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Abstract. We consider stochastic hybrid systems (SHSs) for which the lengths of times that the
system stays in each mode are independent random variables with given distributions. We propose
an approach based on a set of Volterra equations to compute any statistical moment of the state
of the SHS. Moreover, we provide a method to compute the Lyapunov exponents of a given degree,
i.e., the exponential rate of decrease or increase at which statistical moments converge to zero or to
infinity, respectively. We also discuss how, by computing the statistical moments, one can provide
information about the probability distribution of the state of the SHS. The applicability of the results
is illustrated in the analysis of a networked control problem with independently distributed intervals
between data transmissions and delays.
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1. Introduction and examples. Stochastic hybrid systems (SHSs) combine
continuous dynamics and discrete logic. The execution of an SHS is specified by the
dynamic equations of the continuous state, a set of rules governing the transitions
between discrete modes, and reset maps determining jumps of the state at transition
times. As surveyed in [1], various models of SHSs [2], [3], [4] have been proposed,
mostly differing in the way randomness enters the different equations governing the
evolution of the system. See also [5], [6], [7], [8]

In the present work, we consider SHSs with linear dynamics and linear reset maps
and for which the length of time that the system stays in each mode are independent
and identically distributed random variables, whose distributions may depend on the
discrete mode. The process that combines the transition times and the discrete mode
is typically called a Markov renewal process [9], which motivated us to refer to these
systems as stochastic hybrid systems with renewal transitions. This class of systems
can be viewed as a special case of the SHS model in [5], which in turn is a special case
of a piecewise deterministic process [4] and also a special case of a state-dependent
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jump-diffusion [6, sect. 5.3]. Alternatively, SHSs with renewal transitions can be
viewed as a generalization of a Markov jump linear system (MJLS) [8], in which the
length of time that the system stays in each mode follows an exponential distribution,
or as a generalization of an impulsive renewal system [10], in which there is only one
discrete mode and one reset map.

Our contribution concerns the analyses of the transitory and asymptotic behavior
of the statistical moments of an SHS with renewal transitions and is summarized in two
main results, made possible by the special structure of SHSs with renewal transitions.
In the first main result, we provide expressions for the moments of the SHS at a
given time ¢ in terms of a set of Volterra equations. Since [8, Chap. 2] presents
a method to obtain the statistical moments of an MJLS, based on the solution of
linear differential equations, that does not appear to generalize to SHS with renewal
transitions (cf. [8, sect. 8.2]), this first main result shows that for this latter class
of systems, one can still compute statistical moments by solving Volterra equations,
instead of differential equations. We also discuss how, by computing the moments
using these Volterra equations, one can provide information about the probability
distribution of the state of the SHS and highlight the advantages of this approach
with respect to more general methods available in the literature [4], [5], [6]. The
second main result provides a method to obtain the Lyapunov exponents of degree m,
which are defined, in accordance with [8, p. 41], as the exponential rate of decrease
or increase at which the expected value of the mth power of the norm of the state
of the SHS tends to zero or to infinity, respectively. We show that when m is even,
Lyapunov exponents can be efficiently determined by finding the zeros of monotonic
functions. As a corollary, we provide necessary and sufficient conditions for mean
exponential stability, which is defined in terms of the exponential convergence to zero
of the expected value of the squared norm of the state of the SHS.

The applicability of our theoretical results is illustrated in a networked control
problem with independently distributed intervals between data transmissions of the
control signal in a feedback loop, which is a reasonable assumption in networked
control systems utilizing CSMA communication protocols [10]. The impulsive renewal
systems considered in [10] did not permit us to consider the effect of network induced
delays, which is now possible with SHSs with renewal transitions.

A preliminary version of the results presented here appeared in the conference
paper [11]. However, in this paper we have been able to reduce significantly the
dimension of the Volterra equations needed to compute the statistical moments of
the SHS. In fact, the dimension of the Volterra equations in the present paper grows
polynomially with m, whereas in [11] it grows exponentially with m. This enables the
use of our results to compute statistical moments of much larger order. An additional
novelty of the results presented here is that the asymptotic analysis extends both [10]
and [11], where the asymptotic analysis is restricted to a special moment, i.e., the
squared norm of the state.

The remainder of the paper is organized as follows. SHSs with renewal transitions
are defined in section 2. In section 3, we establish and discuss our main results.
Section 4 addresses the applicability of the results to a networked control example.
In section 5 we draw final conclusions.

Notation and preliminaries. The Kronecker product is denoted by ®. The no-
tation x(t, ) indicates the limit from the left of a function x(t) at the point ¢;. For
vectors ui, .. ., Up, in R™, we define (u1, ..., uy) := [u] ... ul ]T. The spectral radius
of a matrix A is denoted by r,(A4). We denote by e; the canonical vector in R", i.e.,
the component j of e; € R™ equals 1 if j = ¢ and 0 otherwise. The indicator function
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of a set A is denoted by Y, 4, which equals 1 if x € A and 0 otherwise. The number
of elements of a finite set C' is denoted by |C/|.

2. SHS with renewal transitions. A linear SHS with renewal transitions is
defined by (i) a linear differential equation

(2.1) i(t) = Agwyx(t), 2(0) = o, ¢(0) = qo, to =0,

where z(t) € R™ and ¢(t) € Q := {1,...,nq}; (i) a family of ny discrete transition/
reset maps

(22)  (altn).o(tn) = Elalty) Jym o2t ). L€ Lo= {1, me,

where &, is a map from Q to Q and the matrix Jq(t;) , belongs to a given set {Jie €

R™" e Q,0 € L}; and (iii) a family of reset-time measures
(2.3) i 0, 1€Q, LeLl.

