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Optimal Control on Lie Groups: The Projection
Operator Approach

Alessandro Saccon, John Hauser, and A. Pedro Aguiar

Abstract—Many nonlinear systems of practical interest evolve
on Lie groups or on manifolds acted upon by Lie groups. Ex-
amples range from aircraft and underwater vehicles to quantum
mechanical systems. In this paper, we develop an algorithm for
solving continuous-time optimal control problems for systems
evolving on (noncompact) Lie groups. This algorithm generalizes
the projection operator approach for trajectory optimization
originally developed for systems on vector spaces. Notions for
generalizing system theoretic tools such as Riccati equations and
linear and quadratic system approximations are developed. In this
development, the covariant derivative of a map between two man-
ifolds plays a key role in providing a chain rule for the required
Lie group computations. An example optimal control problem
on is provided to highlight implementation details and to
demonstrate the effectiveness of the method.

Index Terms—Differential geometry, geometric approaches, Lie
groups, optimal control, projection operator approach, Riccati
equations.

I. INTRODUCTION

T HE optimal control of a continuous time process is
among the oldest and most extensively studied problems

in control theory. The main pillars of optimal control theory
are Bellman’s principle of optimality [1] and Pontryagin’s
maximum principle [2], both developed during the 1960s,
and the Hamilton–Jacobi–Bellman partial differential equation
and its unique viscosity solution [3], [4], studied deeply in
the 1980s. Many books have been written on the subject, a
sampling includes [5]–[7].
Various numerical methods have been proposed in the liter-

ature for solving optimal control problems on . A method
is called indirect if it seeks to solve the first order necessary
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optimality conditions of the Pontryagin maximum principle,
requiring the solution of a two-point boundary value problem.
On the other hand, a method is called direct if the minimization
problem is tackled directly, generating a descending sequence
of trajectories. In a direct method, the continuous-time op-
timal control problem is typically transcribed into a finite
dimensional constrained optimization problem by discretizing
the continuous time dynamics, integral cost, and state-input
constraints; the transcribed problem is then solved by using a
state-of-the-art nonlinear programming solver.
The purpose of this paper is to present an algorithm for

solving continuous time optimal control problems for systems
evolving on Lie groups. The proposed numerical algorithm
can be used for solving general optimal control problems on
Lie groups, without restricting the attention to left (or right)
invariant optimal control problems. Part of this work has been
reported in preliminary form in [8]–[10].
Theoretical investigations on optimal control problems on

Lie groups began in the 1970s, with the pioneering works of
Brockett [11] and Baillieul [12]. The literature on optimal con-
trol problems on Lie groups has grown steadily since then and
the field is still an active area of research [13]. Quite interesting
sources are the excellent book of Jurdjevic [14, Ch. 12] and the
more recent book of Agrachev and Sachkov [15, Ch. 18] and
references therein.
Despite the large and growing literature on geometrical inte-

gration [16], [17] and finite dimensional optimization on smooth
manifolds [18], [19], there are not so many numerical algo-
rithms available for solving continuous-time optimal control
problems on Lie groups. Exceptions to this general statement
include the recently-proposed numerical algorithms to address
optimal control problems for mechanical systems evolving on
smooth manifolds (such as Lie groups) presented in [20]–[22].
The algorithm proposed in this work is a direct method for

solving continuous time optimal control problems, generating a
descending sequence of system trajectories. In contrast to many
direct methods, the continuous-time optimal control problem is
not transcribed into a discrete optimization problem, but rather
a continuous-time second-order approximation is computed at
each iteration.We borrow from and expand the key results of the
projection operator approach for the optimization of trajectory
functionals developed in [23] to the class of systems evolving
on Lie groups. The projection operator based optimization ap-
proach can handle optimal state transfer [24] and state-control
constraints using a barrier function approach [25]. It has been
used, in the context of virtual prototyping, to obtain a dynamic
inversion procedure for the dynamics of a racing motorcycle
[26]. Further applications include [27], [28], and [29].
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The algorithm can be viewed as a generalization of Newton’s
method to the infinite dimensional setting and exhibits a
second-order convergence rate to a local minimimzer at which
the second-order sufficient condition (SSC) for optimality
holds. At each step, a quadratic model of the original cost func-
tional is constructed about the current trajectory iterate. The
quadratic model is obtained from first and second derivatives of
the incremental cost, terminal cost, and control system vector
field. An interesting property of the algorithm, which connects
it to indirect methods, is that it also generates a sequence of
adjoint state trajectories that converges, as a local minimum
is approached, to the adjoint state trajectory of the first-order
necessary condition. These key properties are maintained in
the extension to Lie groups that we propose in this work. We
also provide a simple nontrivial optimization example which is
worked out in detail to illustrate the method.
The paper is organized as follows. The projection oper-

ator approach for the optimization of trajectory functionals
in Banach space, originally proposed in [23], is reviewed in
Section II. In the same section, after introducing the notation on
differential geometry used throughout the paper, a high-level
description of the projection operator approach on Lie groups
is presented. The remaining sections of the paper provide the
low-level details of the method. In particular, Section III in-
troduces the definition of the left-trivialized linearization of a
control system on a Lie group and Section IV presents the
key concept of covariant derivative of a map between two
manifolds. Section V defines the Lie group projection oper-
ator together with its linearization and second covariant
derivative. Section VI details the search direction subproblem
which is at the heart of the projection operator optimization
strategy. A numerical example is presented in Section VII to
demonstrate the effectiveness of the method. Conclusions are
drawn in Section VIII. Further technical details are collected
in Appendices A and B.

