓk≤n

|W (x(tℓk ))− W (x(tℓ−k ))|


≤ E


tℓk≤n

c2er1n∥x(tℓk )∥
2


≤ c2e2L1ner1n∥x0∥2

nℓ
j=1

∞
k=0

(L2)2kE[χtℓk≤n] (73)

where we used (25) and (72), and χ(···) denotes the characteristic
function (62). Note that E[χtℓk≤n] = Prob[Nℓ(n) ≥ k]. The fact
that the right-hand side of (73) is bounded is a direct application
of Resnick (1992, p. 186, Theorem 3.3.1), and thereforeW satisfies
(21).

From Theorem 1

E(W (x(t), t)) = W (x, 0)+ E
 t

0
AW (x(s), s)ds


for an initial condition x = (x0, τ ). From Davis (1993, p. 84), we
can conclude that

AW (x(s), s) = r1W (x(s), s)+ er1sAV (x(s))

and using (26) we obtain

E(W (x(t), t)) ≤ W (x, 0)

+ E
 t

0
r1W (x(s), s)− rer1s∥x(s)∥ds


.

Using (25) and interchanging expectationwith integral operations,
we obtain

E(W (x(t), t)) ≤ W (x, 0)+


r1 −

r
c2

 t

0
E[W (x(s), s)]ds

which implies, from the integral form of the Gronwall’s inequality
(Bellman, 1991, Lemma 1), that

E[V (x(t))er1t ] = E[W (x(t), t)]

≤ E[W (x, 0)]e

r1−

r
c2


t
= V (x)e


r1−

r
c2


t
. (74)



412 D. Antunes et al. / Automatica 49 (2013) 402–413
Note that we can apply the Gronwall’s inequality since r1−
r
c2
> 0,

and this is the reason to work with W , instead of directly using V .
From (74), we conclude that

E[V (x(t))] ≤ V (x)e−
r
c2

t

and using (25), we conclude that:

E[∥x(t)∥2
] ≤

1
c1

E[V (x(t))] ≤
1
c1

V (x)e−
r
c2

t

≤
c2
c1

∥x0∥2e−
r
c2

t
.

Necessity is obtained by proving that

V (x) := V1(x)+ V2(x) (75)

satisfies (25) and (26) where

V1(x) :=


+∞

0
Ex[x(s)ᵀY (v(s))x(s)]ds

V2(x) :=

nℓ
ℓ=1


k>0

Ex[x(tℓ−k )ᵀZ(v(tℓ−k ))x(tℓ−k )],

Ex emphasizes that expectation subsumes that the process starts
at an initial condition x = (x0, τ ), and a1 ≤ Y (τ ) ≤ a2I, ∀τ ∈ B,
and b1 ≤ Z(τ ) ≤ b2I, ∀τ ∈ B, are differentiable functions, where
ai, bi, i ∈ {1, 2} are positive constants.

To see that V (x) ≥ c1∥x0∥2 denote by t1 the time of the first
jump, which can be from any of the nℓ reset maps, and note that
V (x) ≥ a1

 t1
0 Ex[x(s)ᵀx(s)]ds + b1Ex[x(t−1 )

ᵀx(t−1 )] for any t1 ≥ 0.
Let L1 be a Lipschitz constant for a, ∥a(x)∥ ≤ L1∥x∥. Then we have
x(t)ᵀx(t) ≥ xᵀ

0x0e
−2L1t ,∀t≥0 (cf. Khalil, 2002, p. 107, Exercise 3.17).

Thus V (x) ≥ c1x
ᵀ
0x0 where c1 = a1

 t1
0 e−2L1tdt + b1e−2L1t1 >

0,∀t1>0.
To see that V (x) ≤ c2∥x0∥2, note that since (1) is MES, we have

that Ex[x(t)ᵀx(t)] ≤ ce−αtxᵀ
0x0 for some constant c > 0. Thus

V1(x) ≤ a2 c
α
xᵀ
0x0, and V2(x) ≤ k2x

ᵀ
0x0 where k2 :=

nℓ
ℓ=1


∞

k=1

E[b2ce−αtℓk ]. Note that E[e−αtℓk ] = η0η
k−1, where η0 = E[e−αhℓ0 ],

η = E[e−αhℓk1 ] < 1, for some 1 ≤ k1 < k, and therefore k2 < ∞.
Thus, V (x) ≤ c2∥x0∥2 where c2 = a2 c

α
+ k2.