Between transition times, denoted by ti, the discrete mode ¢ remains constant whereas
the continuous state x flows according to (2.1). At transition times, the continuous
state and discrete mode of the SHS are reset according to (2.2). The intervals between
transition times are independent random variables determined by the reset-time mea-
sures (2.3) as follows. A reset-time measure can be either a probability measure or
identically zero. In the former case, p; ¢ is the probability measure of the random
time that transition £ € £ takes to trigger in the state ¢(t) = i € Q. The next tran-
sition time is determined by the minimum of the triggering times of the transitions
associated with state ¢(t) =4 € Q. When p; ([0, s)) = 0 V>0, the transition ¢ does
not trigger in state i € Q, which allows for some reset maps not to be active in some
states.

The construction of a sample path of the SHS with renewal transitions can then
be described as follows:

1. Set k=0, to =0, (q(tk), z(tx)) = (g0, 7o)

2. For every j € L, obtain hj, as a realization of a random variable distributed ac-
cording to fige,),; if fig(t,),; is not identically zero, and set ﬁi = o0
otherwise. ‘

3. Take hy = min{ﬁi,j € L} and set the next transition time to tg41 = t + hg.
The state of the SHS in the interval ¢ € [tg,tx41) is given by (q(t),z(t)) =
(q(tr), ea E7t) 2(1,)).

4. If t41 < oo (otherwise stop), let I denote the index of the transition that
achieves the minimum in step 3, ie., Iy = j : hy = B{C, and update the
state according to (q(tx+1), z(tkt1)) = (glk((I(tl;+1))vJq(t;+1),lkx(t1;+1))- Set
k =k + 1 and repeat the construction from step 2.

We assume that each transition probability measure ;0 can be decomposed as
Wie = g, + ,ufl)g with u§7é([0,t)) = fot fie(s)ds for some density function f;e(s) >
0, and ugé is a discrete measure that captures possible point masses {bf)g,r > 1}
such that ugé({baé}) = w; ;. The integral with respect to the measure y; ¢ is then
defined as

(2.4) /o W (s)pie(ds) :/0 W (s)fi(s)ds + Z wy W (b; ).

r:b7 ,€[0,t]
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When the discrete measures u¢, are nonzero measures, different transitions may be
triggered at the same time with nonzero probability, leading to an ambiguity in choos-
ing the next state. To avoid ambiguity, we assume the following.
ASSUMPTIONS 2.1.
(i) For every i € Q, the reset-time measures p; ¢, £ € L, for mode i have a finite
number of point masses.
(ii) For every i € Q, no two measures ;. e, , Wi, for mode i have common point
masses, i.c., b, # b5, forly £y, 1y € L, 1y € L Vi1 531
Due to Assumption 2.1(ii), there is zero probability that in step 3 of the construc-
tion of a sample path of the SHS the minimum is achieved by two or more indices
j.
3. Main results. Consider a general mth degree uncentered moment of the
state of the SHS with renewal transitions, i.e.,

(3.1) Elay (8" 22(t) ... an(t)™], Y ij =m, i; > 0.
j=1

We provide a method to compute (3.1) in subsection 3.1, we obtain the Lyapunov ex-
ponents of special moments of the SHS in subsection 3.2, and we discuss how by com-
puting the moments one can reconstruct probability distributions in subsection 3.3.
The proofs of the main results are deferred to subsection 3.4.

3.1. Moment computation. It is easy to see that there are

(m+mn-—1)!

(32) P 1)

different monomials of degree m and hence p different moments (3.1) of degree m.
Let

(3.3) {p(r) =[i1(K),...in(K)],1 < Kk < p}

be an enumeration of the indices i ...,%, uniquely characterizing such monomials,
e.g., for m = n = 2, one such enumeration is p(1) = [1 1], p(2) = [2 0], p(3) = [0 2].
Then, we use the notation

all =gl gt for Kz p(k) = [it,. .., in), 1<Kk <Dp,
and define the map I'"™ : R"*™ — RP*P ag
(3.4) '"(A) = B,
where B = [B, ] is uniquely determined by
P
(3.5) (Az) = Z B,.z" 1<, k <p.
k=1

Note that indeed the left-hand side of (3.5) is a linear combination of monomials of
degree m with unique coeficients B, . The following theorem provides a method to
compute any moment of the state of the SHS. Let

(3.6) Vr ::m for i : p(k) = [i1,....inl, > _i; =m,
U i) P
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and define the operator

Ou"(t)) := (O1(u"(t)); - -, On, (u"(1))),

where w”(t) = (u®(t),...,u™"(t)) and each ©; is a convolution operator
defined by
(3.7) Z / P (AT g7 s (¢ — 5) 6L ),

7"1'7[(8) ’

where i € Q, r;i(s) := L~ 7.0(5), 7i,0(8) := ,uu((s, oo])
THEOREM 3.1. A moment of degree m (3.1) of the SHS (2.1)~(2.3), indexed by
K:p(k) =T[i1...1n], can be computed as

p
(3.8) me oo
where the u® = (u™!,...,u™"), u™* € RP, are the unique solution to the Volterra
equation
(3.9) ut(t) = ©(u"(t)) + h"(t), t=0,
where h*(t):= (h™1(t),..., h5"a(t)),
; T (1) .
(3.10) R () =T™ (e e, T—(), i€ Q,

Ve

where e, 1s the canonical vector in RP with nonzero component k.
An explicit solution to (3.9) takes the form

(3.11) ut(t) =Y OF(h"(t)
k=0

where ©F(h"(t)) denotes composition, e.g., ©2?(h%(t)) = ©O(O(h"(t))) and
©Y(h"(t)) = h"(t). However, in practice, a numerical method is generally preferable
to solve the Volterra equation (3.9). We discuss next the computation complexity of
one such method, comparing it also with the complexity of previous methods.