II. PROJECTION OPERATOR APPROACH

This section reviews the projection operator approach on a
vector space [23], before presenting its extension to Lie groups.
The section also introduces the basic notation and symbols that
will used frequently throughout the paper.

A. Review of the Projection Operator Approach on a Vector
Space

The projection operator approach to the optimization of tra-
jectory functionals is an iterative algorithm which, in its eas-
iest formulation, allows one to perform local Newton (or quasi-
Newton) optimization of the cost functional

(1)

over the set of trajectories of a nonlinear system ,
, , subject to a fixed initial condition . In

this paper, we use the word trajectory in an extended sense to
indicate the state-control pair , , that

satisfies for all . As usual, “all ”
means “almost all ” in the sense that

where is the Lebesgue integral. The cost functional
appearing in (1)—which is defined in terms of the incremental
and terminal costs and —as well as the control vector field
are assumed to be sufficiently smooth and regular [23].
As shown in [30], the set of trajectories of the nonlinear

control system has the structure of a (infinite
dimensional) Banach manifold, a fact that allows one to use
vector space operations [31] to effectively explore it. To work
on the trajectory manifold , one projects state-control curves
in the ambient Banach space onto by using a local linear
time-varying trajectory tracking controller. To this end, suppose
that , , is a bounded state-control curve
(an approximate trajectory) and let , ,
be the trajectory of determined by the nonlinear
feedback system

with . Under the hypotheses that the control vector
field is (at least) twice continuously differentiable and the gain
is bounded [30], this feedback system defines a continuous,

nonlinear operator

It is straightforward to see that is a fixed point of , ,
if and only if is a trajectory of the control system .
This ensures that so that is a projection operator.
With this projection operator at hand, one can see [23] that the
constrained and unconstrained optimization problems

are essentially equivalent in the sense that a solution to the first
constrained problem is a solution to the second unconstrained
problem, while a solution to the second problem is, projected by
, a solution to the first problem. Using these facts, one may de-

velop Newton and quasi-Newton descent methods for trajectory
optimization in an effectively unconstrainedmanner by working
with the cost functional . The algorithm pro-
posed in [23] is the following:

Algorithm (Projection operator Newton method)

given initial trajectory

for

redesign feedback if desired/needed

(2)

(3)

(4)

end
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Fig. 1. Projection operator approach: (a) at each iteration, the linearization of
the control system about the trajectory defines the tangent space to the trajec-
tory manifold at ; (b) the constrained minimization over the tangent space
of the second-order approximation of the extended cost functional
yields the search direction ; (c) the optimal step size is computed through a
line search along ; (d) the search direction and step size are combined
to obtain a new update trajectory . (a) Trajectory manifold. (b) Search di-
rection. (c) Line search. (d) Update.

Note that the functional and the projection operator de-
pend on the choice of the feedback . In (2), , and

are the first and second Fréchet derivatives of the Ba-
nach space functional . When and , the first
derivative is equal to , i.e., it does not depend
on (since, in this case, ).
At each step, the minimization of a second-order approxima-

tion of the extended cost functional provides a search direc-
tion. Then an optimal step size is computed through a line search
(a pure Newton method would use a fixed step size of ).
Combining the search direction with step size a new up-
date trajectory is computed by projecting the curve
onto the trajectory manifold and the algorithm restarts (unless
a termination condition is met). An illustration of the approach
is shown in Fig. 1.
The optimal search direction computed in (2) is constrained

to lie on the tangent space to the trajectory manifold at the
current iterate, i.e., . This is not restrictive since,
as established in [30, Prop. 3.2], can be used to define a
bijection between neighborhoods of a trajectory and
the origin of its tangent space . The condition
simply means that , ,
is a trajectory of the linearization of the control system

about the current trajectory iterate . The search di-
rection subproblem (2) is, in practice, a linear quadratic (LQ)
optimal control problem, where the functional to be minimized,

, is the quadratic model func-
tional given by the first two terms of the Taylor expansion of
the functional with respect to [23, Sec. 3]. The
LQ problem is defined using first- and second-order deriva-
tives of the nonlinear system and the incremental and terminal
costs about the current (nonlinear system) trajectory iterate. It
can be solved by computing the solution to a suitable differ-
ential Riccati equation (and an associated adjoint system). In
particular, in the vector space case, the usual chain rule applies
and one finds that is a well defined object given
by

(5)

for and [30]. Note that is the second
Fréchet derivative of the Banach space operator .
When the system evolves on a Lie group, a number of inter-

esting questions arise. What is the linearization of the system?
How do we define and compute a second-order approximation
of the system? What Riccati equation(s) can we associate with
a Lie group trajectory optimization problem? One purpose of
this paper is to develop appropriate notions to address these
questions.

