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Embedded Vehicle Dynamics Aiding for USBL/INS Underwater
Navigation System

Marco Morgado, Paulo Oliveira, Carlos Silvestre, and José Fernandes Vasconcelos

Abstract— This brief presents an embedded vehicle dynamics
(VD) aiding technique to enhance position, velocity, and attitude
error estimation in low-cost inertial navigation systems (INSs),
with application to underwater vehicles. The model of the VD
provides motion information that is complementary to the INS
and, consequently, the fusion of both systems allows for a
comprehensive improvement of the overall navigation system
performance. In this brief, the specific VD equations of motion
are directly embedded in an extended Kalman filter, as opposed
to classical external vehicle models that act as secondary INSs.
A tightly-coupled inverted ultrashort baseline is also adopted to
enhance position and attitude estimation using measurements
of relative position of a transponder located in the vehicle
mission area. The improvement of the overall navigation system is
assessed in simulation using a nonlinear model of the INFANTE
autonomous underwater vehicle, resorting to extensive Monte
Carlo runs that implement perturbed versions of the nominal
dynamics. The results show that the vehicle dynamics produce
relevant performance enhancements, and that the accuracy of
the system is robust to modeling uncertainties.

Index Terms—Inertial navigation systems, position and
attitude estimation, ultrashort baseline, vehicle dynamics (VD)
aiding.

NOMENCLATURE

Column vectors and matrices are denoted, respectively, by
boldfaced lower-case and upper-case symbols, e.g., y and
Y. Scalar quantities are represented by lower-case regular
typeface symbols, e.g., y. The representation [y x ] is the skew-
symmetric matrix that denotes the cross product of y € R>
and u € R3 such that [y x Ju = y x u. The transpose of
a vector or matrix will be indicated with the superscript T,
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e.g.,y! or Y. Leading subscripts and superscripts identify
the coordinate system of a quantity, e.g., £y is represented in
the earth-fixed coordinate frame and Py is represented in the
body-fixed coordinate frame. The matrix R € SO(3) is the
shorthand notation for body {B} to earth { E} coordinate frames
rotation matrix gR, that transforms the vector representation
By into £y by means of the linear operation £y = ER®y. The
measurement and the estimate of quantity y are denoted by
y, and ¥, respectively. The attitude error rotation vector JA is
defined by R(81) £ RRT. Position, velocity and acceleration
are denoted, respectively, by p, v, and a, and the angular
velocity of the vehicle expressed in body-fixed coordinates
by . The position of a transponder in earth coordinates is
denoted by s, and the transponder position in body coordinate
frame is represented by r. The superscripts + and — denote
a priori information and corrected a posteriori quantities,
respectively, e.g., st and s™.

I. INTRODUCTION

HE DESIGN and implementation of navigation systems

stands out as one of the most critical steps toward the
successful operation of autonomous vehicles. The quality of
position, velocity, and attitude estimates of the navigation
system dramatically influences the capability of the vehicles to
perform precision-demanding tasks. See [1] for an interesting
and detailed survey on underwater vehicle navigation and its
relevance. Performance degradation and limitations inherent to
low-cost inertial navigation system (INSs), associated to open-
loop unbounded estimation errors, unfiltered sensor noise, and
uncompensated bias effects, are often tackled by merging addi-
tional information sources with nonlinear filtering techniques.
Among a diverse set of techniques, an extended Kalman filter
(EKF) in a direct-feedback configuration [2] is commonly
adopted to estimate and compensate the INS integration error
buildup. This brief addresses the merging of underwater VD
information with a low-cost INS, by means of a reduced-state
internal vehicle model, as opposed to classical fully-fledged
external vehicle models aiding techniques, and presents an
exhaustive assessment of the achievable performance improve-
ment.

Available underwater navigation aiding sensors include
Doppler velocity log (DVL), inclinometers, depth pressure
sensors, magnetic compasses, whereas acoustic systems sys-
tems [3], [4], such as long baseline (LBL), short baseline
(SBL), and ultrashort baseline (USBL), often stand as the pri-
mary choice for underwater positioning [5], [6]. Although long
baseline-based solutions offer more information and precision,
key factors, such as high-cost and time-consuming procedures
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for deployment and calibration, prohibit their use in low-cost
operations. Hull-mounted short baseline positioning systems,
in large oceanic vessels, have to actively compensate for base-
line changes due to natural bending of the hull, degrading their
performance. The fast deployment, less complex hardware, and
increasing performance of modern factory-calibrated ultrashort
baseline positioning devices makes them suitable for faster
deployment intervention missions, when compared to long
baseline dependent solutions.