3.1.1. Numerical computation. One numerical method to solve the Volterra
equation (3.9) consists in choosing a set of integration nodes {a; € [0,¢]} and obtaining
u"(a;) by iteratively replacing the integrals in (3.9) by quadrature formulas at the
nodes {a; : a; € [0,a]} (cf. [12]). Suppose that a; = Ih, [ € {0,..., L} are nodes in
an interval of interest ¢ € [0, Lh], where L is the number of nodes and h is the spacing
between two consecutive nodes. Assuming, for simplicity, that the distributions ;¢
have no atom points, we have
(3.12)

ng 1 T T
@ 1R) = 30 S @l ( AT 60 T a0 (1 k) S Ry T (AT, TilR)
=1 ko Tiyz(kh) s

for i € Q, where ¢, ) denotes the weights of the quadrature formula and a*(1h)
approximates u'*(lh). Considering possible atom points of y; ; would add additional
additive terms on the right-hand side of (3.12) taking into account the atom points in
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the interval b , € [0, k] which would not significantly impact in our discussion. The
number of matrix multiplications I'"™ (eAzT(kh)JiT)z)u“’ff(i)((l —k)h) in (3.12) is given by

(3.13) i {k €{0,...,1}: fie(kh) > 0 and r;(kh) > 0}
=1

which is bounded by In,. Each of these matrix multiplications requires in general p?
scalar multiplications. Moreover, if f; ¢(0) # for some ¢ € Q and some ¢ € L, a linear
system of at most nyp equations must in general be solved to obtain u" (Ih) from the
set of equations (3.12), i € Q. Thus, the number of total multiplications needed to
iterate (3.12) from [ =0 to [ = L — 1 is bounded by

LIL+1) -
(3.14) pznqng% + LG(ngp),
where G(a) = % +a? — g is the number of multiplications required by the standard

Gaussian method to solve a system with a € N variables. Note that the matrices
(3.15) I (AR T, Tm(edTthy), 1edo,..., L},

can be computed and stored in memory before iterating (3.12). The computation
complexity of computing these at most 2(L+1) matrices by symbolically manipulating
monomials is no larger than the computational complexity of iterating (3.12), which
is bounded by (3.14). In fact, suppose that we wish to compute C' = I'"(D) for
D € R™ " with row vectors d* € R'*" i € {1,...,n}. To compute a row ¢ of C
such that p(t) = [i1 .. .i,] we recursively compute ((y) = (d'y)® x (d?y)® ... (d"y)",
y € R™, according to ((y) = &n(y),

(3.16) Gr1(y) = (@ Py&y), &y)=1, k=1,....m—1,

where (k) = j if /"0 is <k <Y _is, j € {1,...,n}, k€ {1,...,m}. Since &(z)
is a sum of monomials with dimension k& and the number of such monomials can be
obtained from (3.2), we have that (3.16) requires n x ZZ;l % multiplications
to compute each row of C, which is bounded by nmp. Thus, the total number of
multiplications to compute C' is bounded by nmp? and the number of multiplications

needed to compute (3.15) is bounded by
2(L + 1)nmp>.

A result similar to Theorem 3.1 was given in a preliminary version of the present
paper [11]. However, there exists redundancy both in the state of the Volterra equation
proposed in [11] and in the state of the differential equation proposed in [8], which
is eliminated by Theorem 3.1. In fact, given an SHS with state-space dimension n
and ng discrete modes, in [11] one needs to solve a Volterra equation with ng x n™
unknown functions to obtain a moment of degree m. This is also the dimension
of the linear differential equation presented in [8] to compute the moments in the

special case of exponential reset-time distributions. The Volterra equation (3.9) has
(m4n—1)X---x(m+1)
(n—1)!

dimension ng X p = ng x , i.e., the number of unknown functions
in (3.9) grows polynomially with m, instead of exponentially.
From a practical point of view our approach (3.12) is feasible in a current personal

computer if p is in the order of tens of thousands. For example, in section 4.1 we shall
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consider n = 4, for which we can compute up to about m = 10 moments of the state in
which case p = 10296. Note that with previous approaches [11], [8] this would require
us to manipulate Volterra equations with dimension two orders of magnitude larger
410 = 1048576, which clearly would not be feasible in a current personal computer.

3.2. Lyapunov exponents. The following definition of Lyapunov exponent of
degree m is adapted from [8, p. 41].1 Recall the definition of L, norm, for p € N, of
a vector x(t)

n 1/p
(3.17) [z(@)lp == (Z |33i(t)|p> , p>1

DEFINITION 3.2. Suppose that E[||x(¢)||"] # 0 Vt>o and that for every xo # 0
the following limit exists:

1 m
(3.18) AL (o) := lim —log Ef|l(#)[[7]-

Then the Lyapunov exponent N7 of degree m for the SHS (2.1)—(2.3) is defined as

AT = sup AT'(zo).
xroER™

Moreover, if Jpso :E[||x(t)||m]=0 Vt > b, then A" :=—o0.

Let
or(z) ... oy, (2)
0"(2) = : :
e (2) o 1. (2)
where

A o Tg s ;S
o () = Z /O (et JT,)e ()W(ds).

GE(i)=j Tie(s)

For a € R, we say that ©™(a) converges absolutely if for every i, j € Q

> s —as Ti(s
> / I (AT e T ds) < oo,

GE(i)=j rie(s)

where for a matrix X, || X|? := tr(XTX) and |u;¢|(ds) is the total variation norm of
the measure p; ¢ (cf. [13]).