Notation and Definitions

We assume that the reader is familiar with the theory of fi-
nite dimensional smooth manifolds, matrix Lie groups, and co-
variant differentiation. We refer to the books [32]–[34] for a re-
view on differentiable manifolds and covariant differentiation
and to [35]–[37] for a review of the theory of Lie groups and Lie
Algebra. Many of these topics are also covered in [38] and [39].
Notation:

, Smooth manifolds

Point on the manifold

, Tangent and cotangent spaces of at

v, w Tangent vectors

, Tangent and cotangent bundles of

Natural bundle projection from to

Generic vector field on

A map from to

Tangent map of f

Fréchet derivative of the functional at
in the direction

Second Fréchet derivative of at in the
directions and
Diffeomorphism between and

Pull-back of the vector field
on through , i.e.,

Push-forward of the vector field on
through , i.e.,
Affine connection

Covariant derivative of the vector field
in the direction
Covariant derivative (alternative notation)

Covariant differentiation with respect to
the parameter

, Curve (defined on the interval )

Parallel displacement along , from
to , of the vector
Second covariant derivative of the map
at evaluated in the directions ,

Lie group

Lie algebra of

Group identity

, Left and right translations of by
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, , Shorthand notation for and

, Shorthand notation for ,
, with

Lie bracket operation

Adjoint representation of on

Adjoint representation of onto itself

Exponential map

Logarithm map (inverse of the exp in a
neighborhood of )
Trivialized tangent of a local
diffeormorphism between and

1) The (0) Connection on a Lie Group: On a Lie group,
left-invariant connections are those for which

, while right-invariant connections are, simi-
larly, those which commute with the push-forward of the right
translation. There is a one-to-one correspondence between left-
invariant (respectively, right-invariant) affine connections on
and bilinear maps [40, Theorem 8.1] given by

(6)

for (respectively, ). The bi-
linear function appearing in (6) is termed the left (respectively,
right) connection function for . A connection is bi-invariant
if it is both right- and left-invariant. For bi-invariant connec-
tions, the right and left-connection functions coincide and sat-
isfy , for all and , .
Given a Lie group of dimension , an invariant connection is
uniquely specified by the numbers that characterize the bi-
linear connection function.
Amongst all possible bi-invariant affine connections,

three are particularly useful: they are the , and (0)
Cartan–Schouten connections. These connections were studied
and generalized to homogeneous spaces by Nomizu in [40,
Sec.XI] although in the context of Lie groups they were in-
troduced by E. Cartan and J. Schouten in [41] and further
developed by E. Cartan in [42]. For these connections, every
1-parameter subgroup is a geodesic, meaning
that its covariant derivative satisfies . The
and connections are flat (i.e., the curvature tensor of the
connection is identically zero), implying that the associated
parallel displacement is independent of the path, depending
only on its initial and final points.
In this paper, we only make use of the (0)-connection. Its con-

nection function and parallel displacement satisfy, respectively,

(7)

(8)

where , , is a curve satisfying
and , and . The parallel displacement

is path dependent as the (0)-connection is not flat. The ap-
proximate expression given by the first term in the right-hand
side of (8) is a handy and useful formula for computing co-
variant derivatives. Note that and

appearing in (8) are, respectively, the
(path independent) parallel displacements of the flat and

connections [40].
2) The Trivialized Tangent of a (Local) Diffeomorphism Be-

tween and : Let be a Lie group with Lie algebra . Con-
sider a (local) diffeomorphism between a neigh-
borhood of the origin of and a neighborhood of the
identity of . Given the (right) trivialized tangent
of at is the linear map defined by

(9)

Similarly, given a local diffeomorphism , the (right)
trivialized tangent of at is the linear map
defined by

(10)

with . More details on the trivialized tangent and
their use can be found in [17] and [43, sec. 4]. In this paper,
we make use of the trivialized tangents of the exponential and
logarithm maps, using and .

B. The Lie Group Projection Operator Approach

A control vector field on a Lie group is a (sufficiently
smooth) map , ,
such that for each . A
trajectory of the control system is a state-control
curve , , with abso-
lutely continuous and integrable, satisfying a.e. the differ-
ential equation

(11)

Similarly to what is done on a vector space, given a state-
control curve , , we can assign
a cost to it by defining a cost functional

(12)

where and and
are given incremental and terminal cost functions. We

are interested in minimizing the functional over the set of
trajectories of starting from a given initial condition .
The projection operator approach on vector spaces [23], re-

viewed at the beginning of this section, is generalized to Lie
groups as follows.

Algorithm (Lie group Projection operator Newton method)

given initial trajectory

for

redesign feedback if desired/needed

(13)

(14)

(15)

end
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The algorithm is closely related to the one proposed for vector
spaces. In fact, when , it is actually equivalent to it.
Note that the perturbation , , is now a
curve in while the current iterate ,

, is a trajectory in . Moreover, the operation
, which does not make sense on a Lie group, is re-

placed with the operation , where the exponential
acts pointwise in time. Specifically, from now on, we adopt
the following convention. Given a curve in ,

, , and a curve in , ,
, we write and for the pointwise opera-

tors defined by and
, . We also adopt

the notation to mean the curve in defined as
, .

In Sections III–VIII, we define the linearization of a control
system on a Lie group, the Lie group projection operator
and detail the search direction subproblem (13). In particular, in
Section VI we show that the search direction subproblem (13)
is in fact a linear-quadratic problem on the Lie algebra of .