The development of the aforementioned navigation systems
still has to bear in mind key features, such as low-cost,
compactness, high performance, versatility, and robustness.
The scientific community has been striving to improve low-
cost navigation systems accuracy, directing much of the recent
efforts toward the inclusion of VD information models in
the INS [7]-[10]. The vehicle model dynamics yield unique
data that provides a comprehensive set of observations of
the inertial system errors, allowing for enhanced INS error
compensation. Moreover, the vehicle model is a software
based, passive information source valid for most operating
conditions, that is not subject to interference and jamming as
generic aiding sensors are, allowing for a sustainable aiding
source when acoustic sensor outages occur, which is one of the
most challenging issues in acoustic underwater positioning. It
does require; however, additional sensor information from the
vehicle actuators, i.e., fin angles, propeller rotational speed,
etc., that are, nonetheless, generally available on automated
vehicles for control purposes. Several approaches might be
considered to include restrictions to a rigid-body motion inte-
gration algorithm: full-state complex aircraft dynamics have
been adopted in [7] and [9], whereas simple nonholonomic
constraints have been applied to wheeled vehicles, by setting
virtual zero-velocity observations in the constrained directions
[11]. Recent promising results with the HUGIN autonomous
underwater vehicle (AUV) in underwater experiments val-
idated the use of such VD aiding techniques in real-life
operation scenarios [10].

In this brief, a VD model inclusion technique for underwater
vehicles is presented, inspired by the embedding methodology
recently proposed in [12], exploiting the specificity of the
VD at hand, to extract the integration error from the generic
equations of motion implemented by the INS. Classical VD
aiding techniques, such as the ones adopted in [7], [9],
and [10], integrate the full state VD, playing the role of a
more specific secondary INS unit. These types of algorithms
require additional VD errors to be estimated and properly
compensated in external vehicle simulators. In the solution
proposed herein, the VD are directly embedded in-the-loop, as
in [12], by numerically integrating the vehicle-specific angular
motion dynamics in the EKF, and extracting the necessary
correction terms from the rate gyros and accelerometer data.
The difference between the embedded vehicle model and
classical external model aiding techniques is not addressed
in this brief as this subject has been well covered in [12].
This brief is the first to extensively validate the reduced-state
embedded vehicle model aiding technique presented in [12],
whereas classical full-state external model techniques have
been already extensively covered in the literature, see [7]-[10].
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Fig. 1. Navigation system block diagram—a direct-feedback loop in which
an EKF dynamically estimates the INS errors and inertial sensor biases, with
the aid of external sensors and VD information—the thrusters and control
surfaces are sensed and passed on to the VD embedded in the EKF.

Numerical simulation results are presented using a nonlinear
model of the INFANTE AUV developed at ISR, see [13] and
[14]. The performance enhancement of the proposed technique
is evidenced through exhaustive Monte Carlo simulations, in
which for each run the vehicle is exposed to different initial
conditions, sensor noise, and the dynamics model is perturbed
from the nominal plant. This brief follows preliminary work
presented in [15], providing not only a more efficient way
of embedding the VD as a navigation aid, but also a more
detailed description of the VD, its implementation in the
navigation system, and a more thorough performance analysis
by considering vehicle model disturbances and underwater
currents. In the considered mission scenario, the vehicle is
equipped with an INS and an ultrashort baseline array in
an inverted configuration [4]. For localization purposes, the
vehicle interrogates transponders located in known positions
of the vehicle’s mission area, engaging in interrogations over
considerable distances, which can vary from a few meters to
several kilometers.

This brief is organized as follows. The main aspects of the
navigation system and the proposed architecture are reviewed
in Section II. Section III describes the ultrashort baseline
system and the integration of the sensors information into
the navigation system structure. The VD aiding technique is
brought to full detail in Section IV, and simulation results
of the overall navigation system are presented in Section V.
Finally, Section VI presents conclusions and comments on
future work.

II. NAVIGATION SYSTEM ARCHITECTURE

This section describes the navigation system architecture,
depicted in Fig. 1, without the embedded vehicle dynamics that
will be detailed later in Section IV. The INS is the backbone
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system comprised by the hardware and algorithms that perform
attitude, velocity, and position numerical integration from
rate gyro and accelerometer triads data, rigidly mounted on
the vehicle structure (strap-down configuration). The nonideal
inertial sensor effects due to noise and bias are dynamically
compensated and filtered, respectively, by the EKF to enhance
the navigation system’s performance and robustness. Position,
velocity, attitude and bias compensation errors are estimated
by introducing the aiding sensors data in the EKF, and are
thus compensated in the INS according to the direct-feedback
configuration shown in Fig. 1.

