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A novel fault detection and isolation (FDI) method using set-valued observers (SVOs), for uncertain linear

parameter-varying (LPV) systems, is introduced. The proposed method relies on SVO-based model

invalidation to discard models incompatible with measured data. When compared to the most common

strategies in the literature, the suggested approach: (i) under suitable conditions, guarantees false alarms

are avoided; (ii) unlike residual-based architectures, does not require the computation of thresholds to

declare faults; (iii) has applicability to a wide class of plants. The performance of the proposed approach is

assessed in simulation, using the full nonlinear model of a fixed-wing aircraft longitudinal dynamics.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The field of fault detection and isolation (FDI) has been studied
since the early 1970s Willsky (1976), and several techniques have,
since then, been applied to different types of systems. An FDI device
is key in several applications and, in particular, in those that are
safety critical. Common examples of systems equipped with FDI
devices include aircrafts and a wide range of industrial processes
such as the ones described in the following references—Blanke,
Izadi-Zamanabadi, Bogh, and Lunau (1997), Blanke, Staroswiecki,
and Wu (2001), Isermann (1997), Patton and Chen (1997), Frank and
Ding (1997), Esteban (2004), Collins and Tinglun (2001), Alwi and
Edwards (2008), Longhi and Moteri �u (2009), Mattone and De Luca
(2006). For a survey of FDI methods in the literature, see, for
instance, Hwang, Kim, Kim, and Eng Seah (2010). An FDI system
must be able to bear with different types of faults in sensors and/or
actuators, which can occur abruptly or slowly in time. Moreover,
model uncertainty (such as unmodeled dynamics) and disturbances
must never be interpreted as faults. Notwithstanding the hundreds
(or maybe thousands!) of papers in the literature concerning this
topic, there are still some open questions related to the performance
guarantees provided by these devices.

An active deterministic model-based fault detection (FD) system
(see Esteban, 2004, for a description of the typical FD classes available
in the literature) is usually composed of two parts: a filter that
generates residuals, which should be large under faulty environ-
ments; and a decision threshold, which is used to decide whether a
ll rights reserved.
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fault is present or not—see Willsky (1976), Patton and Chen (1997),
Esteban (2004), Frank and Ding (1994), Massoumnia (1986b),
Besanc-on (2003), Bokor and Balas (2004), Blanke, Kinnaert, Lunze,
Staroswiecki, and Schröder (2006), Puig, Quevedo, Escobet, Nejjari,
and de las Heras (2008), Meskin and Khorasani (2009), Wang, Wang,
and Shi (2009), Narasimhan, Vachhani, and Rengaswamy (2008),
Ducard (2009) and references therein. The isolation of the fault can,
in some cases, be done using a similar approach, i.e., by designing
filters for families of faults, and identifying the most likely fault as
that associated to the filter with smaller residuals.

The main idea in such architectures stems from the design of
filters that are more sensitive to faults than to disturbances and
model uncertainty. This can be achieved, for instance, by using
geometric considerations regarding the plant, as in Massoumnia
(1986a, 1986b), Longhi and Moteri �u (2009), Bokor and Balas (2004),
or by optimizing a particular norm minimization objective, such as
the H1- or l1-norm—see Edelmayer, Bokor, and Keviczky (1994),
Frank and Ding (1997), Niemann and Stoustrup (2001), Marcos,
Ganguli, and Balas (2005), Collins and Tinglun (2001). The latter
approach provides, in general, important robustness properties, as
stressed in Edelmayer et al. (1994), Mangoubi, Appleby, Verghese,
and Vander Velde (1995), Patton and Chen (1997) and Esteban
(2004), by explicitly accounting for model uncertainty.

The FDI strategy proposed in this paper uses a different philoso-
phy. Instead of identifying the most likely model of the faulty plant,
one discards models that are not compatible with the observations.
As shown in the sequel, this method guarantees that there will not be
false alarms, as long as the model of the non-faulty plant remains
valid. I.e., if the assumptions regarding the bounds on the exogenous
disturbances are not violated, and the model of the dynamics of the
plant is valid, then no fault is declared. Moreover, one need not
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compute the decision threshold used to declare whether or not a fault
has occurred. To this end, the technique introduced in Rosa, Silvestre,
Shamma, and Athans (2009, 2010), which is based upon the use of
set-valued observers (SVOs) – see Witsenhausen (1968), Schweppe
(1968, 1973), Milanese and Vicino (1991) and Shamma and Tu (1999)
and references therein for an overview on SVOs – is extended.

In this paper, an application example of a new FDI method
based on SVOs is provided, and the performance of the afore-
mentioned technique when applied to the detection of faults in an
aircraft is addressed. The performance of the approach is assessed
in simulation, by deliberately generating faults in the nonlinear
aircraft model. The key criteria of this evaluation are the time
required to diagnose a failure, and the robustness of the method
against model uncertainty and exogenous disturbances.

The remainder of this paper is organized as follows: Section 2
introduces the robust SVOs that are going to be used for FDI; Section
3 presents the methodology to design FD filters using SVOs, and
discusses some of the approaches to modeling several types of
faults; Section 4 extends the ideas in Section 3 for isolating the
faults; Section 5 presents the full nonlinear longitudinal aircraft
dynamic model and the corresponding LPV approximation; simula-
tion results for the nonlinear dynamic model of the longitudinal
dynamics of an aircraft are presented in Section 6; and finally,
Section 7 summarizes some of the conclusions regarding this paper.

2. Set-valued observers

As shown in the sequel, the problem of ‘‘disqualifying’’ dynamic
models of a system can be tackled using set-valued observers
(SVOs)—see Witsenhausen (1968), Schweppe (1968, 1973) and
Milanese and Vicino (1991). One assumes that the non-faulty plant
can be represented by an uncertain (possibly time-varying) discrete-
time linear system, with uncertain initial conditions, and excited by
bounded but unknown exogenous disturbances, i.e.,

xðkþ1Þ ¼ ðAðkÞþADðkÞÞxðkÞþLdðkÞdðkÞþðBðkÞþBDðkÞÞuðkÞ,

yðkÞ ¼ ðCðkÞþCDðkÞÞxðkÞþnðkÞ,

(
ð1Þ

where xðkÞARn, dðkÞARnd , uðkÞARnu , yðkÞARny , xð0Þ ¼ xo, xoAXð0Þ,

dðkÞ with JdðkÞJ :¼ maxi9diðkÞ9r1 are the disturbances, nðkÞ with

JnðkÞJ :¼maxi9niðkÞ9rn is the sensors noise, uðkÞ is the control

input, yðkÞ is the measured output, xðkÞ is the state of the system and

Xð0Þ :¼ SetðMo,moÞ, where, for any positive integers ‘1 and ‘2, and

for any matrix MAR‘1�‘2 and vector mAR‘1 ,

SetðM,mÞ :¼ fq : Mqrmg ð2Þ

represents a convex polytope. In Xð0Þ, Mo is a known matrix and mo

is a known vector, and are used to describe the uncertainty regarding

the initial state of the system. The matrix AðkÞþADðkÞ models the

uncertain dynamics of the system, at time k, with AðkÞ known and

ADðkÞ uncertain, as further described in the sequel. A similar structure

is assumed to the input and output matrices, i.e., BðkÞþBDðkÞ and

CðkÞþCDðkÞ, respectively. The matrix LdðkÞ describes the direction
upon which the disturbances can act, at time k, and is also assumed
known. Moreover, it is assumed that the matrices of the dynamics of
(1) are uniformly bounded, i.e., there exists ao1 such that