III. LINEARIZATION OF CONTROL SYSTEMS ON LIE GROUPS

Given a control vector field on a Lie group, its left trivial-
ization is the map defined as

. The left trivialization allows one to write (11)
equivalently as

(16)

As we show in the following, the use of an element on the Lie
algebra to uniquely represent a generic tangent vector on the Lie
group is key in developing the concept of linearization along a
trajectory of the control system. An equivalent theory can be
obtained using right translation, the choice between the two de-
pending on the specific application in mind.
1) Left-Trivialized Linearization Around a Trajectory: Let

, , be a trajectory of the
control system (16), with .
Definition 3.1: The left trivialized linearization of (16) about

the state-input trajectory , , is the linear system

with and and where

(17)

(18)

In the remainder of this section, we detail the manner in which
(17) and (18) represent a linearization of (16). Given a bounded
curve , , and “small,” consider the pertur-
bation of the input defined as . Indicating
with the state trajectory associated with , we have

In the (possibly small) interval , the solution will re-
main in a neighborhood of the unperturbed trajectory ,

, so that we can use the exponential coordinates to parameterize
neighboring trajectories of the nominal state trajectory . To
this end, we define the left-trivialized perturbed trajectory ,

, such that , . The
trajectory satisfies the following differential equation.
Proposition 3.1: Let , . The

left trivialized perturbed trajectory , , satisfies

(19)
Proof: Since is a trajectory of (16) with

input signal , it satisfies

(20)

The left-hand side of (20) is equal to
. Substituting this expression into (20) and

multiplying both sides by , we get

(21)

where for brevity we have dropped the explicit dependence on
time. Since the inverse map of at is
and for each ,

, the result follows.
Proposition 3.2: The left-trivialized perturbed trajec-

tory , , can be expanded to first order as
, with of order higher than

one in and satisfying

(22)

where and are given by (17) and (18), re-
spectively.

Proof: The result follows from standard perturbation
theory (see, e.g., [44, Ch. 8]) realizing that (19) defines a
differential equation in the form with initial
condition , where is smooth with respect to .
Denoting by , , the solution of (19) for , from
perturbation theory we get ,
where is the solution of with
and satisfies

(23)

Equation (19) is in the form
with and

Note that and , . Since ,
it follows that , . Equation (23) can be written as

(24)
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Since , , and , we only need to
compute the partial derivatives of with respect to the
first two arguments around to compute the right-hand
side of (24). Since , we obtain

The result follows noting that and
. Recall that , for all ,

.

IV. DIFFERENTIATION OF MAPS BETWEEN MANIFOLDS

In this section, we define the second covariant derivative of
a map between two manifolds that will play a key role in com-
puting the second order approximation of the projection oper-
ator on Lie groups. This covariant derivative is required to
obtain a formula analogous to (5) in the context of Lie groups
providing, in particular, an understanding of the second deriva-
tive of a map between two manifolds, each endowed with an
affine connection. The symbol is introduced to indicate this
particular notion of covariant differentiation.

A. The Second Covariant Derivative of a Map

Let and be smooth manifolds endowed with affine
connections and , respectively, and let be
a smooth map. The second covariant derivative is a tool that ex-
tends the classical (Leibniz) product rule to the covariant deriva-
tive of the “product” , where is a vector field
along a curve in .
Given and the tangent vectors and , let

be a smooth curve in such that
and . Let be a smooth vector field along such
that . If follows that

is a smooth vector field along the curve
in .

Definition 4.1: The second covariant derivative of the map
at in the directions , is the

bilinear map defined by

(25)

where and denote covariant differentiation with re-
spect to and , respectively.
Proposition 4.1: Denote by and the parallel displace-

ments associated with and , respectively. Then, equation
(25) is equivalent (for ) to

(26)

Proof: The connection allows us to compute the co-
variant derivative of the vector field along as

(27)

The right-hand side of (27) can be expanded into

(28)
Adding and subtracting the term

inside the parenthesis of the previous expres-
sion, and noting that (in )

the result follows.
Remark 4.1: One can define higher order covariant deriva-

tives of a map ( , , and so on) by requiring that Leib-
nitz’s rule holds. Moreover, the symbol can be used, e.g., to
indicate the covariant derivative of a vector field in the direc-
tion , i.e., (whose standard notation is ) as well
as the covariant differentiation of the “product” , with

a map and a vector field over . Note that
covariant differentiation is defined in such a way that Liebnitz’s
rule holds, so that one obtains, e.g., the identity

where and are vector fields over and is the second
covariant derivative of the map . The vector field and the
tangent map are, in fact, special cases of two-point tensor

fields, namely a -tensor field and a -tensor

field, respectively [45]. Two-point tensor fields (sometimes
also called double tensor fields) and their covariant derivatives
are not commonly encountered in standard differential and
Riemannian geometry textbooks and, to our understanding, are
mostly encountered in the context of continuum mechanics,
quantum physics, and advanced differential geometry applica-
tions. They are the natural generalization of vector fields and
one forms over maps. From now on, the operator will be
used to indicate covariant differentiation of a generic two-point
tensor field [45].
Remark 4.2: The key role played by covariant differentiation

in the context of this paper can be understood through a finite
dimensional analogy. Let and be differentiable manifolds,
each endowed with an affine connection, and let ,

, be three given differentiable func-
tions, with and arbitrary. The composition

is a differentiable function that can be expanded
about a given point. In the context of this work, may be thought
of as the cost functional, as the projection operator, and as
the pointwise exponential operator. Covariant differentiation al-
lows us to use Leibnitz’s rule to express the second-order term
using intrinsically defined derivatives of , , and . Indeed, one
obtains

(29)
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It is this abstract and high level splitting of the second-order
term into its “elementary” parts that allows us to analyze these
parts separately and obtain explicit and computable formulas for
use in the projection operator approach.
Due to limited space, we will not present explicit formulas

for the covariant derivative of a two-point tensor field. We refer
the reader to [45] and references therein for further reading.
In the next subsection, we provide some useful covariant

derivatives of maps and vector fields defined on Lie groups
that will be used in the derivation of the Lie group projection
operator approach. The subsection can be skipped on the first
reading of the paper.