The inertial sensor readings are corrupted by zero-mean
white noise n and random walk bias, b = ny, yielding

ar:BV+wav—Bg—(5f)a+na (D)
W, = w—&f)w—f-nw (2)

where 6b = b — b denotes bias compensation error, b is
the nominal bias, b is the estimated bias, and the subscripts
a and o identify accelerometer and rate gyro quantities,
respectively. For highly manoeuvrable vehicles, the INS
numerical integration must properly address the angular, veloc-
ity, and position high-frequency motion effects, referred to as
coning, sculling, and scrolling, respectively, to avoid estima-
tion errors buildup. The INS multirate approach, based on
the work detailed in [16] and [17], computes the dynamic
angular rate/acceleration effects using high-speed, low order
algorithms, whose output is periodically fed to a moderate-
speed algorithm that computes attitude/velocity resorting to
exact, closed-form equations. For the particular sensors and
VD at hand, the high-speed algorithm and the moderate
speed computations are processed at 100 and 50 times per
second, respectively. Applications within the scope of this brief
are characterized by confined mission scenarios and limited
operational time allowing for a simplification of the frame set
to earth and body frames and the use of an invariant gravity
model without loss of precision. For further details on this
particular navigation system structure, the reader is referred
to [18] and references therein.

A. Inertial Error Dynamics

In a standalone INS, bias and inertial sensor errors compen-
sation is usually performed based on extensive off-line cali-
bration procedures and data. The usage of filtering techniques
in navigation systems allows for the dynamic estimation of
inertial sensor nonidealities, bounding the INS errors. From
the myriad of existing filtering techniques, such as particle
filters, unscented Kalman filters (UKF), among others, the
EKF is used in this brief to estimate and compensate the INS
errors. The adopted inertial error dynamics were brought to
full detail by Britting [19] and are based on perturbational rigid
body kinematics. These error dynamics are applied to local
navigation in confined mission areas by modeling the position,
velocity, attitude, and bias compensation errors dynamics,

respectively
op = dv
ov = —Rob, — [Ra, x ]0A + Rn,
ok = —R3b,, + Rn,
51.)(1 = —Ip,
Sbe = —np, 3)

in the EKF setup in the direct-feedback configuration shown
in Fig. 1. The position and velocity linear errors are defined,
respectively, by

=>

p=p-—p 4
oV =V—vV. 5)
'l:he attitude error rotation vector JA, defined by R(&k) £
RRT, bears a first-order approximation

R(OA) > L3 + [6Ax] = [Ax] ~RRT — I3 (6)

<>

of the direction cosine matrix (DCM) form

sin [|& || —cos [|& |

1
+
T L TN

where {By} is the body frame at time k and gﬁ_lR(gk) is
the rotation matrix from {Bj} to {Br_;} coordinate frames,
parameterized by the rotation vector &, that accounts for the
incremental attitude update from {By_1} to { By}, as measured
from the high-speed computations of the INS. In particular,
the underlying filter error model (3) includes the sensor’s
noise characteristics directly in the covariance matrices of the
EKEF and allows for attitude estimation using an unconstrained,
locally linear and nonsingular attitude parameterization. Once
computed, the EKF error estimates are fed into the INS error
correction routines as depicted in Fig. 1. The attitude estimate,
7A2,:, is compensated using the rotation error matrix ﬁ(&k)
definition, which yields ’f{,:r = RkT (5):1{)7%,?, where likT (5):/()
is parameterized by the rotation error vector Shi according
to (7). The remaining state variables are linearly compensated
using

By—1

5 RE) =L+ [E <] (7)

Bi = By — o, ¥ =¥ — o%
f D R L .
by, =b,, —6bsi,b, , =b_, — by .

After the error correction procedure is completed, the EKF
error estimates are reset. Therefore, linearization assumptions
are kept valid and the attitude error rotation vector is stored
. A+ . . . . .
in the R, matrix, preventing attitude error estimates to fall in
singular configurations. At the start of the next computation
cycle (t = tx41), the INS attitude and velocity/position updates
are performed on the corrected estimates (A , 02', f),j)

III. SENSOR-BASED AIDING

In order to tackle INS error buildup, the EKF relies on
observations from external aiding sensors to accurately esti-
mate the INS errors and correct them relying on the direct
feedback mechanism presented herein. This section intro-
duces an external aiding technique based on the ranges and
range-difference-of-arrival (RDOA) measured by an ultrashort
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Transponder

Fig. 2. Reference frames—the body-fixed coordinate frame is rigidly attached
to the vehicle, while the earth reference frame is attached to a fixed point on
the mission area.

baseline, installed in an inverted configuration on-board the
underwater vehicle [4]. The proposed information fusion tech-
nique is based on the tightly-coupled aiding strategy proposed
in [20]. Section III-A presents the equations that relate the
ultrashort baseline measurements to the INS errors. Notably,
the physical coupling between attitude and velocity errors,
shown in (3), also enables the use of the ultrashort baseline
position fixes to partially estimate attitude errors. However, as
this physical attachment is invariant in the body coordinate
frame, the attitude error is not fully observable solely from
the rate gyros, accelerometers, and ultrashort baseline mea-
surements.