THEOREM 3.3. Suppose that all the distributions ;¢ have finite support and
let b := inf{a : @m(a) converges absolutely}. Then, if m is even, the spectral radius
rs(0™(a)) of ©™(a) is a monotone nonincreasing function of a for a > b and the
Lyapunov exponent X' for the SHS (2.1)~(2.3) is the (unique) real Toot a to the
equation

ro(0™(a)) =1

IThe definition in [8, p. 41] does not specify which norm to take for ||z(t)|| (we choose to
take (3.17)). Note that in fact (3.18) does not change with the choice of the norm, due to the
equivalence of norms in finite-dimensional vector spaces.
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if this equation has a real Toot and —oo otherwise.

As we shall see in section 3.4, the proof of Theorem 3.3 relies on establishing that
©™(z) for real z is a positive operator (cf. [14]). This holds only if m is even and this
is the main reason for restricting Theorem (3.3) to this case. We do not address in
the present paper the case in which m is odd.

We say that the SHS with renewal transitions is mean exponentially stable if there
exist constants ¢ > 0 and o > 0 such that for every (zo, qo),

E[z(t)Tz(t)] < ce”*alxo Vizo0,

Theorem 3.3 allows us to establish necessary and sufficient conditions for the stability
of an SHS with renewal transitions defined as follows.

COROLLARY 3.4. Suppose that all the distributions ;¢ have bounded support.
Then the SHS with renewal transitions is mean exponentially stable if and only if

(3.19) r4(02(0)) < 1.

3.3. Probability distribution. Let p be the probability distribution of the
state of the SHS at time ¢, i.e., [ pu(ds) := Prob[z(t) € E C R"]. In this subsection
we address the problem of obtaining information on u based on its moments (3.1).
It is well known that when the moments are finite and known, the measure p can be
uniquely determined [15], while in the case where only a finite number of moments
are known, this reconstruction is naturally not unique. In this latter case, an elegant
procedure to obtain an explicit expression for an approximating distribution to u can
be found in the literature. (We follow closely [15]; see also [16], [17].) Assume, for
simplicity, that & has bounded support, which without loss of generality (by proper
scaling) can be assumed to be contained in the interval D := [0,1]" = [0, 1] x---Xx[0, 1].
(See [15] for the case of unbounded support.) Given a continuous function f : D — R
define the higher dimensional Bernstein polynomials as

BNy = 3 f(ﬁ,...,’“—")a,k(y), yER",

r I
k:0<k; <r; 1 n

where r = (71, ...,7y) is a vector of integers, and P, (y) := I}, (;Z)yf(l — )ik
It is shown in [15] that B, (f)(y) converges uniformly to f(y) as r; — 00 Vi<i<n.
Thus, if we define I, := [}, P x(y)u(ds), we have that

(3.20) oo (%%) Lk

0<ki<r;

is an approximation to E[f(x(t))] = [, f(s)u(ds) that converges to E[f(x(t))] as
r; — 00 Vi<i<pn. This means that the measure p can be approximated by the discrete
measure p, defined by

(3.21) > Ld (L}f—if—:])

0<ki<r;

where 0(y) denotes the Dirac measure at y € R™. Since Bernstein polynomials are lin-
ear combinations of monomials, we can compute the I, ; through a linear combination
of moments, which can be computed as proposed in section 3.1.
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It is important to mention that the problem of recovering a probability distribu-
tion from its moments is typically a numerically ill-conditioned problem, and small
numerical errors in the moments may lead to large errors in the coefficients I that
define the approximate discrete measure in (3.21). Thus, it is especially important
to have a computationally efficient method to compute the moments, as provided by
Theorem 3.1, so that one can obtain a good numerical precision in this procedure of
obtaining an approximating probability distribution.

One way to interpret the procedure just described is that each integral I, , ap-
proximates the probability that x lies in a small neighborhood of (%, ceey f—;) Instead
of obtaining an approximation, one can use similar ideas to obtain an upper bound on
the probability that x belongs to a given region. That is, suppose, for example, that
we wish to determine a bound on the probability that a random variable z = g(x(t))
is greater than a given value. Assume that z takes values in a compact set, which
without loss of generality is assumed to be [0,1]. Then we can choose a polynomial
Pn : [0,1] = Rxg such that p,(w) > X[a17(w), w € [0,1], a < 1, and obtain the bound

(3.22) Prob[z > a] < E[pn(2)],

where the right-hand side of (3.22) can be computed using Theorem 3.1, when g(x(¢))
is a sum of monomial functions of the state. Note that when p, (w) = % and p,(w) =
1;’—22, (3.22) corresponds to the Markov and Chebychev inequalities, respectively. This
procedure is used in the networked control example of section 4.

Alternative approaches to estimate the probability distribution of the state of the
SHS include those based on the Focker—Plank equation and Dynkin’s formula. The
Focker—Plank equation of the SHS with renewal transitions can be obtained by spe-
cializing the expressions provided in [5], [6, sect. 5.3] to this class of systems, and can
be shown to be integro-partial differential equations. Besides the numerical difficulty
and computational burden associated with solving these equations, the derivation of
these Focker—Plank equations requires the map y — Jy, y € R™, to be invertible
(equivalent to matrix J invertible). The approach based on the Dynkin’s formula can
be found in [4, Chap. 3, sect. 32.2], where a numerical method is provided to compute
the expected value of a given function E[f(x(¢))] and a fortiori estimating the prob-
ability distribution from the relation E[xg(z(¢))] = Prob[z(t) € E] for given E C D.
Note that the approximation (3.20), which can be obtained with the methods derived
in the present paper, provides an alternative to the method in [4, Chap. 3, sect. 32.2]
to approximate the expected value of continuous functions of the state. Although we
omit the derivations here, it is possible to prove that when specialized to SHSs with
renewal transitions and to the case where f is a monomial, the recursive method pro-
vided in [4, Chap. 3, sect. 32.2] is equivalent to providing an approximation to (3.8)
at each iteration n, of the recursive algorithm, taking the form

(3.23) ZP: ARLI()
=1
with
(3.24) v (t) = Z OF (h"(t)).
k=0

This last equation converges to (3.11), and hence (3.23) converges to (3.8), but this is
clearly an inefficient method for obtaining the solution to the Volterra equation (3.9)
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when compared to the method described in subsection 3.1 (cf. [12]). Thus, by ex-
ploiting linearity and the special structure of the SHS with renewal transitions, our
approach provides an insight that allows us to compute moments more efficiently, than
when seeing the SHS with renewal transitions as a piecewise deterministic process and
specializing the approach proposed in [4, Chap. 3, sect. 32.2].