B. The Covariant Derivative on Lie Groups: Differentiation
Rules for the (0) Connection

The second and higher order covariant derivatives of a map
between two Lie groups can be computed as soon as we specify
affine connections on domain and codomain. In this subsection,
we restrict our attention to second covariant derivatives with re-
spect to the (0)-connection because this connection is used for
computing the second-order approximation of the projection op-
erator in Section V-D. The Lie algebra , being a vector space,
is endowed with the trivial affine connection (the parallel dis-
placement along any curve is the identity map). The following
results may be verified by straightforward computations.
Proposition 4.2: Let and be

vector fields on , where is a differentiable -valued
function. Then

(30)

Proposition 4.3: Let be defined as
, where is a vector field.

Then

Proposition 4.4: For each , , we have

Proposition 4.5: Let be a vector field along the
curve , a constant, and a vector
field along the curve . Then,

V. PROJECTION OPERATOR ON LIE GROUPS

In this section we define the projection operator for a dynam-
ical system evolving on a Lie group. The standard projection
operator for a nonlinear system evolving on a vector space, in-
troduced in [30], was reviewed in Section II-A.

A. The Projection Operator

Let be a control vector field on
. A state-input trajectory , , is called

exponentially stabilizable if (and only if) there is a feedback
law , with

for all , such that is an exponentially stable (state)
trajectory of the closed-loop system

(31)

that is, there exist , , and such that

for all and all in a neighborhood of such
that .
In the following, we would also impose some smoothness

and boundedness conditions on and restrict, without loss of
generality, our attention to a feedback of the form

(32)

since, as for any control system on , a trajectory of a
nonlinear system is exponentially stabilizable if and only if there
is a bounded gain matrix that stabilizes the linearization of
about . Note that is a linear map from to . It will be
evident from Section VI that the linearization of the closed-loop
system (31) with feedback (32) around a state trajectory is
given by the linear differential equation

(33)

with and defined by (17) and (18).
Definition 5.1 (Projection Operator ): Equation (31) with

the initial condition and feedback (32) defines a
causal operator, called the projection operator, which maps a
state-input curve , , into
the state-input trajectory , ,
that satisfies

(34)

(35)

(36)

where

(37)

(38)

and denotes the left trivialization of the
control system . In short, we write or,
when and are clear from the context, simply .
As in the vector space case, the projection operator satisfies the
projection property .
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B. The Local Projection Operator and its Properties

We are interested in studying the effect of a perturbation
of the curve in the direction , that is, we study the map

, for “small.” We can parameterize
using the left-trivialized perturbed trajectory
, , defined by

(39)

Definition 5.2 (The Local Projection Operator ): The left-
trivialized local projection operator around the curve , written
as , is the operator that takes the curve

, , to the left-trivialized trajectory
, , given by

(40)

Proposition 5.1: Given curves and
with , the map

can be computed explicitly by using

(41)

(42)

(43)

where is the adjoint representation of the group on its
Lie algebra and denotes the trivialized tangent of as
defined in (10).

Proof: By definition, .
Since

with , is a trajectory of the closed-loop control system (34)
and (36), it satisfies

(44)

(45)

(46)

It is now clear that (42) and (43) follow immediately from (45)
and (46). One can also conclude that (44) implies (41) by mim-
icking what was done in the proof of Proposition 3.1.
Differentiating the local projection operator , defined in

(40), in the direction and evaluating it at , we obtain

and, by differentiating it twice and evaluating it at

As mentioned in Section IV-B, using the (0) connection we have
and . Therefore,

we obtain the following result.
Proposition 5.2: The first and second covariant derivatives

with respect to the (0) connection of the projection operator
satisfy

(47)

and

(48)

Note that we write instead of to highlight the fact
that is an operator between two vector spaces. The next two
subsections detail how (47) and (48) can be computed.

C. The First Derivative of the Projection Operator

The following proposition provides the explicit expressions
for computing the first derivative of the projection operator .
Its proof is based on perturbation theory and uses the same ar-
guments as in the proof of Proposition 3.2.
Proposition 5.3: The left-trivialized trajectory

can be expanded to first order as with
of order higher than one in . The curve ,
, satisfies

(49)

and can be computed using

(50)

(51)

where and are given by (17) and (18). Note
that, when , (51) is simply equal to
.