As convincingly argued in [21] for observability analysis
purposes, a GPS-only aided INS with bias estimation can be
approximated by a concatenation of piece-wise time-invariant
systems and, under that assumption, full observability is met
by performing specific manoeuvres along the desired trajec-
tory. Based on the observability theorem [22], and as discussed
in [20], a local weak observability analysis of the system
reveals that either stopped or along a straight-line path, full
observability is only achieved using at least three transponders
(on a nonsingular geometry) or two transponders and a mag-
netometer. Thus, Section III-B introduces an additional source
of attitude information, drawn from the observations of the
earth magnetic field provided by an on-board magnetometer. In
fact, this additional observation is fundamental for the overall
observability of the system, since a local weak observability
analysis is sufficient to infer about the need for additional
aiding sensors and/or specific manoeuvres in order to render
the system observable [20].

A. USBL

The distances between the transponder and the receivers, as
illustrated in Fig. 2, can be simply written in the reference
frame {B} as p; = |b; — r|, where b; € R3? denotes
the position of the receiver in {B}. Taking into account that
the position r in the body-fixed reference frame is given by
r = R7(s — p), yields

pir = lIs —p — Rb;|l. ®)

The tightly-coupled ultrashort baseline/INS integration strat-
egy exploits directly the acoustic array spatial information to
calculate the distances from the transponders to each receiver
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on the ultrashort baseline array, and feeds this information
directly into the EKF. Using the position and attitude error
definitions (4) and (6), respectively, directly in (8) yields

pir = |Is — p+ 8p — Rb; — [Rb; x J8A].

In order to improve performance, the EKF is directly fed
with a set of range measurements between the transponder
and all receivers on-board, and the range-difference-of-arrival
between all receivers. Alternatively the filter may be driven
by one range observation and a set of independent range-
difference-of-arrival measurements.

B. Magnetometer

The magnetometer provides measurements of the earth
magnetic field in body-fixed coordinates and is used in the
filter as a vector observation. The extra attitude measurement
is drawn from the magnetometer reading that measures the
earth magnetic field in the body frame #m, = R™m + n,,,
where £m is the nominal earth’s magnetic field vector in earth
fixed coordinates, assumed known and locally constant, and
n,, is the magnetometer measurement noise.

The vector aiding measurement residual is computed by
comparing the magnetometer observation to the magnetic field
estimated from the INS a priori attitude estimate 7A2 in earth-
fixed coordinates, as

Eq. = ”f{er —FEm = (’fZ’RT — I)Em +7A2nm. )

Using the attitude error approximation (6) and the properties
of the cross product in (9) yields

Ez. = —[Fm x 161 +’f\’,nm.

IV. VEHICLE DYNAMICS AIDING

This section presents a brief overview of the INFANTE
AUV dynamics and details the VD aiding technique, and how
it is embedded in the navigation system structure. The vehicle
is approximately 4.2-m long, 1.1-m wide, and 0.6-m high. Two
main thrusters, fully fitted with propellers and nozzles, provide
propulsion to the vehicle up to a maximum rated speed, with
respect to the water, of five knots (about 2.6 m/s). For direction
control, the vehicle uses six fully moving surfaces: two rudders
placed in front of the nozzles, and four independent bow and
stern horizontal planes as illustrated.

The dynamics model of the vehicle was brought to full
detail in [13] and follows the standard notation for marine
vehicles [23]. Thus, using this notation, the dynamics vector
q that fully describes the motion of the vehicle is given by
q=[Bv" ®T]7 where Bv = [u v w]” is the linear velocity
of the vehicle with its components representing, respectively,
the surge, sway and heave velocities, and @ = [p g r]”
represents the angular velocity of the vehicle in body-fixed
coordinates. The VD are given in compact form by

Mgpq + Cre(@)q = 7(4, q, R, ferr1) (10)

where Mgrp and Crp(q) denote the well known rigid body
inertia matrix and matrix of Coriolis and centrifugal terms,
respectively—see [13] and [23] for further details. The rotation
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TABLE I
INFANTE AUV PARAMETERS

Parameter Nominal Value [Units] Perturbation Value - 1060 AWGN
Mass m 2234.5 [Kg] +10 [Kg]

Density p 1030 [Kgm 3] +10 [Kgm—3]
Buoyancy B 21898 [N] +10 [N]

Weight W 21898 [N] +10 [N]

Inertia matrix Ig diag(700, 1700, 2000) [Nms?2] +10I3 [Nms?]