It follows from Davis (1993, p. 92, Corollary (32.6)) that V1(x)
is differentiable since, as required in Davis (1993, p. 92, Corol-
lary (32.6)) λT (τ ) is continuous. From Davis (1993, p. 92, Theo-
rem (32.2))

AV1(x) = −xᵀ
0Y (τ )x0

and from Davis (1993, pp. 90, 91) we have that

E[V2(x)] = Ex


∞

0
λT (v(t))x(t)ᵀZ(v(t))x(t)dt


,

from which one can conclude again from Davis (1993, p. 92, Theo-
rem (32.2)) that

AV2(x) = −λT (τ )x
ᵀ
0Z(τ )x0

and that V2(x) is differentiable (again by Davis, 1993, Corol-
lary (32.6)). Thus V (x) is differentiable and AV (x) ≤ −rxᵀ

0x0 for
r = a1. �

Proof of Theorems 5 and 9

Proof of Theorem 5. From the explicit solution to (27), described
by (44), and the commuting property, we obtain that

E[x(t)ᵀx(t)] = xᵀ
0e

AᵀtΠ
nℓ
ℓ=1E[(Jᵀℓ )

Nℓ(t)JNℓ(t)ℓ ]eAtx0, (76)
where Nℓ(t) is described by (71). From Antunes et al. (2012,
Theorem 4), we can conclude for some symmetric matrix C and
for αℓ described by (36), we have that E[(Jᵀℓ )

Nℓ(t)JNℓ(t)ℓ ] ≤ Ceαℓt ,
if rσ (J

ᵀ
ℓ ⊗ Jᵀℓ ) ≠ 0, and therefore (76) can be bounded by

E[x(t)ᵀx(t)] ≤ ce(2λ̄+
nℓ
ℓ=1 αℓ)txᵀ

0x0 for some constant c. The result
then follows from this latter observation and by noticing that if
rσ (J

ᵀ
ℓ ⊗ Jᵀℓ ) = 0, the state is x reset to zero after a finite number

of jumps. �

Proof of Theorem 9. We rewrite the dynamic and reset maps in
(1) as

a(x) = Ax + fe(x), jℓ(x) = Jℓx + geℓ(x), (77)

where fe(x) := a(x)−Ax, and geℓ(x) := jℓ(x)− Jℓx are differentiable
functions such that

∥fe(x)∥
∥x∥

→ 0, and
∥geℓ(x)∥

∥x∥
→ 0, as ∥x∥ → 0 (78)

(cf. Khalil, 2002, p. 138). Let V (x(t)) = x(t)ᵀX(v(t))x(t), where
x(t) is described by (18) and X(τ ), τ ∈ B satisfies (40) and c1I ≤

X(τ ) ≤ c2I, ∀τ ∈ B for positive constants c1 and c2. Then, there
exists ν > 0 such that

AV (x) = −r(x) ≤ −d1∥x∥2, ∀x:∥x∥≤ν (79)

for some d1 > 0, where AV (x) is given by (23). This expression
(79) can be obtained by directly replacing (77) in (23), and using
(78) in a similar fashion to the proof of an analogous result
for deterministic non-linear systems (cf. Khalil, 2002, p. 139,
Theorem 4.7).

Using similar arguments to Kushner (1967, Theorem 1,
Chapter 2), we consider the stopped process xS(t) := x(t ∧ τm),
where t ∧ τm := min(t, τm); τm = inf{t : x(t) ∉ Bm} is the first
exit time from the set Bm := {x : V (x) < m}; and m ≤

ν2

c1
is such

that Bm ⊆ {(x, τ ) : ∥x∥ ≤ ν}. It is easy to see that x(t ∧ τm) is a
piecewise deterministic process and from (23) and (79),

AV (x(t ∧ τm)) =


−r(x) if x ∈ Bm
0 otherwise. (80)

Considering (22) for the process xS and using (80), we obtain that
Ex[V (x(t ∧ τm))] ≤ V (x), i.e., V (x(t ∧ τm)) is a super-martingale,
where Ex denotes expectation with respect to the Markov process
x started at initial condition x = (x0, τ ). From this latter fact,
and using the fact that limt→0 Ex[V (x(t))] = V (x), (cf. Davis,
1993, p. 77, Theorem (27.6)), we can apply the super-martingale
theorem (Kushner, 1967, p. 26, Eq. (7.4)), and conclude that

Probx


sup

∞>t≥0
V (x(t ∧ τm)) ≥ m


≤

V (x)
m

(81)

where Probx denotes probability with respect to the Markov
process x started at initial condition x = (x0, τ ). Given ϵ, ρ, choose
m =

min(ν,ϵ)2

c1
, and δ =


ρm
c2

. Then, for any ∥x0∥ ≤ δ,

Probx


sup

∞>t≥0
∥x(t ∧ τm)∥ ≥ ϵ


≤ Probx


sup

∞>t≥0
V (x(t ∧ τm)) ≥ m


≤

V (x)
m

≤
c2∥x0∥2

m
≤ ρ (82)

i.e., the origin of (1) is stable with probability one. �
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