D. The Second Covariant Derivative of the Projection
Operator

Recall the definition of the (left-trivialized) local projection
operator given in (40). The proof of the following key result
is developed in Appendix A.
Theorem 5.4: Given a trajectory , , the

second derivative of about zero in the directions and ,
namely

is given by

(52)

(53)
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with , , and where
and and are defined as in (17)

and (18), respectively.
Note that for brevity we have suppressed the argument in the

expressions (52) and (53). Equations (52) and (53) generalize
to Lie groups the second derivative of the projection operator
given in [30, subsec. 1.3]. Also, when , that is

, , (53) reduces to .

VI. SEARCH DIRECTION SUBPROBLEM IN DETAIL

The search direction subproblem (13) requires the minimiza-
tion of the functional over
the Banach space . Leveraging on the results obtained in
the previous sections, we detail how this functional can be con-
structed and minimized.
Proposition 6.1: Let , , be a basis for

, so that each can be uniquely written
as .
Given the trajectory , ,
of (11), the search direction step (13) is equivalent to solving
the optimal control problem

(54)

subject to the dynamic constraint

(55)

with and . In the above linear-quadratic
problem, and are given, respectively, by (17) and
(18), while , , , and satisfy

(56)

(57)

(58)

(59)

The matrix , appearing in (54), is the symmetric
matrix with elements

(60)

where , the adjoint state, satisfies (64) below, while
and are

(61)

(62)

(63)

where , , , and
. The adjoint state satisfies

(64)

with .
Proof: Using the projection operator defined in

(34)–(38), the functional over the space of curves in
is constructed as

(65)

with defined as in (12). To construct the projection oper-
ator-based optimization algorithm we need to find a quadratic
approximation of around a given curve . To this end, for a
given curve , and perturbation

, , we expand with respect to the expression

(66)

Note that the above expression, as a function of and for fixed
and , defines a real function on . Using Leibnitz’s rule and
the identities and , one obtains

(67)

where the first covariant derivative of is

(68)

and equals

where and .
The expressions for the first and second (covariant) deriva-

tives of the projection operator , appearing in (67), have been
presented previously in Proposition 5.3 and Theorem 5.4.
Recalling (67), assuming and , one gets

(69)

The result follows by mimicking the proof of Proposition 3.2
in [23], replacing the expressions for the second derivative of
the projection on vector spaces with those given in (52) and (53)
and noting that

.
The linear quadratic optimal control problem appearing in

Proposition 6.1 can be solved by standard techniques (see, e.g.,
[6]). The optimal control solution is given in form of a time-
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varying affine state feedback obtained by solving a linear and a
Riccati differential equation backward in time.
1) Indirect Methods and the Projection Operator Approach:

Let be the left-triv-
ialized pre-Hamiltonian which is naturally associated to the op-
timal control problem of interest. Recall that the necessary con-
ditions for optimality of the (left-trivialized) Pontryagin Max-
imum Principle are

(70)

(71)

(72)

with boundary conditions and (see, e.g.,
[14, Ch. 12, Cor. 1]). The following proposition shows in which
sense the projection operator-based Newton method is related
to indirect methods for solving optimal control problems, by
linking (64) with the adjoint equation (71).
Proposition 6.2: Equation (64) is a stabilized version of the

adjoint equation (71). The two equations coincides when
satisfies the first order optimality conditions.

Proof: In (71), is the dual
map of the linear operator . Recalling
the definition of and , it is straightforward
to verify that (71) equals .
Note that (64), instead, is equal to

. The necessary con-
dition (72) implies , i.e.,

. Therefore, approaching a (local)
optimal solution, in (64) converges to the solution of (71),
since will converge to zero. Note the
stabilization (backward in time) of (64) due to the presence of
the feedback .

VII. WORKED EXAMPLE

This section presents numerical results obtained by using the
algorithm detailed in Section II-C to solve an optimal control
problem on . The problem considered is one of the
simplest examples of an optimal control problem for a system
evolving on a nonabelian Lie group and it is a generalization
of the classical linear quadratic regulator (LQR) problem on
vector spaces to the group of rotation matrices [46].
Its relative simplicity allows us to give details for the linear
quadratic optimal control problem (54)–(55), providing explicit
formulas for the matrices , , , and and vectors , , and
. Furthermore, the computations indicate that the algorithm

provides, as known for the flat case, second-order convergence
to a (local SSC) minimum.
Let denote the weighted Frobenius matrix norm de-

fined as , with , , and ,
Let , , be a desired

state-control curve (i.e., not necessarily a system trajectory). Let
, , and be symmetric positive definematrices and

and two elements of . We define the hat operator
as the Lie algebra isomorphism

(73)
The goal is to find a trajectory ,

, satisfying the dynamic constraint

(74)

that minimizes

(75)

with

and being, respectively, the in-
cremental and terminal costs.
Since (74) is already in the left-trivialized form (16) with

, given a trajectory , ,
its left-trivialized linearization is

(76)

(77)

The expression for the vectors , and are

(78)

(79)

(80)

The matrices and can be computed once the second
covariant derivative of the function

(81)

with and , is known. Note how
the function appears in the expressions of the incremental
and terminal costs. The first and second covariant derivatives of

are given by

(82)

(83)

In principle, one could obtain the vector and matrix rep-
resentations of the above derivatives by using the identities

and ,
valid for each , and (the vee operator
is just the inverse of the hat operator defined in (73)).