Center of gravity pcg [0, 0, 0] [m] -

Center of buoyancy pch

[0, 0, —0.041] [m]

+0.1 [mm]

Vehicle dynamic coefficients
(45 parameters: Xy, Xvv, Yuv, etc., see [13])

(described in [13])

Level 1: 1o = 3% (20 = 6%, 30 = 9%)
Level 2: 1o = 10% (20 = 20%, 30 = 30%)
Level 3: 1o = 30% (20 = 60%, 36 = 90%)

Note: About 68.27% of the Monte-Carlo realizations lie within 1o, 27.2% between 2¢ and 3¢, and the remaining 4.53%

of the realizations beyond 3o.

matrix R in (10) represents the vehicle attitude and 7 denotes
the vector of external forces and moments acting on the
vehicle, while the input vector feyp = [%C,ésc,éd, (Sr,n] r
consists, respectively, by, the common mode bow plane deflec-
tion, the common mode stern plane deflection, bow and stern
differential mode deflection, deflection of the rudders and
propellers rotation speed. The most relevant parameters of
the INFANTE AUV are presented in Table 1. The vector
(4, q, R, feer1) can be further decomposed in

7(q, q, R, fetr) = Trest(R) + 72da(q, q)
+ Tsur‘f/body(q, feut) + Tprop (q,n)

where T ¢ represents the restoring forces and moments caused
by gravity and buoyancy, T,qqg represents the added masses,
Tsurf/body(Q, fer1) captures the effects of control surfaces
deflections and hydrodynamic forces and moments acting
on the vehicle structure, and Tpp denotes the forces and
moments generated by the main propellers (see [13] for more
thorough details on the vehicle model).

The overall dynamics of the vehicle can thus be easily
written as

q = Mg (t(4,q, R, fetr1) — Crp(q)q) (11)

yielding
® = fo.o(@, 2V, R, fetr1) (12)
By = £, 0@, 2v, R, fetn) (13)

where © encompasses the knowledge of the vehicle parame-
ters, which might beAdisturbed from the nominal values.

Letx = (p,V,®, R, ba, f)w) denote the INS state estimates.
In the proposed embedded VD aiding methodology, the VD
(12) and (13) are linearized about the INS state estimates,
using the first-order terms of the Taylor series expansion,
yielding

af(o,@ ((x) - (;)) . af(o,@

O~ fw,@)(‘:)7 BQ, 7,\{, iA.ctrl) + oA

0fo,0 (B BA) 0fo,0 ( 2
’ - O (fog — 1 ) 14
T 5By | v)+ et ¢ etrl — fetrl (14)

and
| o 2fr.0 ~ Ofv.e
By ~ f,.0@, 29, R, fen) + al;, . (0-0)- a;x f(ék
ofre (B BA) 0fv,0 ( .
, _ ——— 1 |fetr1 — £ ) 15
+ OBy X v V) + afctrl X o o ( )

The term (®v — 2¥) in (14) and (15) can be written as
(Bv — Bff) =RTv-R"%
which, taking into account the INS velocity and attitude errors
defined, respectively, in (5) and (6), yields
(Bv — Be) ~ —RTsv — RT[¥ x 1A, (16)

Using the angular velocity error definition dw = @ — @ =
—oby, + 1, and (16) in (14) and (15) gives

afw,@

(b ~ f(l),@((:,’ BQ” 7,\?’9 f‘(Ztl‘l) - aBV . 7,\?«T5V
X
0 0 ~
i fw,@) fco,@ RT[Q’ « ] SA
Gél X 6Bv s
0 0 0
4 ool g, Ceo) | Gl g a7
0w g ow |3 ofetrt |3
and
. A BA A A 0fv.® ~
By ~ fv,@(w» BV, R, fetr1) — afgjv ) RT sv
X
0 0 A
_ fv,@ fv,@ T\’,T[{’ % 1) o
65k % aBV N
0 0 0
+ fv,@) 5bco . fv,@) n, fu,(a 5fctrl
ow X X Ofetr1 %

where ofcy represents errors in the actuators, and can be
modeled as small stochastic uncertainties to increase the
navigation system robustness in real implementation scenarios.