JAðkÞJ,JADðkÞJ,JLdðkÞJ,JBðkÞJ,JBDðkÞJ,JCðkÞJ,JCDðkÞJra,

for all k, where, for a matrix M, JMJ denotes the maximum singular

value of M. The elements of vector vðkÞ are represented as vi(k), so

that vðkÞ ¼ ½v1ðkÞ, v2ðkÞ, . . . ,vmðkÞ�
T. The concatenation of a sequence

of vectors vðkÞ, vðk�1Þ, � � �, vðk�Nþ1Þ is denoted by

vN ¼

vðkÞ

^

vðk�Nþ1Þ

2
64

3
75:
For the sake of simplicity, v is used instead of vN whenever N can be

inferred from the context. Also, for a matrix MARn, let

M

%

� �
:¼

M

�M

� �
:

Furthermore, it is assumed that

ADðkÞ ¼A1ðkÞD1ðkÞþA2ðkÞD2ðkÞþ � � � þAnA
DnA
ðkÞ,

for 9DiðkÞ9r1,i¼ 1, . . . ,nA. The scalars DiðkÞ, i¼ f1, . . . ,nAg, repre-
sent parametric uncertainties, while the matrices AiðkÞ, i¼

f1, . . . ,nAg, are the directions which those uncertainties act upon.
For the time being, it is assumed that

BDðkÞ � 0, CDðkÞ � 0, kZ0:

This assumption will be dropped in the sequel, and is considered
here just for the sake of clarity.

The goal here is to find xðkþ1Þ, based upon (1) and with the
additional knowledge that xðkÞAXðkÞ,xðk�1ÞAXðk�1Þ, . . . ,xðk�NÞ

A Xðk�NÞ for some finite N. It is further required that for all
xAXðkþ1Þ, there exists xðkÞAXðkÞ such that the observations are
compatible with (1). In other words, Xðkþ1Þ should be the smallest
set containing all the solutions to (1). A procedure for discrete time-
varying linear systems was introduced in Shamma and Tu (1999),
and preliminary results of the extension of this technique to
uncertain plants were presented in Rosa et al. (2009, 2010).

However, for plants with uncertainties, the set Xðkþ1Þ is, in
general, non-convex, even if X(k) is convex. Thus, it cannot be
represented by a linear inequality as in (2). The approach suggested
in Rosa et al. (2009), which assumes that rankðAiðkÞÞ ¼ 1 for all
iAf1, . . . ,nAg, is to overbound this set by a convex polytope, there-
fore, adding some conservatism to the solution.

It is presented, in the sequel, a different approach, which does
not require the rank assumption on the AiðkÞ matrices, and that
reduces to the procedure in Rosa et al. (2009) whenever such a
rank condition is verified. This approach amounts to solving (1) for
the vertices of the hyper-cube defined by 9DiðjÞ9r1,i¼ 1, . . . , nA,
and j¼ k�Nþ1, . . . ,k, as explained next.

Indeed, consider a realization of (1) where DiðjÞ ¼Dn

i ðjÞ,
i¼ 1, . . . ,nA, and j¼ k�Nþ1, . . . ,k, and denote by ADn ðjÞ the corre-
sponding uncertainty maps, i.e.,

ADn ðjÞ ¼A1ðjÞD
n

1ðjÞþA2ðjÞD
n

2ðjÞþ � � � þAnA
ðjÞDn

nA
ðjÞ:

Then, the technique in Shamma and Tu (1999) can be used to
design an SVO which computes a set-valued estimate of the state
of the plant, by noting that (1) with DiðjÞ ¼Dn

i ðjÞ,i¼ 1, . . . ,nA, and
j¼ k�Nþ1, . . . ,k, is equivalent to stating that there exist
xðkþ1Þ, . . . ,xðk�Nþ1Þ, yðkÞ, and dðkÞ, . . . ,dðk�Nþ1Þ, such that,

PðkÞ

xðkþ1Þ

xðkÞ

xðk�1Þ

^

xðk�Nþ1Þ

dðkÞ

dðk�1Þ

^

dðk�Nþ1Þ

2
66666666666666664

3
77777777777777775

r

BðkÞuðkÞ

%

F1
kBðk�1Þuðk�1ÞþBðkÞuðkÞ

%

^

FN�2
k Bðk�Nþ1Þuðk�Nþ1Þþ � � � þBðkÞuðkÞ

%

1

^

1

~mðkÞ

^

mðk�NÞ

2
666666666666666666666666664

3
777777777777777777777777775

¼: pðkÞ,

ð3Þ



Rn

R(n+nd)N
Set(P(k),p(k))

X(k+1)

Fig. 1. Projection of SetðPðkÞ,pðkÞÞ onto Rn.

X(k)^
X (k)=1

X (k)=-1

Fig. 2. Convex hull, X̂ ðkÞ, of the sets generated by the solutions to (1) with nA¼1,

N¼1, and for D¼ 1 and D¼�1.
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where

PðkÞ ¼

I �F0
k 0 0 � � � 0 �Lk 0 0 � � � 0

% % % % � � � % % % % � � � %

I 0 �F1
k 0 � � � 0 �Lk �F0

kLk�1 0 � � � 0

% % % % � � � % % % % � � � %

^ ^ ^ ^ & ^ ^ ^ ^ & ^

I 0 0 0 � � � �FN�1
k �Lk �F0

kLk�1 �F1
kLk�2 � � � �FN�2

k Lk�Nþ1

% % % % � � � % % % % � � � %

0 0 0 0 � � � 0 I 0 0 � � � 0

% % % % � � � % % % % � � � %

^ ^ ^ ^ & ^ ^ ^ ^ & ^

0 0 0 0 � � � 0 0 0 0 � � � I

% % % % � � � % % % % � � � %

~Mkþ1 0 0 0 � � � 0 0 0 0 � � � 0

0 ~Mk 0 0 � � � 0 0 0 0 � � � 0

^ ^ ^ ^ & ^ ^ ^ ^ & ^

0 0 0 0 � � � ~Mk�Nþ1 0 0 0 � � � 0

2
666666666666666666666666666664

3
777777777777777777777777777775

,

~Mk ¼
CðkÞ
�CðkÞ

h i
, ~mk ¼

1�nþyðkÞ
1�n�yðkÞ

h i
, Mk and mk are defined such that

XðkÞ ¼ SetðMk,mkÞ, Lk ¼ LdðkÞ and

Fm
k :¼ Fm

k ðD
n
Þ :¼ ðAðkÞþADn ðkÞÞ � � � ðAðk�mÞþADn ðk�mÞÞ:

Notice that (3) can be obtained from the constraints on the
disturbances and on the initial state, and from the relations

yðkþ1Þ ¼ CðkÞxðkþ1Þþnðkþ1Þ,

xðkþ1Þ ¼ F0
kðDÞxðkÞþLdðkÞdðkÞ,

xðkþ1Þ ¼ F1
k ðDÞxðk�1ÞþLdðk�1Þdðk�1ÞþLdðkÞdðkÞ,

^

xðkþ1Þ ¼ FN�1
k xðk�Nþ1Þþ � � � þLdðkÞdðkÞ:

8>>>>>>><
>>>>>>>:

For given Dn

i ðjÞ, i¼ 1, . . . ,nA, and j¼ k�Nþ1, . . . ,k, the Fourier–

Motzkin elimination method (see Keerthi & Gilbert, 1987; Shamma
& Tu, 1999) can be used to reduce (3) to an inequality of the form
MDnxðkþ1ÞrmDn : To see this, note that

½xTðkþ1Þ, . . . ,xTðk�Nþ1Þ, dT
ðkÞ, . . . ,dT

ðk�Nþ1Þ�TARnþðnþndÞN ,

which means that (3) is a polytope defined in RnþðnþndÞN . Thus, by
projecting this polytope onto the subspace of the first n coordi-
nates, one obtains a description of all the admissible xðkþ1Þ,
which does not depend upon xðkÞ, . . . ,xðk�Nþ1Þ, nor dðkÞ, . . . ,
dðk�Nþ1Þ, as depicted in Fig. 1.

Let vi, for i¼ 1, . . . ,2NnA , denote a vertex of the hyper-cube

C :¼ fdARNnA : JdJr1g, ð4Þ

where vi ¼ vj3i¼ j. Then, denote by X̂ vi
ðkþ1Þ the set of points

xðkþ1Þ that satisfy (3) with ADn ¼Avi
and with xðkÞA X̂ ðkÞ. The

notation AD ¼ADn is used to indicate that ADðmÞ ¼ ADn ðmÞ for
m¼ k�Nþ1, . . . ,k, and ADn ¼Avi

to indicate that

Dn
¼

Dn
ðkÞ

^

Dn
ðk�Nþ1Þ

2
64

3
75¼ vi:

Further define

X̂ ðkþ1Þ : ¼ cofX̂ v1
ðkþ1Þ,X̂ v2

ðkþ1Þ, . . . ,X̂ v
ð2NnA Þ
ðkþ1Þg,

where cofp1, . . . ,pmg is the smallest convex set containing the
points p1, . . . ,pm, also known as the convex hull of p1, . . . ,pm.

Since Xðkþ1Þ can be, in general, non-convex even if X(k) is
convex, X̂ ðkþ1Þ is used to overbound the set Xðkþ1Þ. As seen in
the sequel, X̂ ðkþ1Þ is an estimate of Xðkþ1Þ which contains the
latter set. An illustration of X̂ ðkÞ for nA¼1, i.e., for a single
uncertainty, and for N¼1 is depicted in Fig. 2.

One advantage of using X̂ ðkþ1Þ instead of another convex set
is stated in the following proposition.
Proposition 1. Suppose that a system described by (1) with

xð0Þ ¼ xo and uðkÞ ¼ 0,8k, and where the matrices of the dynamics

are uniformly bounded, satisfies, for sufficiently large Nn,

gN :¼ max
DðkÞ,...,Dðkþ NÞ
JDðmÞJr 1,8m

k Z 0

JFN�1
k ðDÞJo1,

for all NZNn. Then, X̂ ðkÞ cannot grow without bound.

Proof. Consider a sequence of hyper-cubes, denoted by Cð1Þ,
Cð2Þ, . . . ,CðmÞ, that contain the sets X̂ ð1Þ,X̂ ð2Þ, . . . ,X̂ ðmÞ, respec-
tively. Let NZNn. Then, an SVO can be synthesized to generate
such sets Cð1Þ,Cð2Þ, . . . ,CðmÞ, using the following inequality:

JxðkþNÞJrgNJxðkÞJþdN , ð5Þ

where

dN ¼ max
dðkÞ,...,dðkþ N�1Þ
DðkÞ,...,DðkþNÞ

JFN�2
k LdðkÞdðkÞþ � � � þLdðkþN�1ÞdðkþN�1ÞJ:

Notice that it suffices to show that the sequence Cð1Þ,Cð2Þ, . . . ,
CðmÞ does not grow without bound, since these terms are the
smallest hypercubes that contain X̂ ð1Þ,X̂ ð2Þ, . . . ,X̂ ðmÞ. Given that
gN o1 by assumption and that JdNJo1 since JdJo1 and given
that the matrices of the dynamics are uniformly bounded, one
concludes that the sets defined by (5) cannot grow without
bound. &

Remark 1. Notice that, in order to guarantee that X̂ does not
grow without bound, an SVO should use the N most recent
estimates. In other words, the estimation of X̂ ðkþ1Þ should take
into account the estimates X̂ ðkÞ,X̂ ðk�1Þ, . . . ,X̂ ðk�Nþ1Þ.

Another advantage of the use of set X̂ stems from the fact that
XðkÞD X̂ ðkÞ. This is stated in the following proposition:

Proposition 2. Consider a system described by (1) with the afore-

mentioned constraints, and assume that Xð0ÞD X̂ ð0Þ. Then XðkÞD X̂ ðkÞ

for all kAf0,1,2, . . .g.

Proof. Denote by Xvi
ðkþ1Þ the set of points xðkþ1Þ that satisfy

(1) with the aforementioned constraints, and with ½DT
ðkÞ,

. . . ,DT
ðk�Nþ1Þ�T ¼ vi and xðkÞAXðkÞ, . . . ,xðk�Nþ1ÞAXðk�Nþ1Þ.
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Fig. 3. Block diagram of an LPV system with uncertainties in the output.
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Further define

Xn
ðkþ1Þ :¼ cofXv1

ðkþ1Þ,Xv2
ðkþ1Þ, . . . ,Xv

2ðNnA Þ
ðkþ1Þg:

Then, it is clear that Xn
ðkþ1ÞD X̂ ðkþ1Þ if XðjÞD X̂ ðjÞ, for 0r jrk.