3.4. Proofs of Theorems 3.1 and 3.3. We start by establishing four prelim-
inary facts stated in the form of propositions.

Let A0 m > 0, denote the mth-fold Kronecker product of a matrix or a vector
A with itself, i.e.,

AM = AR A ® A,
N————

and recall that
(3.25) (A® B)(C® D) = (AC) ® (BD)
(cf. [18]).
PROPOSITION 3.5. The following holds:
(3.26) Elzy (t) 2o (t)= ... 2, (t)"] = E[(z(t)T)™e,],
where
(3.27) e = @ @elin) for p(k) = [i1, .. .-

Proof. The proof follows directly by using (3.25). O
Let T (m,n) be the set of symmetric tensors, i.e., multilinear functions R on the
m-fold R™ x - -+ x R™ (cf. [19, Chap. 4]) such that

R(wi, w2, ..., wn) = R(Ws(1), Wa(2), - - + s Wer(m))

for every w; € R",1 < ¢ < m, and every one-to-one permutation of indices o :
{1,2,...,m} — {1,2,...,m}. We note that there is a natural identification between
monomials of degree m in R™ and 7 (m,n). In fact, to every m-degree monomial
zlsl = a:lf x? ...z indexed by k, as in (3.3), we can associate an element R™ of the

following orthogonal basis of symmetric tensors defined by

R (w1, wa, ..., W) :=b"w Quwa @ ... R wp,
where
(3.28) b= (el)@(el)®... @] ), 1<k <p,
JETw

and the vector j belongs a set of v, permutations of indices defined as
(3.29) TJe ={3= U1, Jm) T, xj, ... T}, = 2 Vaeern },

where K : p(K) = [i1,...,n].
PROPOSITION 3.6. The following holds:

(3.30) (2(t)™)Tex = (2(t)™)Tdy,
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(Gl
Y

and

where d,, :=

(3.31) 2(8)) = zp:x[ﬂl ()T,
r=1

where p is given by (3.2).

Proof. The proof follows directly from definitions (3.28) and (3.29). O

Let T;(t) denote the transition matrix of the SHS starting at the discrete mode
qo =1, 1.e., x(t) = Ty, (t)xo, where

Ti(t) = eAawy(t=tr) ngg(i)JleA&zQ(i)(t1—t0)Ji7l08A¢t1’

r =max{k € Z>¢ : ty < t}.
PROPOSITION 3.7. The following holds:

(3.32) E[(z()T)™en] = (2f) ™ w e (1),
where the w™i(t), i € Q, are defined as
(3.33) wi(t) .= E[(T;(t)T)™d,], iecQ.
Proof. Using (3.25), (3.26), and (3.30) we obtain
E[(z()T)™e.] = E[(@()T) ™ dy] = () E[(Ty ()T) ™ dy] = ()™ w™ e (t). O

For a matrix A € R™*", we define a map T4 : RP — RP y — v = Ty (y) by

P P
(3.34) D v, (072)T = A Ny (07T
Kz:l Kz:l

ProOPOSITION 3.8. For a matriz A € R™"*™ the map Ty : RP — RP y — v =
Ta(y) defined by (3.34) can be described by

(3.35) v=T"(A)y,
where '™ is given by (3.4).

Proof. 1f we denote the elements and row of A by A;; and a’, respectively, i.e.,
A =[4;] = [(a")T (a®)T ... (a™)T]T, then using (3.25), (3.28), (3.29), and (3.31), we

have that for k1 : p(k1) = [¢1 @2, ... in],

(Az)lF] = (a1 @ (6*) ) @ ... ® (a™) ) 2™

— 1 ajl ®aj2 ®®a]m$(m)
T JE€ETw,
L J1 J2 J - K2\ T .[k2]
- Y ated?e..@dm Y (b))
T e T, Ka=1
P
= Z B’flﬁzx[nﬂa
Kz:l
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where

1
(3.36) Buma = — Y, Y AniAjiz - Ajin-
R

Applying the tensors 1,1 < k; < p, on both sides of (3.34) one also obtains that
the linear map (3.34) is described by (3.36) in the basis (7)7,1 < j < p. O
Proof of Theorem 3.1. We start by showing that

(3.37) wr(t) == (W™ (t),. .., w>"(t)),

where the w"* are defined in (3.33), satisfies a Volterra equation.