In order to exploit the different angular motion information
available from the INS and from the VD, the angular motion
dynamics expressed in (17) is modeled in the EKF, while the
filter is fed with the angular velocity measurement @, from
(2) to yield the measurement residual

Zo: = 0, — [@ = —0by + 1. (18)
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TABLE 11
SENSORS AWGN CHARACTERISTICS

Sensor Bias 1o STD
Accelerometer (Crossbow CXL02TG3) 12 mg 0.6 mg
Rate gyro (Silicon Sensing CRS03) 5 deg/s | 0.05 deg/s
Magnetometer (Crossbow CXM113) - 60 1 Gauss
USBL range - 0.3 m
USBL RDOA - 6 mm
USBL elevation and azimuth - 0.4 deg

TABLE III
INITIAL ESTIMATES ERROR CHARACTERISTICS

Initial estimate | 10 STD
Position Sm
Velocity 0.5 m/s
Attitude 1 deg

where [@ is numerically integrated in the EKF, from (12)
evaluated at the estimated state (&, 29, R, f'ctrl).

The dynamics of Bv expressed in (13) are used to feed the
filter with the measurement residual

zy: = f,.0(@, 59, R, fun) — B (19)

where B4 is drawn from the accelerometer measurements @))
and allows for (19) to be rewritten [12] as

afl),@ 'f\’,T&V— afl),@
oBv Ofctr1

Ofctrl + 0ba — Ny

ZV:([&X]J’_

X X

+([é)x][30x]—[33x]

afu@ A afu@ B~ ST
— R . R oA
Ry . + 5y, i[VX]
0 0
+([Bex]— Jo.0 )(Sbw—i—( Jo.0 —[Bffx])na,.
ow % ow %
(20)

Remark 1 (Implementation Remark): Special care must be
taken in the implementation of the VD aiding technique
outlined herein, since the observation noise present in the
VD measurement residuals (18) and (20) is correlated to the
state noise in (3). Thus, this information about the correlation
between the state and observation noise must be included in
the filter implementation using modified algebraic equations
for the update cycle of the EKF, as described in [24], with no
additional states necessary.

V. NUMERICAL RESULTS AND PERFORMANCE
EVALUATION

The performance of the proposed VD aiding technique
was assessed with the model of the INFANTE AUV. The
filtering setup is exposed to extensive Monte Carlo simula-
tions, with different initial conditions and multiple sensors
noise sequences (disturbances characteristics are described in
Table II and initial estimates deviations in Table III). This
section presents the simulation setup, including the underwater
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Fig. 3. Vehicle trajectory—the vehicle starts moving forward at a depth of
about 10 m, and then needs to go slightly up to pitch down and dive at a
constant rate while performing a snake-like trajectory.

current disturbance description, and the results analysis and
discussion.

A. Simulation Setup

The vehicle follows the trajectory depicted in Fig. 3. At
time + = 125 s, an underwater current with an intensity
of 0.1 m/s, is introduced flowing in the horizontal plane
from a direction of 110 deg for 60 s. The simulation time is
200 s, which was found sufficient for the filters to achieve
a steady-state behavior, that is representative of long-term
operating conditions. Two 20 s periods of ultrashort baseline
sensor outages are included at the intervals + = [90, 110] s
and t = [160, 180] s. The vehicle aiding measurements and
computations are processed at the same rate of the moderate
speed INS computations rate, which is set to 50 Hz. The
high-speed INS computations are executed at a higher rate
of 100 Hz. The ultrashort baseline receiving array provides
measurements once per second and is composed of four
receivers that are installed on the vehicle, 30 cm away
from the strap-down inertial measurement unit (IMU) setup
(along the x-axis of the body-fixed coordinate frame {B}).
Thus, the positions of the receivers with respect to {B} are
given by by = [0.2 —0.15 017 m, by = [0.2 0.15 017 m,
bs; = [0.4 00.15]" m, and by = [0.4 0 —0.15]" m. The
transponder is located in local inertial coordinates at £p, =
[0 200 017 m.

The sensors noise characteristics are summarized in Table II.
The inertial sensors and magnetometers parameters are based
on realistic commercially available sensor packages, and the
inverted ultrashort baseline positioning system was fully devel-
oped in-house. The triaxial inertial sensors data is gener-
ated in simulation by adding the bias and additive white
Gaussian noise (AWGN) described in Table II, to the data
generated by the nominal VD model, and according to
(1) and (2). A triaxial magnetometer is also used in the pro-
posed solution, as described in Section III-B, which is assumed
calibrated for bias, scale factors, and nonorthogonality of the
input axis. The simulated magnetometer data is generated
by adding the described additive white Gaussian noise to
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the nominal magnetic field vector represented in the body
coordinate frame (obtained as described in Section III-B and
using the nominal vehicle model). Even with the addition of
the external magnetic field vector observation, using only one
transponder is not sufficient to obtain full state observability
during straight line manoeuvres, as carefully discussed in
[20]. Hence, the need for turning/diving manoeuvres built into
the nominal trajectory, which is of paramount importance for
observability enhancement purposes, and especially during the
initial alignment phase.