By induction, it is straightforward to conclude that Xn
ðiÞD X̂ ðiÞ for

all iAf0,1,2, . . .g, since it was assumed that Xð0ÞD X̂ ð0Þ.

Hence, the only thing left to prove is that XðkÞDXn
ðkÞ. To see

this, note that the disturbances and control input in (1) do not add

any non-convexities to the set-valued estimate of the state at

each sampling time. Therefore, without loss of generality, assume

that dð�Þ � 0 and uð�Þ � 0 in (1). Let x%AXðkÞ be obtained by using a

vector DAC in (4). Thus, it can be defined as

x% :¼
YN
i ¼ 1

ðAoðk�iÞþaiAðk�iÞ�ð1�aiÞA1ðk�iÞÞ

" #
x, ð6Þ

where xAXðk�NÞ, 0rair1, for iAf1, . . . ,Ng, and assuming a

single uncertainty, 9DðiÞ9r1, iZ0, for the sake of simplicity.

(Recall that, in this scenario, D¼ ½DT
ðk�1Þ � � �DT

ðk�NÞ�T). It will

now be shown that x% can be obtained as a convex combination of

points satisfying (1), with dð�Þ � 0, uð�Þ � 0, xðk�NÞAXðk�NÞ, and

for D in the vertices of C. Define

Aþ ðkÞ ¼AðkÞþA1ðkÞ,

A�ðkÞ ¼AðkÞ�A1ðkÞ,

(

and let

x1
1 ¼Aþ ðk�1ÞAþ ðk�2Þ � � �Aþ ðk�NÞx,

x1
2 ¼A�ðk�1ÞAþ ðk�2Þ � � �Aþ ðk�NÞx,

x1
3 ¼Aþ ðk�1ÞA�ðk�2Þ � � �Aþ ðk�NÞx,

x1
4 ¼A�ðk�1ÞA�ðk�2Þ � � �Aþ ðk�NÞx,

^

x1
2N
�1
¼ Aþ ðk�1ÞA�ðk�2Þ � � �A�ðk�NÞx,

x1
2N ¼A�ðk�1ÞA�ðk�2Þ � � �A�ðk�NÞx,

8>>>>>>>>>>>><
>>>>>>>>>>>>:
where xAXðk�NÞ. Now let

x2
1ðg1Þ ¼ ½ðAðk�1Þþg1A1ðk�1Þ�ð1�g1ÞA1ðk�1ÞÞAþ ðk�2Þ � � �Aþ ðk�NÞ�x,

x2
2ðg1Þ ¼ ½ðAðk�1Þþg1A1ðk�1Þ�ð1�g1ÞA1ðk�1ÞÞA�ðk�2Þ � � �Aþ ðk�NÞ�x,

^

x2
2N�1 ðg1Þ ¼ ½ðAðk�1Þþg1A1ðk�1Þ�ð1�g1ÞA1ðk�1ÞÞA�ðk�2Þ � � �A�ðk�NÞ�x:

8>>>><
>>>>:
Notice that x2

1 is a convex combination of x1
1 with x1

2, while x2
2 is a

convex combination of x1
3 with x1

4, and so on. Straightforward but

tedious calculations show that

xNþ1
1 ðg1, . . . ,gNÞ ¼

YN
i ¼ 1

ðAðk�iÞþgiA1ðk�iÞ�ð1�giÞA1ðk�iÞÞ

" #
x: ð7Þ

Hence, by comparing (6) with (7), one gets

xNþ1
1 ðg1, . . . ,gNÞ ¼ x%,

for gi ¼ ai, for all iAf1, . . . ,Ng. A similar procedure can be used for

the case where more than one uncertainty is considered, thus

concluding the proof. &

The uncertainty in BDðkÞmay also be modeled as an exogenous
disturbance, since BðkÞ and uðkÞ in the model are assumed known
at each sampling time. In particular, if the model is described by

xðkþ1Þ ¼AðkÞxðkÞþðBðkÞþB1ðkÞDðkÞÞuðkÞ,

where B1ðkÞ is a known time-varying matrix and where DðkÞAR

with 9DðkÞ9r1, then it can be rewritten as

xðkþ1Þ ¼AðkÞxðkÞþBðkÞuðkÞþLdðkÞdðkÞ,
where LdðkÞ ¼ B1ðkÞuðkÞ and dðkÞ is an exogenous disturbance with
JdJr1.

The uncertainty in CDðkÞ requires a more detailed analysis.
Indeed, consider a dynamic system, S, described by

S :

xðkþ1Þ ¼ AðkÞxðkÞþBðkÞuðkÞþLðkÞdðkÞ,

yðkÞ ¼ CoðkÞþ
XnD

j ¼ 1

DjðkÞCjðkÞ

0
@

1
AxðkÞþnðkÞ,

8>>><
>>>:

ð8Þ

with the aforementioned constraints, and DðkÞARnD . It is also
assumed that

9DjðkÞ9r1:

Notice that S is equivalent to

S� ðSoþnÞþ
XnD

j ¼ 1

ðDjSjþnÞ, ð9Þ

where, for jAf1, . . . ,nDg,

Sj :
xjðkþ1Þ ¼AðkÞxjðkÞþBðkÞuðkÞþLðkÞdðkÞ,

yjðkÞ ¼ CjðkÞxjðkÞ,

(

with xjð0Þ ¼ xð0Þ for all jAf0, . . . ,nDg, and n ¼ n=ðnDþ1Þ. The block
diagram of (9) is depicted in Fig. 3.

Since each Sj, for jAf0, . . . ,nDg, is a linear system, and each
DjðkÞ, for jAf1, . . . ,nDg and kZ0, is an uncertain scalar, one
obtains

S� ðSoþnÞþ
XnD

j ¼ 1

ð ~SjþnÞ, ð10Þ

where

~Sj :
xjðkþ1Þ ¼AðkÞxjðkÞþBðkÞDjðkÞuðkÞþLðkÞDjðkÞdðkÞ,

yjðkÞ ¼ CjðkÞxjðkÞ:

(

Notice that (10) describes an LPV system with uncertain input.
Nevertheless, the exogenous disturbances are now multiplied by
the uncertainties DjðkÞ, and hence ~Sj depends upon DjðkÞ and dðkÞ
in a bilinear fashion. However, this can be avoided by introducing
the following relaxation. Since 9DjðkÞ9r1,

~djðkÞ :¼ DjðkÞdðkÞ ) J ~djðkÞJrJdðkÞJ: ð11Þ

Thus, by substituting DjðkÞdðkÞ in (10) by ~djðkÞ as in (11), one
obtains a description of the system which is linear in the
unknown variables, at the cost of some conservatism due to the
implication in (11).
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3. Fault detection using SVOs

In this section, an SVO-based method to detect faults is
introduced. Since a fault can be defined as a deviation of the
plant dynamics from the nominal model, an SVO can be used to
detect such a mismatch between the predicted and the actual
output of the system. As further stressed in the sequel, this
nominal model of the plant must account for unmodeled
dynamics, exogenous disturbances and measurement noise.