Consider an initial condition g9 = 4,7 € O, and a given time ¢ and partition
the probability space into the events [t1 < ¢] U [t; > t]. We can further partition
[t1 < t]into [t; < t] = Uy~ By(t) U Bo(t), where By(t) is the event of two transitions
triggering at the same time in the interval [0, ], which has probability zero due to
Assumption 2.1, and By(t) is the event of the transition ¢ being the first to trigger in
the interval [0, ], i.e., By(t) = [min{h),j € L} = h§ = t1 < t]A[h) > h, £ # j], where
A denotes intersection. Notice that since the initial state is qg = 1, ﬁf) is distributed
according to pu;; for a given j € £ for which y;; is the nonzero measure. When
transition j does not trigger in state go = i, the event Bj;(t) is empty, in which case
fi,j is the zero measure. Using this partition we can write

ne

(338)  E[Ti(t)")™d] = E[(T:(0)T) ™ dux(eg] + Y EIT(OT) ™ duxs, ],
(=1

where we denote by xzc4 the characteristic function of a set A, i.e., xzca equals 1 if
x € A and 0 otherwise. The first term on the right-hand side of (3.38) is given by

E[(E(t)T)(m)an[tpt]] = (eAiTt)(m)dn E[X[t1>t]]
(3.39) = ()™ d, ri(1),
T T
= @rm ),

where we used the fact that E[xp,>y] = Prob([t; > t]) = H?ilProb[hé > t] =
174, 7;,5(t) = ri(t). To obtain an expression for the second term on the right-hand
side of (3.38), notice first that for a function of the first jump time G(¢1),

t
E[G(t1)xB, )] :/o E[G(S)X[hg>s,j#]|h€ = s]uie(ds)

’I"l(S)
ri.0(s)

Notice also that T;(t) = T&(i) (t —t1)(E;¢(t1)) when the transition ¢ is first triggered,
where T&(i) (t—t1) is the transition matrix of the SHS from ¢; to ¢ starting the process

- / ()™, 7 () e(ds) = / G(s)-T0) 1 (ds).

at ¢1 = & (i) and E;¢(s) := i,geAS, s > 0. Each of the terms of the summation on
the right-hand side of (3.38) can then be expressed as
(3.40)
¢ ~ TS
E[(Ti(t)T)(m)anBg(t)] = /0 (Ei,Z(S)T)(m)]E[(T&(i)(t - S)T)(m)dn]r‘ é((s)) i e(ds).
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By construction of the process (or in other words using the Markov property of
the process at transition times) IE[(T&(Z-) (t—s)T)™d,] = E[(Te, )t — )N M, ] =
w0 (t — 5). Replacing (3.39) and (3.40) in (3.38) and noticing that gy = i € Q is
arbitrary we obtain that

(3.41) W) = Wil (1)) + (7 W(fi rilt), i€Q,

where

Ty e ¢ — )
Z / Bielr (6 =)t g,

An explicit solution to the set of equations (3.41) takes the form

b
(3.42) ZW" < ty(m) (7> Tz(t)),
where w® = (w™! ... ,w""), W = (Wy,...,W,,), and W* denotes composition.

From (3.42) it is possible to conclude that w"¢(t) belongs to the dual vector space of
the symmetric tensors for every ¢ € Q and therefore can be written as

(3.43) wi(t) =Y uft ()T

j=1

Replacing (3.43) in (3.41) we get
(3.44)

T 1
Zu’” )T = (AT ()

Tk
#3 [ SO i, i@
M — il ) .
=170 7ie(T)

Multiplying both sides of (3.44) by b*,¢ € {1,...,p}, and using the fact that the
maps (3.34) and (3.35) are equivalent, we obtain the set of equations (3.9). O
Proof of Theorem 3.3. Similarly to (3.26) we can write

n

(3.45) E Y (@)™ | = > El@)T)mel™)].

j=1 j=1

Each term of the summation E[(z

1) (m)g(m ] can be obtained from Theorem 3.1,
where the index & in (3.8), (3.9), (3.1

0) should be taken as x;, defined by
Kj:p(kj) =me;, 1 <j<n,

where e; is a canonical vector in R™. Due to the linearity of the Volterra equation we
can obtain

(3.46) SR (0)") =Y aflume )
j=1 =1
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where u™ = (u™!, ... u™"™) is uniquely determined by the Volterra equation

(3.47) u™(t) = O™ (1)) + h™(t), t >0,
where h™(t):= (™ (¢), ..., k™" (1)),

r

: T (1)
() =T™ (et €x, il , 1€ Q,
(t) ( ); o
J_
and e,; € RP. It is then clear that the limit Az (z0) = limy_o0 T log(E[[|2(t)||7]) exists
for every z if and only if the limit

1 m
(3.48) Av = tliglo 7 log([[u™(#)I)

exists, and Ay = sup, Ar(zo) = Az. Note also that E[||z(t)|[;:] = 0 V4, t > b >0, if
and only if u™(t) = 0,¢t > b > 0, in which case both A, and Ay equal —co according
to our definitions.

Let

U:{T eT(m,n):T(x,z,...,x) >0 Vyern}

and for y € R?P

p
Ty(wl,wz, R 7w’m) = <Zybbb> (wl RQuwz ... ®wm)7
=1

and consider the set
K:{yeRF:T, €U},

where the b* are described by (3.28). The set K is a cone, i.e., K is a closed convex set
such that if y, z € K, then a1y + asz € K for a; > 0, as > 0 and is such that the set
—K :={—y:y € K} intersects K only at the zero vector. Moreover K is a solid cone,
which in finite-dimensional spaces is equivalent to being reproducing, i.e., any element
y € RP can be written as y = y; — y2, where y1,y2 € K (cf. [14, p. 10]). In fact, let
z € K be defined as ».P_, 8,b", where 8, = § if ¢ : p(t) = me;, &; € R™, for some
i€ {1,...,n}, and B, = 0 otherwise. Then, from (3.28), z = 52?:1(@)(’”). Given
any y € RP then y = y;—y2 for y1 = 24y and y2 = 2z, which belong to K for sufficiently
large 6. Likewise one can also prove that K™ (= x --- X L CRP X RP x --- x RP,
Y= Y1, Yn,) € K" if and only if y; € K Vi<i<y, is a solid cone. We prove that
the Volterra equation (3.47) has a positive kernel with respect to the solid cone K™ in
the sense of [10], and therefore we can directly apply [10, Thm. 13] to conclude that
74 (©™(a)) is nondecreasing and that the root with largest real part of det(I —©™(z))
is real and coincides with the unique value a such that 7,(0(a)™) = 1. As stated
in [10, Thm. 13], the zero a equals Ay, given by (3.48), which in turn equals the
Lyapunov exponent Ar, provided this zero is not a removable singularity of a given
complex function. The proof of this latter statement follows steps similar to the ones
provided in [10, Thm. 4] and is therefore omitted.