Adding the corresponding additive white Gaussian noise to
the nominal ranges and range-difference-of-arrival generates
the ultrashort baseline data. All sensor data is generated in
simulation using the vehicle model with the nominal parameter
set (represented by @ in Fig. 1), corrupted by noise and bias.
The embedded models (nonnominal or perturbed) generate the
VD aiding information inside the EKF using the perturbed
(nonnominal) parameter set (represented by ® in Fig. 1 and
in Section IV). Sensor modeling errors can be compensated in
the filters using inflated noise [25], among other techniques,
that are beyond the scope of this brief and should be assessed
in experimental applications of the navigation system.

B. Underwater Current Disturbance

The underwater current that disturbs the trajectory of the
vehicle is assumed irrotational, such that each infinitesimal
fluid element has zero angular velocity or spin (even if this
current moves along a circle, i.e., changes direction over time)
[10]. Under the irrotational current assumption, the vehicle
model described in (11) is also valid considering water-relative
velocity components [10, Property 2], that is

4 = Mgp (t(@r, @, R, fet)) — Cre(q,)q,)  (21)

where q, represents the linear and angular velocities of the
vehicle relative to an irrotational underwater current with
velocity v¢ € R3, such that

qQ =q+ [VCTR 01><3]T

Note that the current velocity components related to the
angular velocities of q are null, due to the irrotational current
assumption. The expression in (21) is also valid for the zero-
current case, for which v¢ = 0341 and q, = q. Thus, the
above-mentioned underwater current disturbance in simulation
is added by setting a nonzero underwater current velocity v on
the right side of (21), and according to Fig. 1 before generating
the simulated inertial sensors data. As illustrated in Fig. 1, the
perturbed VD models that are embedded in the EKF, do not
consider the underwater current disturbance.

C. Results Discussion

The root-mean-square (RMS) of the position estimation
error from the Monte Carlo simulations is represented in
Fig. 4. The root-mean-square position estimation error results
show the performance enhancement of the proposed VD aiding
technique, even with the model perturbation described in
Table I. The overall position performance enhancement is
inherited from a comprehensive improvement of the velocity
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Fig. 4. Position RMS estimation error (300 Monte Carlo runs).

estimation, as the VD aiding technique provides only linear
and angular velocity corrections. The enhancement on the lin-
ear velocity estimation is shown from the root-mean-square of
the velocity estimation error plotted in Fig. 5. The underwater
current effect in the velocity estimation error, highlighted in
Fig. 5 by a grey transparent box, is more evident for the
Levels 1 and 2 parameters perturbation cases. In the Level 3
case, the vehicle model parameters perturbation dominates
the underwater current effect. The effect of the underwater
current is also noticeable in the y component of the position
error drift during the ultrashort baseline outage period between
160 and 180 s. During this second outage period, all
three perturbed models exhibit a similar drift in y posi-
tion of approximately 2 m, significantly smaller, nonethe-
less, than the 17.62 m drift of the VD unaided filter.
During the first ultrashort baseline outage period (90 to
110 s), for which there is no underwater current, the
Level 3 perturbed model aided filter exhibits a notice-
able position drift that is 9 times lower than in the VD
unaided case.

Overall enhancements in attitude are also achieved, as
evidenced by the Monte Carlo simulations root-mean-square of
the attitude estimation errors in Fig. 6. The root-mean-square
estimation error for the VD filters is evidenced to be around
5 times smaller in yaw and roll, whereas a twofold reduction
is obtained in pitch. Among the clear improvements in all
components, the VD unaided pitch error is approximately 25
times lower than in roll in Fig. 6, due to improved observability
of the overall setup for pitch estimation. The considered ultra-
short baseline array-transponder geometry for the trajectory
described in Fig. 3 yields reduced observability of the vehicle
roll motion. Analyzing the yaw/heading root-mean-square
error with VD aiding, it can be seen that the proposed system
is able to achieve accuracies in the order of 0.04 deg, which
is comparable to the heading accuracy of gyro-compass cou-
pled with a state-of-the-artinertial measurement unit - around
0.02 x sec(lat)deg i.e., 0.02deg in the equator and 0.04 deg at
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Fig. 7. Vehicle model numerically integrated linear velocity RMS error
(300 Monte Carlo runs). The VD model aiding technique presented in this
brief does not use this quantity, using directly linear acceleration observations
drawn from the inertial sensor measurements and the linear acceleration
provided by the VD model.