The following proposition is used to detect faulty behaviors of
plants that are modeled by systems represented by (1).

Proposition 3. Consider a non-faulty plant described by (1) and a

corresponding SVO, as introduced in Section 2. Then, if X̂ ðkÞ ¼ | for

some kZ0, a fault has occurred at some time ko, where kork.

Proof. If X̂ ðkÞ is empty for some k, then the observations are not
compatible with the model of the plant. Since it was assumed that
the non-faulty plant can be described by (1), one concludes that a
fault has occurred. &

Using Proposition 3, the architecture depicted in Fig. 4 can be
used to tackle the problem of fault detection for discrete-time LPV
systems. Notice that the FD filter is composed of an SVO and a
logic block, which decides whether a fault is diagnosed or not,
according to the emptiness or not of the set-valued estimate of
the state at each sampling time.

3.1. The (in)distinguishability problem

The sufficient condition in Proposition 3 guarantees that there
will be no false alarms, unless model (1) does not properly
describe the nominal plant. It does not, however, provide any
guarantees in terms of fault detection, after a certain fault has
occurred in the actual system. Indeed, it may happen that a fault
is not detected using the approach presented herein. Assuming
that (1) adequately describes the plant model, there are two
reasons that can justify a missed detection of a fault using the
proposed technique:
1.
Fig
obs
The conservatism added due to the convexification of the set of
admissible state values, can lead to the validation of certain
observations, that are in fact not compatible with (1).
2.
 The input/output data sequence generated by the faulty plant
can, under certain circumstances, be generated also by the
nominal plant, for the prespecified level of state disturbances,
model uncertainty, and measurement noise. If such an event
can never occur, it is said that the faulty and the nominal plant
are distinguishable.
Unknown Plant

SVO

u(k)
y(k)

Sensor
noise

Plant
disturbances

d(k) n(k)

Logic

X(k)

X(k)=    ?^

^

YesNo

No Fault
Detected

Fault
Detected

FD signal

FD Filter w/SVO

. 4. Fault detection (FD) architecture for uncertain plants using a set-valued

erver (SVO).
These topics are still under research and some preliminary
results are presented in Rosa and Silvestre (2011). The interested
reader is further referred to Grewal and Glover (1976), DiStefano
(1977), DiStefano and Cobelli (1980), Walter, Lecourtier, and
Happel (1984), Lou and Si (2009) and Johansson (2009).

Remark 2. Proposition 3 can only guarantee that there will be no
false alarms, as long as the bounds on the exogenous disturbances
are not violated. However, in several applications, such an
assumption may not be plausible from a practical point of view,
and thus the probability of violating such bounds can be used as
an upper bound on the likelihood of having false alarms.

4. Fault isolation using SVOs

The fault isolation techniques available in the literature aim at
identifying a very precise faulty behavior, after a general fault is
detected. This means that, unlike an FD filter, an FDI filter should
not only be able to detect a faulty behavior of a plant, but also to
provide information regarding its location. In particular, FDI
filters should be able to separate between the three broad types
of failures enumerated in the sequel.

The proposed technique is also suitable for fault isolation, as
long as the corresponding model of the fault is considered during
the design of the SVOs. The main idea in this case is to resort to
model invalidation, as follows (see Rosa, Silvestre, & Athans, 2011,
for further details on model falsification using SVOs). As an
example, suppose that there are three possible faulty models,
M#1, M#2 and M#3, for a given plant, plus a nominal model,
M#4. The goal is to decide which model (if any) is able to justify
the input/output data that one is obtaining from the sensors and
actuators’ commands. Therefore, assume that, at a given initial
time, to, all the four models are plausible, as depicted in Fig. 5.
Further suppose that, at time t1, model M#4 is invalidated, i.e., the
sensors readings cannot be explained by model M#4. Hence, since
this is the nominal model, one concludes that a fault has occurred.

Moreover, consider that, at time t2, model M#2 is invalidated
and that, finally, model M#1 is invalidated at time t3. Then, one
concludes that the only model capable of explaining the input/
output time-series generated by the plant is model M#3. Thus, a
fault was properly detected at time t1, and isolated at time t3.

In this paper, an alternative to the model invalidation methods
in Poolla, Khargonekar, Tikku, Krause, and Nagpal (1994) and
Bianchi and Sánchez-Peña (2010) is proposed, that compares the
whole input/output sequence generated by the plant up to a given
time instant, with the dynamic model of the plant. Contrary to the
aforementioned solutions, the technique presented herein relies
on a recursive algorithm, which is, in general, more suitable for
real-time implementation.

4.1. Architecture I

Consider, for instance, a loss-of-effectiveness type of fault in
one actuator. As described in the sequel, this fault can be modeled
by multiplying the actuator input signal by a constant lA ½0,1�.
Therefore, consider an SVO, as described in Section 2, designed for
Fig. 5. Example of the time-evolution of a set of models that are able to describe

the input/output behavior of a given plant.
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a plant with this type of uncertainty. Then, such an SVO would
validate observations from a model with any value of lA ½0,1� and,
in particular, for l¼ 1, which corresponds to the nominal plant.

Indeed, the architecture described in the sequel, referred to as
Architecture I and depicted in Fig. 6(a), assumes that the fault
isolation filters provide valid set-valued estimates for the state of
plant, not only for the faulty plant, with a specific fault, but also
for the non-faulty plant. In addition, one SVO for the non-faulty
(probably uncertain and time-varying) plant – referred to as
nominal SVO – can be used to detect the fault. As described in
Section 3, the set-valued estimate for the state of the plant,
obtained from this observer, is non-empty, if the plant does not
present a faulty behavior. If the state estimate of the nominal SVO
is the empty set, a fault has occurred. A fault is completely
isolated whenever a single fault isolation filter has a non-empty
set-valued state estimation.

However, under certain circumstances, it may not be conve-
nient to assume that the dynamic systems modeled by the fault
isolation filters include the nominal model of the plant. As an
example, suppose that one is interested in detecting faults
F1,F2, . . . ,FN . If Architecture I is used, one FD filter and N fault
isolation filters are required. Each of these fault isolation filters
computes two set-valued estimates for the state of the plant: one
for the non-faulty model, X̂ nom; and one for the faulty plant, with
the corresponding failure, X̂ failure#i. Moreover, the SVOs require
these set-valued estimates to be convex regions. Hence, the set-
valued estimate of each fault isolation filter can be written as
X̂ i ¼ cofX̂ nom,X̂ failure#ig. This can add conservatism to the solution,
and thus the isolation of the faults may become more difficult.
A solution to overcome this problem is presented in the sequel.