To prove that the kernel of the Volterra equation (3.47) is a positive operator, we
need to prove (cf. [10, sect. IV.B]) that if y = (y!,...,y") € K", y* € R",1 <i < n,,
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then M (s)y € K" for every s > 0, where

Mii(s) ... Miy,(s)
M(s)=| - :
an71(8) s an,nq (5)
and
3.49 M; i(s) = rm eATSJ.T 7'1(5) .
(3.49) J(8) . Z_‘ ( “)w(s)
e (1)=j
Note that if (21, 22,...,2"1) = M(s)y, then for a given s, each z* € R?,1 < i < n,, can

be written as a sum of terms taking the form Fm(eATSJiT) ,)y! multiplied by positive

scalars. Thus to prove that z' € K and hence z € K"¢, it suffices to prove that
w=T"(C)y € K for an arbitrary 1 < j < ngy, y € K, and C € R"*". To this effect,
using the fact that the map (3.34) can be written as (3.35), we have that

P

P
w: Zwb(bL)T =cm ZyL(bL)T
=1

=1
belongs to K because Y 7_, w,(b*) belongs to U since

p

Z w, (b)z™ =

=1

yb(bb)(CT)(m)x(m)

M)~

(\
Il
-

y (0)(CTa)™ >0,

I
NE

Il
=

L

where in the last equality we used the fact that > ", y,(b*) € U. O

4. Application to networked control. We consider the following simplified
version of the networked control setup in [10]. Suppose that we wish to control a
linear plant

(4.1) tp(t) = Apxp(t) + Bpu(t)

using a state feedback controller taking the form Kcxp(t) that needs to be imple-
mented digitally and suppose that the actuation is held constant 4(t) = 4(sx),t €
[Sk, Sw+1), between actuation update times denoted by {s.,x > 0}.

The controller has direct access to the state measurements but communicates
with the plant actuators through a network possibly shared by other users. The
controller attempts to do periodic transmissions of data at a desired sampling period
T, but these regular transmissions may be perturbed by the medium access protocol.
For example, users using CSMA for medium access may be forced to back off for a
typically random amount of time until the network becomes available. We assume
these random back-off times to be independent and identically distributed and denote
by us the associated measure.

We consider two different cases.

Case 1. After waiting to obtain network access, the controller (re)samples the
sensor, computes the control law, and transmits this most recent data. Assuming
that the transmission delays are negligible, and defining « := (zp, %), we have
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i=Ax, A= 0 0

(4.2) a(sk) = Ja(sy), J= {K{c 8] .

Since the intervals {s;11— sk, k > 0} result from the controller waiting a fixed time T
plus a random amount of time with a measure p(s), these intervals are independent
and identically distributed according to

(7 —Ts) if 7> T,
w((0.m) = {g, (s € [0,)Ts).

Note that the system (4.2) is a special case of an SHS with a single state and a single
reset map.

Case 1I. After waiting to obtain access to the network, the controller does not
resample the sensor and simply transmits the data that it had collected at the time
of the first attempt to transmit the sensor data. We model this by an SHS with the
following two discrete modes (ngy = 2):

o State ¢(t) = 1: The controller waits for a fixed time T.
e State ¢(t) = 2: The controller waits a random time to gain access to the

network.
Let r, = s + Ts, © := (zp,U,v), where v(t) := uy,t € [ry,Twt1), is a variable
that holds the last computed control value. The transitions between the two discrete
modes can be modeled by a single transition (n, = 1) which is a function of the two
discrete modes and takes the form (2.2), specified as follows. When in state 1 the SHS
transits to state 2 (§1(1) = 2) at times r,,. The corresponding state jump models the
update of the variable v(ry) = u, that holds the last computed control value and is
described by

1
$(’I“,{) = Jl)lﬂi(T;), J171 = 0

O N O

0
0
Kc 0

When in state 2 the SHS transits to state 1 (£1(2)

= 1) at actuation update times
sk- The state jump models the actuation update i(s,) =

(s;;) and is described by

x(sk) = Jax(s, ), Joq1 =

O O~
o O O

0
I
1

The reset-time measures are given by the following:
o pui1(r) = 0(r — T;) is a discrete measure that places all mass w; = 1 at
time 7.
o p21(7) = ps(7).
In both discrete modes, the continuous-time dynamics are described by & = A;z,
i€{1,2}, Ay = Ay = A, where