a latitude of £60 deg. Despite the lack of a gyro-compass
in the solution proposed herein, that level of performance
is achievable due to the combination of a low-cost inertial
measurement unit and three additional sources of information:
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velocity readings from the VD model, earth magnetic field
vector from the triaxial magnetometers, and ultrashort baseline
position fixes. The combination of these sensors in a fully
integrated package ultimately yields improved observability
and attitude accuracy comparable to state-of-the-art IMU and
gyro-compasses.

The linear velocity output root-mean-square error, from the
considered VD perturbed models, is represented in Fig. 7,
illustrating the difference between the nominal model out-
put (with the underwater current disturbance included) and
the outputs from the perturbed vehicle models. Interestingly
enough, linear velocity corrections are fed directly to the filter
as observations of linear acceleration drawn from the inertial
sensor measurements, as given by (19), and no integration
methods for the VD velocity are adopted as in classical
external VD aiding techniques. Consequently, the integration
of velocity aiding requires no more computational resources
than those of a state update. Nonetheless, the numerical
integration of the angular velocity dynamics is easily exe-
cuted with an explicit fourth-order Runge—Kutta integration
algorithm, making it suitable for implementation in low-power
consumption hardware. The root-mean-square of the linear
acceleration observations that are fed to the filters is illustrated
in Fig. 8, which includes a zoom to better visualize the
difference between the output root-mean-square errors of the
three perturbation levels. The model-aided filter also uses the
numerically integrated angular velocity from the perturbed VD
models, using (18) and whose observations root-mean-square
errors are illustrated in Fig. 9 for each of the VD parameters
perturbation level. The information provided in Figs. 8 and 9
allows for assessing the discrepancy between the information
provided by VD perturbed models and from the ground-truth
information (of the nominal model) available from the on-
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board sensors. Note that the filter did not diverge in any of the
Monte Carlo runs, evidencing the robustness of the proposed
technique under vehicle modeling errors. The performance
enhancement is evident not only from the steady-state response
of the filters, but also during the initial convergence phase from
erroneous initial conditions.

VI. CONCLUSION

An embedded VD inclusion technique was successfully
adopted in this brief to enhance position, velocity, and attitude
estimates of low-cost INS. The performance of the proposed
VD aiding technique was assessed with the dynamics model
of the INFANTE AUYV, designed, and developed at IST/ISR
in Lisbon, resorting to extensive Monte Carlo simulations in
which the filtering setup is exposed to different initial condi-
tions and all the sensors to different noise sequences. From
the thorough results analysis of 300 Monte Carlo runs, the
proposed VD aiding technique was shown to yield significantly
improved performance compared to the VD unaided solution,
in the presence of realistic sensor noise. The navigation system
also exhibited robustness to disturbances on the vehicle model,
which is a desirable feature on the practical design of naviga-
tion systems. The overall improvements in position estimation
can be summarized as follows: for parameter perturbation with
standard deviations of 3% and 10%, position estimation error
is 2.5 times lower than in the VD unaided case, whereas
for perturbations with a standard deviation of 30% the error
is around 1.5 times lower than in the VD unaided case.
During ultrashort baseline outages and without underwater
current, the filters only revealed noticeable position drift for
the perturbation Level 3, nonetheless 9 times smaller than
in the VD unaided case. With the presence of underwater
currents, position estimate drifts are not evident until an
ultrashort baseline drop-out occurs, during which the position
error drift is in line with the integration of the underwater
current but still nine times less than in the VD unaided case.
Enhancements in attitude estimation were likewise achieved
with twofold error reduction for pitch angle estimation and
fivefold for yaw and roll angles. None of the Monte Carlo runs
revealed divergence of the filter, emphasizing the robustness
of the proposed technique under vehicle model parameter
errors (three disturbance levels with up to 1o perturbation
values of 30% in the vehicle model parameter errors). The
explicit estimation of the underwater current disturbance was
not addressed in this brief, in which the main contribution
is centered on the validation of the embedded VD model
aiding technique for underwater vehicles. Note that, on one
hand, modeling the underwater current in the filter could
improve filter robustness, but, on the other, it could intro-
duce filter divergence due to modeling errors, and potential
nonobservability of the augmented state space. Future work
will focus on this subject and on the implementation and real-
world validation of the proposed technique with an underwater
vehicle.
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