4.2. Architecture II

The architecture described in what follows, referred to as
Architecture II, requires two additional SVOs, besides the faults
isolation SVOs, namely:
1.
 one SVO for the non-faulty (probably uncertain and time-
varying) plant—referred to as nominal SVO;
2.
 another SVO – referred to as Global SVO – providing set-valued
estimates of the state, which are valid not only for the non-
faulty plant, but also for the faulty plant.
Unknown Plant
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noise

Plant
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d(k) n(k)

FDI Filter w/SVOs

FD Filter w/SVO for Fault #1
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.
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Detected Signal

Fig. 6. Fault detection and isolation (FDI) architectures for uncertain LPV system
The nominal SVO is used for fault detection only. Notice that
this SVO produces state estimates valid not only for the nominal
model of the plant, but also for any plant belonging to the family
of admissible plants. If the state estimate of this SVO is the empty
set, a fault has occurred. Hence, the fault isolation SVOs are
initialized with the state estimate of the Global SVO. A fault is
completely isolated whenever a single fault isolation SVO has a
non-empty set-valued state estimation.

The proposed FDI architecture is depicted in Fig. 6(b). It should
be stressed that the FD filters that are designed for specific faults
are only initialized with the set-valued state estimate of the
Global SVO when they are signaled by the nominal FD filter that a
fault has occurred.

Architecture II is a general approach which, however, may lead
to some practical problems, since the set-valued state estimate of
the aforementioned Global SVO can be very large, which, in turn,
can increase the fault isolation period.
4.3. Types of faults

The focus of this paper is on three broad classes of failures that
can be found in the literature, namely system dynamics failures,
actuator failures, and sensor failures. It is presented, in the sequel,
an outline of the description of each of the aforementioned classes
of failures.
4.3.1. System dynamics failures

System dynamics failures can be used to describe significant
changes in the model of the plant that can be in general
interpreted as changes in one or more elements of matrix A of
the dynamic system in (1). These changes can be modeled by the
parametric uncertainties in (1) and, thus, the SVOs can be used to
detect and isolate such a class of faults.

Typical examples of such failures include icing and broken
surfaces in aircrafts (Esteban, 2004).
4.3.2. Actuators failures

Another important type of failures are those in the actuators.
Such faults can, in general, be described by changes in matrix B in (1),
and/or changes in the input signal, uð�Þ. Mathematically, this can
Unknown Plant
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noise
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X(k)^
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s using set-valued observers (SVOs). (a) Architecture I. (b) Architecture II.



Table 1
Modeling of common actuator faults.

Type of fault Modeling

Hard-over (saturation) MðkÞ ¼ BðkÞ and mðkÞ ¼�uðkÞþusat

Loss-of-effectiveness MðkÞ ¼ BðkÞ and mðkÞ ¼�uðkÞþauðkÞ,aAR

Floating MðkÞ ¼ BðkÞ and mðkÞ ¼�uðkÞ
Bias (stuck) MðkÞ ¼ BðkÞ and mðkÞ ¼�uðkÞþb,bAR

Noise MðkÞ ¼ BðkÞ and mðkÞ ¼ noise

Table 2
Modeling of common sensor faults.

Type of fault Modeling

Dead sensor Q ðkÞ ¼ CðkÞ and qðkÞ ¼�xðkÞ
Scale factor Q ðkÞ ¼ CðkÞ and qðkÞ ¼�axðkÞ, a40

Biased sensor Q ðkÞ ¼ CðkÞ and qðkÞ ¼ b, bAR

Random drift Q ðkÞ ¼ CðkÞ and qðkÞ ¼ random variable

Table 3
Parameters of the UAV.

Parameter Value

S 2.365 m2

c 1.34 m

Aspect Ratio 2.047

m 39.7 kg

xcg 1.217 m

Iy 10.43 kg m2
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be described by

xðkþ1Þ ¼AðkÞxðkÞþADðkÞxðkÞþLdðkÞdðkÞþBðkÞuðkÞþMðkÞmðkÞ,

yðkÞ ¼ CðkÞxðkÞþnðkÞ,

(

ð12Þ

where MðkÞmðkÞ accounts for the fault. It should be noticed that this
model can describe a broad range of actuator faults, as summarized
in Table 1 for a single control input plant—see Esteban (2004) and
references therein for further details.

The model described by (12) is clearly compatible with (1) and,
hence, the SVOs can also be used to detect and isolate actuator
faults.

4.3.3. Sensors failures

Finally, sensors failures can also be treated in a similar manner.
Consider the following description of the plant,

xðkþ1Þ ¼AðkÞxðkÞþADðkÞxðkÞþLdðkÞdðkÞþBðkÞuðkÞ,

yðkÞ ¼ CðkÞxðkÞþnðkÞþQ ðkÞqðkÞ,

(
ð13Þ

where Q ðkÞqðkÞ accounts for the sensor fault. Table 2 summarizes
the most common sensor faults and corresponding models.

Similarly to what happened in the previous cases, the model
described by (13) is also compatible with (1) and, therefore, the
SVOs can be used for fault detection and isolation of sensor
failures.
5. Aircraft longitudinal LPV model

One of the main objectives of this paper is to illustrate the
applicability and performance of the FDI strategy introduced in the
previous sections, to the model of the longitudinal dynamics of a
fixed-wing aircraft. In particular, the Eclipse Unmanned Air Vehicle
(UAV) described in Samy, Postlethwaite, and Gu (2011) and Chen
(2010) is considered. Some of the properties of this type of UAV are
defined in Table 3. It should be noticed that, for the implementation
of the proposed FDI strategy, the dynamics of the plant must be
described by an LPV model. Thus, this section will also address the
problem of describing the longitudinal dynamics of the aircraft
through an LPV model. Nevertheless, this LPV model is only used to
design the SVOs. For the simulation results presented in Section 6,
the full nonlinear model of the longitudinal dynamics of the aircraft
is used instead.
The motion of the UAV can be described by a 6 degrees-of-
freedom model, as follows:

_uðtÞ ¼
1

m
XðtÞ�qðtÞwðtÞ,

_wðtÞ ¼
1

m
ZðtÞ�qðtÞuðtÞ,

_qðtÞ ¼
MðtÞ

Iy
,

_yðtÞ ¼ qðtÞ,
_PN ¼ uðtÞcosðyðtÞÞþwðtÞsinðyðtÞÞ,
_h ¼ uðtÞsinðyðtÞÞ�wðtÞcosðyðtÞÞ,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð14Þ

where Xð�Þ, Zð�Þ, and Mð�Þ are the axial force, normal force, and
pitching moment, respectively. The remaining notation has been
widely used in the aerospace community (cf. Stevens & Lewis, 2003),
although it should be noticed that uð�Þ refers to the forward airspeed,
in the body frame, and should not be confused with the control input
in (1). Furthermore, define the angle-of-attack (AOA) of the UAV as

aðtÞ ¼ arctan
wðtÞ

uðtÞ

� �
,

and the airspeed as

VASðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðtÞþw2ðtÞ

q
:

The forces Xð�Þ and Zð�Þ, and moment Mð�Þ, are due to aero-
dynamic, engine thrust and gravitational effects. The aerodynamic
effects are generated by the wings, fuselage, and surfaces of the
UAV, and are functions of að�Þ, _að�Þ, VASð�Þ, qð�Þ, of the air density,
and of the deflection of the control surfaces.