Ap Bp 0
A=10 0 O
0 0 O
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4.1. Numerical example. Suppose that the plant (4.1) is described by

which by properly scaling the state and input can be viewed as a linearized model of a
damp-free inverted pendulum. Moreover, suppose that the measure pu, is uniform with
support on the interval [0, 7], and fix Ty, = 0.1s and 2p(0) = [10]T. A continuous-time
state feedback controller is synthesized using a linear quadratic regulator (LQR) and
is given by 4(t) = Kca(t), Kc = —[1++v2 1++/2], which is the solution to
the problem ming ) [ [zp(t)Tzp(t) + 4(t)?]dt, yielding the closed-loop eigenvalues
\i(Ap +BpKc) = {—1,—/2}. We wish to investigate the stability and performance
of the closed loop when instead of the ideal network-free case we consider the scenarios
of Cases I and II. To this effect we define the quantity

e(t) = zp(t)Twp(t) + a(t)?,

which can be written as e(t) = 2T Px, where (i) in the network-free case P = I +
KILKc and ¢ = xp; (i) in Case I, P = I3 and « = (zp,u); and (iii) in Case II,
P = diag(l2,1,0), and = = (zp,u,v). Note that, in the network-free case, e(t) is
the quantity whose integral is minimized by LQR control synthesis and e(t) decreases
exponentially fast at a rate @ = 2, since the dominant closed-loop eigenvalue equals
Xi(Ap + BpK¢) = —1. In Cases I and II, E[e(t)] converging to zero is equivalent to
mean square stability (7 and 74 are finite). Corollary 3.4 can be used to determine
whether the closed loop is MSS in Cases I and II. Moreover, when the closed loop is
MSS, we can determine the exponential decay constant of Ele(t)] from Theorem 3.3.
The results are summarized in Table 4.1 for different values of the support 7 of the
uniform measure pug of the back-off time.

The fact that closed-loop stability is preserved for larger values of 7 in Case 1
confirms what one would expect intuitively, i.e., Case I is more appropriate when
transmitting dynamic data, since the most recent sampling information is sent through
the network.

Using the state moment expressions provided by Theorem 3.1, we can perform
a more detailed analysis by plotting the moments of e(t), which can be expressed in
terms of the moments of the state. For example, the two first moments take the form

Ele(t)] = Ez(t)T Px(t)] = E[(z(t)T)P]u(P),
Ele(t)*]=E[(«(t) Px(1))*] = E[(x(t)T)V](v(P) @ v(P)).
In Figure 4.1, we plot the expected value of the error E[e(t)] and its 2—o confidence

interval Ele(t)] £ 2E[(e(t) — E[e(t)])?]*/? for a network measure support 7 = 0.4. Note
that from the Chebyshev inequality, we conclude that

TABLE 4.1
Ezponential decay rates Ele(t)] < ce™t.

(a) Case I
T 0.4 0.6 0.8 1.0 1.2 > 1.211
a | 2.000 | 2.000 | 1.969 | 0.477 | 7.63 x 10~° | Not MSS
(b) Case II
T 0.1 0.2 0.3 0.4 0.5 > 0.521
a | 2.000 | 2.000 | 2.000 | 0.849 0.118 Not MSS
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10

E[e(t)] /N E[e(t)]

A¥a = = ~ Ele()}+2E[(e()-Ele())*]"? st/ |~ 7 Ele(+2EKew-Ele®)?
;! ~ " Ele(]-2E[(e()-Ele®])? " L LD max(Ele(]-2E[(e(-Ele)?) ™0)

(a) Case I (b) Case II

F1a. 4.1. Plot of Ele(t)], where e(t) is quadratically state dependent. For a fized t, Ele(t)] lies
between the dashed curves with probability > %.

Ef(e(t) — Ele(t)])?]
a(t)? ’

Probfle(t) — E[e(t)]] > a(t)] <

and therefore one can guarantee that for a fixed ¢, e(t) lies between the curves Ele(t)] £
a(t), a(t) = 2E[(e(t) — E[e(t)])?]'/? with a probability greater than 2. The numerical
method used to compute the solution of the Volterra equation is the one described in
section 3.1 for which we used a trapezoidal rule for the integration method. In Case I,
the expected value of the quadratic state function e(t) tends to zero much faster, and
with a much smaller variance than in Case II, confirming once again that Case I is
more appropriate when transmitting dynamic data.

The plots of Figure 4.1 can be confirmed through Monte Carlo simulation, al-
though this latter method is in general more computationally demanding. For illus-
tration, in Table 4.2 we compare the numerical error Z%:o E[le(kh)—é(kh)|], L = 100,
h = 0.01, obtained with our proposed method (with trapezoidal rule for integration)
and the Monte Carlo method, for Case I, where e(kh) is a very accurate approximation
of e(t) at time kh and é(kh) is the approximation obtained with one of the methods
presented in Table 4.2. For the Monte Carlo method, we show the numerical errors
obtained with a different numbers of Monte Carlo runs, whereas for our proposed
method we show the numerical errors obtained with different discretization steps or
equivalently with a different number of discretization points L + 1 equally spaced in
the interval [0,1]. The computational times were obtained with a computer with the
following specifications: Intel Core 2 Duo, 3 GHz processor speed, and 3.5 GB RAM.
From the values in Table 4.2 it is clear that our proposed method provides better
accuracy with fewer computations.

TABLE 4.2
Numerical errors Z%:o E[|e(kh) — é(kh)|] for case I, L = 100, h = 0.01.

(a) Proposed method based on Volterra equations
Number of discretization points L 500 1000 2000 4000 8000 16000
Computational time (sec) 6.04 7.44 12.17 29.37 | 103.19 | 347.52
Num. error 5.0187 | 2.4482 | 1.1796 | 0.5493 | 0.2352 | 0.0783
(b) Monte Carlo simulations

Number of Monte Carlo runs 300 600 1200 2400 4800 9600
Computational time (sec) 10.03 19.47 42.90 90.80 | 235.64 | 701.22
Num. error 3.73 2.26 3.07 2.02 0.79 0.77
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5. Conclusions and future work. We proposed an approach based on Volterra
renewal-type equations to analyze SHSs for which the lengths of time that the system
stays in each mode are independent random variables with given distributions. We
showed that any statistical mth degree moment of the state can be computed using
this approach, and we provided a number of results characterizing the asymptotic
behavior of a second-degree moment of the system. Due to the large number of
problems that fit the stochastic hybrid systems framework, finding more applications
where the results can be applied is a topic for future work.
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