However, we found that simpler and more elegant expressions
for these derivatives can be obtained when parametrizing
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by unit quaternions. Define the matrix according to
the transformation

(84)

with inverse

(85)

and let be one of the two unit quaternions corresponding
to the rotation matrix in (81) above. Let and
denote, respectively, the scalar and vector parts of the unit

quaternion , where ; denotes row concatenation.
Remarkably, the following identity holds

(86)

Note that the formula is, as it must be in order to be a func-
tion defined on , invariant under the antipodal symmetry

. From (86), one may then obtain

(87)

(88)

Due to limited space, we do not provide a proof of these
formulas. They can be easily checked numerically against the
equivalent expressions (82) and (83).
Equation (87) and (88) provide immediately the vector and

matrix representations that we need to compute the matrices
, , and . Define from ac-

cording to (84). Using (60), results in

(89)

where is the unit quaternion representation of
.

Equation (89) has been obtained as follows. Recall the
definitions of and given in (61) and (63), respectively,
and let , , be the components
of , with respect
the basis , . The diagonal entries of

in (89) are derived from the matrix representation of
which is

obtained, concerning the state part, from (88). The off diagonal
terms are obtained computing which,
since , is equal to .
Finally, , with

the unit quaternion representation of .
In Fig. 2, we show the optimal solution obtained by applying

the proposed descent algorithm detailed in Section II-C to the
problem (74)–(75). To provide a visual representation, the op-
timal solution , is represented in Fig. 3 using a
rectangular box. The width and height of the box (corresponding
to the and body axes, respectively) are, respectively, two and
three times the depth (the body axis). For each , the box is
centered at the point and thirty snapshots (three every
two seconds) are shown.

Fig. 2. Optimal state-control trajectory. Parts (a) and (b) show the optimal
state and control trajectories versus time. The state is represented using unit
quaternions.

Fig. 3. Graphical representation of the optimal state trajectory. The plot shows
the optimal attitude matrix , , using a rectangular box
that is centered at and rotated by . Thirty snapshots are shown.

The following set of parameters was chosen. The initial con-
dition is the rotation matrix corresponding to the unit quater-
nion . The final time is
s. The desired trajectory , ,

appearing in the incremental cost (75), is the trivial trajectory
identically equal to for each . The weighting
matrix is equal to , the inverse of the
transformation (84), with . The weighting
matrix is equal to . The rotation matrix in
the terminal cost (75) corresponds to the unit quaternion

, while the weighting matrix is
obtained from , in the same way is ob-
tained from .
The initial trajectory , , is the

constant trajectory , . At each iteration, the
projection operator feedback , , is designed by
solving a time-varying LQR problem (with diagonal weighting
matrices, both equal to the identity) about the current trajectory
iterate. The differential equations required at each iteration of
the algorithm are solved numerically using the solver in
Mathworks Matlab/Simulink, storing all the trajectories with a
sampling period of 0.005s. The absolute and relative tolerances
of the ODE solver are set to and , respectively. The
termination condition is . The algorithm
takes about 3 seconds to solve this problem on a laptop equipped
with a Intel Core 2 Duo CPU P8600 2.40 GHz. The algorithm
is coded as an m-file script which calls a series of S-functions
written in for integrating the differential equations.
Fig. 4 shows that the algorithm takes only five iterations to

converge. In the first iteration, the backtracking line search re-
duced the step size to (using and

in the notation of Algorithm 3.1 in [47]) as the local
quadratic model of the functional does not approximate the cost
functional very well over long steps on this curved manifold.
However, beginning with the second iteration, full Newton steps
are taken and Fig. 4 provides an indication of quadratic
rate of convergence to the locally minimizing trajectory . In-
deed, since is a
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Fig. 4. Quadratic convergence rate. The plot shows as
a function of the number of iterations.

scaled norm (squared) of , we see that the Newton “step”
for this problem converges to zero in with a quadratic

rate. While this does not ensure that the error con-
verges to zero in with quadratic rate, we know that if it does
then so must (in and hence in ). An examination of

versus may thus be used to rule out quadratic
convergence. In finite dimensions, the size of the Newton step
provides a direct indication of the size of the error [48] making
a plot such as that in Fig. 4 especially useful. The Banach space
projection operator is known to provide quadratic convergence
to local SSC minimizers [23, Sec. 5], providing further support
for such convergence in the Lie group case.

VIII. CONCLUSION

In this paper, we have extended the projection operator based
trajectory optimization approach to the class of nonlinear sys-
tems that evolve on Lie groups. This has required the introduc-
tion of a covariant derivative notion for the repeated differen-
tiation of a map between two Lie groups, endowed with affine
connections. With this tool, chain rule like formulas have been
used to develop the expressions for the basic objects needed for
trajectory optimization. The resulting algorithm requires one to
solve, at each iteration, a time-varying linear quadratic optimal
control problem associated with the current trajectory.
A numerical example on the Lie group has been pre-

sented, highlighting implementation details. Computational re-
sults indicate a second-order convergence rate for this problem.
Second-order convergence to a local SSC minimizer is well
known for Newton’s method in finite dimensions and has also
been shown to hold for the Banach space projection operator
approach [23]—we believe that this result continues to hold
in the Lie groups setting although a formal proof has not yet
been worked out in detail. The numerical example presented
provides useful formulas that can also be used to solve trajec-
tory optimization problems for mechanical systems whose con-
figuration manifold is , e.g., for trajectory planning and
parameter identification of unmanned aerial vehicles or under-
water autonomous vehicles [49]. Preliminary tests have shown
that, with respect to the standard projection operator approach,
the Lie group version of the projection operator approach can
have computational advantages in solving the same optimiza-
tion problem (solved, with the standard approach, using a set of