Thus, it is clear that the longitudinal dynamics of an aircraft are
highly nonlinear, and depend on several (time-varying) parameters,
such as the dynamic pressure and the aerodynamic coefficients.
However, in wing-level flight, these dynamics are well-described by
LPV models, which depend upon the airspeed, VAS. In particular,
using the derivations in Chen (2010), one obtains the following LPV
description of the longitudinal dynamics of the Eclipse UAV:

d

dt
xðtÞ ¼ AðVASÞxðtÞþBðVASÞdðtÞ, ð15Þ

where the state is defined as

xðtÞ ¼

uðtÞ

wðtÞ

yðtÞ
qðtÞ

2
66664

3
77775,

the control input is given by

dðtÞ ¼
ZðtÞ
tðtÞ

" #
,

where ZðtÞ is the deflection of the elevator and tðtÞ is proportional
to the thrust force. Finally, the matrices of the dynamics are
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given by

AðVASÞ ¼

Xu Xw Xy Xq

Zu Zw Zy Zq

0 0 0 1

Mu Mw My Mq

2
66664

3
77775, BðVASÞ ¼

XZ Xt

ZZ 0

0 0

MZ Mt

2
66664

3
77775, ð16Þ

where

Xu ¼�0:00102VAS�0:009115,

Xw ¼ 0:00018V2
ASþ0:025VAS�1:0499,

Xy ¼�9:67,

Xq ¼�0:00166V2
ASþ0:2308VAS�10:037,

XZ ¼ 0:026,

Xt ¼ 24:76,

Zu ¼�8:66� 10�5V2
ASþ0:01249VAS�0:5699,

Zw ¼�0:08199VAS�0:10375,

Zy ¼�0:001358V2
ASþ0:1679VAS�5:4519,

Zq ¼ 1:012VAS�0:77,

ZZ ¼ 0:0001159V2
ASþ4:04� 10�5VAS�0:001415,

Mu ¼ 0:2:6146V2
AS�0:003426VAS�0:1425,

Mw ¼�0:02817VASþ0:001135,

My ¼�0:0001475V2
ASþ0:01824VAS�0:5922,

Mq ¼ 0:04614VAS�0:08368,

MZ ¼ 0:00021V2
AS�0:00015VASþ0:005065,

Mt ¼�0:294:

In the following section, the LPV model in (15) is going to be
used to design the SVOs for the FDI method described in Section 4.
However, for the simulation of the dynamics of the UAV, the
nonlinear model in (14) will be used instead.
6. Simulation results

This section presents a series of simulations, performed in
MATLAB, that illustrate the applicability of the SVOs in fault
detection and isolation for a fixed-wing aircraft. The aircraft non-
linear model (14) for the longitudinal axis, presented in Section 5, is
used. By resorting to the LPV model in (15), discretized with a
sampling period of Ts¼10 ms, a fault detection filter as in Section 4
was synthesized in order to diagnose faults in the longitudinal
dynamics of the aircraft. As previously mentioned, notice that the
LPV model is used solely for the design of the SVOs, while the
nonlinear model is used for simulation purposes. Both the exogen-
ous disturbances, dðkÞ, and the sensors noise, nðkÞ, were generated
by using band-limited white noise. Moreover, three fault isolation
filters were also designed using the approach in Section 4, in order
to isolate the following failures in the aircraft:
1.
 FDI #1: additive fault in the angle-of-attack, a, sensor;

2.
 FDI #2: loss-of-effectiveness of the elevator, Z;

3.
 FDI #3: increased pitch moment derivative with respect to

longitudinal speed (system dynamics fault).

The aforementioned system dynamics fault represents a severe
change in the dynamics of the aircraft caused, for instance, by a
damaged stabilizer.

The FDI architecture used is depicted in Fig. 7. In this case, the
FDI filters were designed so that loss-of-effectiveness types of
faults can be diagnosed. Thus, as explained in detail in Section 4,
the FDI filters need not be reset whenever a fault is detected by
the nominal filter.

Remark 3. In the following simulations, the faults were assumed
to be happening separately. Having simultaneous faults requires
FDI/SVO filters that are specifically designed for more than one
fault. Therefore, all the possible combinations of faults have to be
considered, if more than a single fault is assumed to be occurring
at a time.

As described in Section 4, since three possible faults are
considered, four SVOs are required for Architecture I. Indeed,
set-valued state estimates are provided by
1.
 SVO #1, for the nominal (i.e., non-faulty) system;

2.
 SVO #2, for the system with a faulty angle-of-attack sensor;

3.
 SVO #3, for the system with a faulty elevator;

4.
 SVO #4, for the system with an uncertain pitch moment partial

derivative with respect to u.

SVO #2 was designed by increasing the allowable a-sensor
noise, so that additive sensor faults are compatible with the
model of the system. For the third SVO, however, the fault cannot
be handled by considering increased noise in the sensors. As
described in Section 2, this is achieved instead by defining an
uncertain input matrix, described by

BðkÞþB1ðkÞDðkÞ:

Finally, the fourth SVO is designed by considering, for each k, an
AðkÞ matrix with uncertain value of Mu—see (16).

An LQG controller was designed for the aircraft’s linearized
model, about the nominal airspeed of VTrim

AS ¼ 37 m/s and nominal
angle-of-attach of aTrim ¼ 0:01 rad, and was connected to the loop.

Three different scenarios are going to be analyzed in the
sequel.
6.1. Step-type faults

The first one consists in generating large step-type faults in the
angle-of-attack sensor, in the elevator, and in the dynamics.
Consider a step-type additive fault in the angle-of-attack, a,
sensor. In particular, for tZ0:5 s, a constant signal with ampli-
tude set at about 10% of the sensor range, which corresponds to
31, is added to the noisy measurement of a, as depicted in Fig. 8.

For the elevator, a hard-type of fault was also considered. In
particular, it is assumed that, for tZ0:5 s, the effectiveness of this
actuator is suddenly decreased to 50% of its normal operating
condition.

Finally, for the fault in the dynamics, it is considered that, for
tZ0:5 s, the pitch moment partial derivative with respect to u,
denoted by CMu

, is increased by 30%.
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Fig. 8. Angle-of-attack measurement with an additive step-type fault in the

sensor.
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Fig. 9. Angle-of-attack measurement with an additive hard fault in the sensor.
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Fig. 10. Angle-of-attack (AOA) measurement with an additive soft (runaway) fault

in the sensor.

Fig. 11. Average fault detection times (in milliseconds), for several types of faults.
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6.2. Hard faults

It should be noticed, however, that step-type faults are, in
general, ‘‘easier’’ to detect. Indeed, for the second scenario, faults
in the angle-of-attack sensor, elevator, and dynamics, that can
still be considered as hard faults, are analyzed, but assuming that
they do not occur instantaneously, and thus represent more
realistic failures. In particular, an additive fault in the angle-of-
attack sensor is considered, as illustrated in Fig. 9, with TR¼1 s
and A¼51, where TR and A denote the ramp duration and the
amplitude of the fault, respectively. Regarding the elevator, it is
assumed that the effectiveness of the surface linearly decreases in
TR¼1 s, from 100% to 50%. Finally, for the fault in the dynamics,
the value of Mu is linearly increased, during TR¼1 s, up to 130%.

6.3. Soft faults

As a final scenario, the so-called runaway or soft faults in the
angle-of-attack sensor, in the elevator, and in the dynamics, are
analyzed. For this case, let TR¼4 s and A¼51, for the fault in the
angle-of-attach sensor—see Fig. 10. Similarly to what was done in
the previous scenarios, it was considered that the effectiveness of
the elevator linearly decreases from 100% to 50% in TR¼4 s, while
the value of CMu

is increased up to 130% of its nominal value, also
in TR¼4 s.

This type of faults is considerably harder to be detected and
isolated, as the effects of such failures do not have an immediate
impact on the measured data. Furthermore, to some extent, they may
be indistinguishable from sensor noise or exogenous disturbances.

6.4. Results—time-to-detect

The results obtained by averaging 10 Monte-Carlo simulation
runs for each fault considered are now described, in terms of the
time required to detect the faults. Fig. 11 summarizes these results.

Notice that the sampling period is Ts¼10 ms, which means the
step-type faults in the a-sensor were detected and isolated, for
the present example, in a single measurement. This, however,
only happened since this is a considerably severe and fast type of
fault, which directly violates the dynamic model of the system,
given the bounds on the measurement noise and exogenous
disturbances. Nevertheless, if such bounds are violated in practice
in the healthy system, then a false alarm may be issued by the
algorithm. As stressed in Remark 2, the probability of having this
type of false alarms is directly related to the likelihood of
violating the bounds on the measurement noise and exogenous
disturbances. It should also be stressed that the faults in the
elevator and in the dynamics, even if severe, are only detected
after 20 ms. This is due to the fact that these types of faults have
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to go through the dynamics of the system, before they can be
measured by the sensors.

The smoother faults are, as expected, more difficult to be
detected. In fact, since the proposed FDI method does not account
for any a priori probability distribution regarding the exogenous
disturbances and measurement noise, additive faults in the
sensors with small amplitudes are not detected by this approach.
Therefore, while the magnitude of the fault is comparable to the
magnitude of the measurement noise, the non-faulty model of the
plant is not invalidated. Nevertheless, the time required to detect
each of these faults is below 0.5 s.

Remark 4. Each SVO requires between 5 and 200 ms per sam-
pling period, to perform all the necessary computations, using an
Intel Xeon CPU at 2.6 GHz, and depending on the horizon N in (3)
Indeed, for larger values of N, the processing time required by
each SVO may be above the sampling period, thus jeopardizing
the implementability of the technique. Such an issue can be
circumvented by (i) increasing the computational power, (ii)
increasing the sampling period, or (iii) decreasing the horizon N.
It should also be noticed that, due to their underlying structure,
Architectures I and II can both benefit from standard parallel
processing tools.

6.5. Results—time-to-isolate

The time required to isolate the faults is now analyzed. The
results are summarized in Fig. 12.

A fault is isolated only when all but one SVO provides non-
empty set-valued estimates of the state of the system. Hence, the
time interval required to isolate a fault is typically much larger
than the time required to detect it, and depends on the number of
admissible faults, but also on whether a fault is distinguishable
from another or not. In fact, the fault in the dynamics is, up to
some extent, described by a severe failure on the elevator, as
these two faults have similar consequences. Therefore, the time
required to isolate these two faults is, in general, larger than the
time required to isolate a fault in the angle-of-attack sensor.

Also notice that, in Samy et al. (2011), the time required to
detect step-type faults in the a-sensor was 1 s. Therefore, the
suggested approach is approximately 100 times faster, for the
aforementioned assumptions in the measurement noise, intensity
of the disturbances, and model uncertainty. However, the time
required in Samy et al. (2011) to isolate soft faults in this sensor is
approximately 1.86 s, while in the approach proposed in this
paper nearly 3.5 s are required.

Remark 5. The detection and isolation of faults in a few milli-
seconds can pose several problems in terms of robustness of the
method. For instance, outliers in the measurement noise, not
Fig. 12. Average fault isolation times (in milliseconds), for several types of faults.
satisfying the prescribed bounds, can lead to false positives. One
possible heuristic to avoid such phenomena is to consider
debounce for the detection and isolation of the faults. In parti-
cular, one can neglect a given number of previous measurements
or use the Global SVO in Architecture II to reinitialize all the other
SVOs a predefined number of times, before declaring a fault.

7. Conclusions

This paper proposed and illustrated, with an example, a novel
methodology that uses set-valued observers (SVOs) for fault
detection and isolation (FDI). The suggested approach relies on
the set-valued state estimates of the SVOs to validate or falsify the
set of observations.

The SVOs were designed in such a way that model uncertainty
and disturbances can be accounted for. Hence, false alarms due to
such perturbations can be avoided. Moreover, unlike the typical
FDI strategies available in the literature, one need not use
residuals to decide whether a fault occurred. In such strategies,
this decision naturally requires the definition of a (possibly time-
varying) threshold, used to declare a fault whenever it is smaller
than a given residual. The approach presented in this paper need
not the definition of a threshold, and hence simplifies signifi-
cantly the design of the FDI filters.

The applicability of the proposed FDI technique was demon-
strated in simulation, using the full nonlinear model of the
longitudinal dynamics of a fixed-wing aircraft, while the SVOs
were developed using a linear parameter-varying (LPV) approx-
imation of those dynamics. The simulation results show that the
detection and isolation of the faults take, in general, only a few
iterations. It was also noticed that, as expected, abrupt faults are
easier to detect than smooth faults, using this approach. The
results obtained indicate that this methodology holds consider-
able promise for practical applications.

The algorithms proposed, however, cannot be used, without
performing any modification, to detect that a given fault has
recovered. This goal may be achieved by restarting all the SVOs
with the set-valued state estimate provided by the Global SVO,
once the dynamics can again be described by the healthy model of
the system.
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