local coordinates). We suspect that this is related to the absence,
in the Lie group version of the algorithm, of the double differen-
tiation of the functions that describe the attitude matrix in terms
of a set of local parameters (e.g., Euler angles).
For Lie groups for which known closed formulas for the ex-

ponential and logarithm maps are not available or hard to com-
pute, we expect that the use of approximations (such as, e.g.,
the Cayley map on ) that agree with the first and second
covariant derivatives of those mappings at the origin of and at
the identity of , respectively, will be effective and will main-
tain the second order convergence rate of the algorithm.
The choice of the (0)-connection for defining the second

covariant derivative of a map between Lie groups has been
motivated by the observation that the obtained formulas are
somehow simpler than the ones resulting by choosing dif-
ferent connections, mainly because in this case and

are zero. In finite dimension optimization on Lie
groups, it has been shown [19] that a Newton like algorithm
defined using any of the Cartan–Schouten connections displays
the local quadratic convergence characteristic of Newton algo-
rithms. The rate of convergence is not affected by the choice of
the connection as the geometric Hessian at a critical point (for
a smooth function, the geometric Hessian is equivalent to the
second covariant derivative discussed in our work) is always
the same, independently of the choice of the connection. In
those algorithms, however, using a connection different than the
(0) connection does not correspond to minimizing a truncated
Taylor expansion of the original cost function.
Further investigations are required to clarify all these issues

and to fully explore the strengths and weaknesses of the pro-
posed Lie group method.
As a final remark, wewould like to emphasize that the tangent

bundle of a Lie group is itself a Lie group. This means that
the method developed in this paper is directly applicable, e.g.,
to the optimal control of mechanical systems evolving on Lie
groups [10], either holonomic or nonholonomic.

APPENDIX A
PROOF OF THEOREM 5.4

Obtaining the expression for
given in Theorem 5.4 is not trivial

and involves tedious computations. The proof of Theorem 5.4
is given in this appendix, while Appendix B contains most of
the technical details. The second derivative
can be computed by differentiating around

in the direction . We begin this task by computing
.

Proposition A.1: The first derivative of at along

can be computed as

(90)

(91)
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where and , ,
and are defined as in (100), (102) and (103) in
Appendix B, respectively.

Proof: We compute taking the limit
. From Proposition 5.1, it

follows that can be computed as

Defining , the previous two equa-
tions can be written as

(92)

(93)

with and defined as in (98) and (99), respectively.
For small , .
Thus,

(94)

(95)

where . The result fol-
lows.

Remark A.1: Recall that was computed in
Proposition 5.3. For the case , one can show that (90)
and (91) simplify to

(96)

which coincide with (50) and (51).
Proposition A.2 (Left-Trivialized Second Derivative of ):

The second derivative of at evaluated in the direc-
tions and ,

can be computed as

(97)

for and defined in (104) and (105).

Proof: This is a straightforward application of the differ-
entiation rule for the covariant derivative to the result of Propo-
sition A.1. During the derivation the term shows up but,
since it is a linear operator and one of its argument is ,
it does not appear in the final expression.
Finally, Theorem 5.4 can be proven using the results con-

tained in Proposition A.2 for the special case
. Again, the computations are straight-

forward but tedious. On the contrary, the resulting expressions
are elegant and closely related to the vector space ones. In par-
ticular, one finds that the first and second derivatives of are

, ,
,

, ,
and .

APPENDIX B
TECHNICAL DETAILS: AND

This appendix contains a series of technical results which are
used for computing the second covariant derivative of the pro-
jection operator . In the following, the Greek letters and
are used to indicate “small” quantities, much as we have used
thus far.

Definition B.1: Let the curve , ,
be defined as . and

, .
Definition B.2: Define , , as

the vector field along the curve such that

(98)

and , , the curve

(99)
Note that

(100)

(101)

Lemma B.1: Let . Then, the
following holds.

(102)
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(103)

Lemma B.2: Let now and define
, , and

. We have

(104)

(105)

Remark B.1: Theproofsof the twoprevious lemmasareob-
tained applying the classical differentiation rules of the covariant
derivative and the specific differentiation rules described in
Section IV-Bfor the (0) connection.Note that

. Also, one uses that fact that for , ,
we have ,

. Given
the curves and , , one also has

with
and .

First and second derivatives of .
Proposition B.3: The first and second covariant derivatives

relative to the (0) Cartan–Schouten and Euclidean connections
of the closed loop feedback , defined by (38), with respect to
the first and second arguments and are

(106)

(107)

and

(108)

(109)

(110)

(111)

Proof: This is a straightforward application of
the differentiation rules. Note, in particular, that for

and we have
, and

. The functions and derive
from the differentiation of and in the
directions and .

First and Second Derivatives of : The proof of
the following proposition follows from differentiation rules.

Proposition B.4: The first derivative of the
is

Proposition B.5: The second covariant derivative of the
(left trivialized) projection operator vector field

is

where it is understood that in the above expressions is eval-
uated at .
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