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Abstract— Observer design for rigid body translational and
rotational motion has important applications to unmanned or
manned vehicles operating in air, underwater, or in space. An
observer design for pose and velocity estimation for three-
dimensional rigid body motion, in the framework of geometric
mechanics, is presented here. Resorting to convenient defined
Lyapunov function, a nonlinear observer on the Special Eu-
clidean Group (SE(3)) is derived. This observer is based on the
exponential coordinates, which are used to represent the group
of rigid body motions. Exponential convergence of the estima-
tion errors is shown and boundedness of the estimation error
under bounded unmodeled torques and forces is established.
Since exponential coordinates can describe uniquely almost the
entire group of rigid body motions, the resulting observer design
is almost globally exponentially convergent. The observer is
then applied to the free dynamics of a rigid vehicle. Numerical
simulation results are presented to show the performance of
this observer, both in the absence and with unmodeled forces
and torques.

I. INTRODUCTION

This paper presents a nonlinear observer that can ac-

curately estimate the configuration and velocity states of

a rigid body. Since most unmanned and manned vehicles

can be accurately modeled as rigid bodies, the applications

of this observer extend to such vehicles operating on air,

underwater, and in space. In particular, such vehicles when

operated in uncertain or poorly known environments, can

be subject to unknown forces and moments. Therefore,

robustness of the observer to such unknown disturbances is

essential for applications of vehicles in space or underwater

exploration. The dynamical coupling between the rotational

and translational dynamics, which occurs both due to the

natural dynamics, as well as, control forces and torques, is

treated in the framework used for our observer design.

The determination of position and attitude is a classical

problem in estimation theory. A wide variety of methods

have been proposed to address this problem exploiting

different techniques and mathematical developments. Some

are purely algebraic methods that exploit only position

and directions information, others rely on the equations

of motion (kinematics and dynamics) in order to integrate

inertial measurements and filter the sensor data. Some of the

latter, rely on treating the attitude kinematics and dynamics

separately from the translational motion, and integrating the

measurements of position and attitude with inertial data.

For attitude estimation, attitude measurements are obtained
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indirectly through direction or angle measurements, while

angular velocity measurements are obtained from rate gy-

ros, which may or may not be biased. Therefore, many

attitude estimation schemes, like those in [1], [2], [3], [4],

[5], estimate the attitude and sometimes the rate gyro bias

from measurements. The work in [6] proposes a kinematic

nonlinear observer which fuses velocity and landmark mea-

surements to provide estimates which converge exponentially

fast to the true states. In [7], a gradient-based observer is

designed directly on the Special Euclidean Group SE(3).
These geometric estimation schemes used a global attitude

description, similar to the observer for mechanical systems

on Lie groups presented in [8]. A framework to design pose

estimators based on the use of vision sensors is given in

[9], [10], [11]. Others solutions have been proposed focusing

only on the estimation of attitude or of the position, see for

instance [12], [13].

For vehicles with fast changing dynamics, only the kine-

matic equations might not be sufficient to capture the phys-

ical behavior. The advantage of this approach is that, when

a suitable model for the forces and moments is available,

one can rely on this information to improve the estimates.

In [14], the problem of obtaining the angular velocity of a

rigid body from orientation and torque measurements only is

considered. The work [15] considers two different methods

of using a dynamic vehicle model in order to aid pose

estimates provided by an inertial navigation system (INS).

In [16] a complete model-aided INS for underwater vehicles

is presented. A new methodology to exploit the vehicle dyna-

mics based on the extended Kalman filter (EKF) is proposed

in [17]. In [18], the attitude of an underwater vehicle is

estimated by an observer which considers the rigid body

dynamics. Dynamic attitude and angular velocity estimation

for uncontrolled rigid bodies using global representation of

the equations of motion based on geometric mechanics, is

reported in [19], [20]. This estimation scheme was used in

[21] for feedback attitude tracking control.

The previous works assume that an accurate model for the

vehicle dynamics is available. However, in many situations

that might not be the case. For example, spacecraft dynamics

may be affected by solar radiation pressure and poorly-

known higher-order gravity effects [22]. In [23], an EKF

for identification of unmodeled disturbance torques was

proposed. The work in [11] also considers pose estimation

of rigid bodies affected by disturbance forces and torques.

This article presents an observer design for the configura-

tion and velocities of a rigid vehicle in SE(3), the Lie group

of rigid body translations and rotations. The configuration

and velocity error dynamics is shown to be almost globally

exponentially stable. The problem of unmodeled disturbances

is also addressed. Resorting to Lyapunov analysis, the pro-
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posed observer laws are shown to drive the estimation errors

exponentially fast to the origin. Simulations are given that

attest the feasibility of the proposed solution.

The remainder of this paper is organized as follows.

Section II describes the rigid body equations of motion

formulated explicitly on SE(3) and introduces the state (con-

figuration and velocity) estimation problem. In Section III,

a nonlinear observer that estimates pose and velocities is

proposed, and its convergence and stability properties are

analyzed in Section IV. In Section V, simulation results

validating the performance of the proposed observer are

presented. Finally, concluding remarks and comments on

future work are given in Section VI.

II. PROBLEM FORMULATION

Consider a body-fixed coordinate frame with origin at

the center of mass of a rigid body denoted by {B}, and

an inertially fixed reference frame denoted by {I}. Let the

rotation matrix from {B} to {I} be given by R and the

coordinates of the origin of {B} with respect to {I} be

denoted by b. The set of rotation matrices, which contains R,

is denoted by SO(3) = {R ∈ R
3×3 : RTR = I3, det(R) =

1}, where In denotes the n × n identity matrix. The rigid

body kinematics are given by

Ṙ = R(ω)×, ḃ = Rv,

where the linear and angular velocities expressed in the body

fixed frame {B} are denoted by v and ω, respectively, and

the skew-symmetric operator (.)× : R
3 → so(3) satisfies

(v)×w = v × w, v,w ∈ R
3. The linear space so(3) is

the Lie algebra associated with the Lie group SO(3) and

corresponds to the set of 3× 3 skew-symmetric matrices.

Let G be the rigid body configuration, such that

G =

[

R b

01×3 1

]

∈ SE(3),

where 0m×n denotes a m×n matrix whose all elements are

zeros and the Special Euclidean Group SE(3) is character-

ized by

SE(3) =

{

G ∈ R
4×4,G =

[

R b

01×3 1

]

:
R ∈ SO(3),
b ∈ R

3

}

.

Using this representation, the kinematic equations take the

form

Ġ = Gξ∨,

where ξ = [ωT vT ]T is the vector of body velocities and the

vector space isomorphism (.)∨ : R6 → se(3) is given by

ξ∨ =

[

(ω)× v

01×3 0

]

∈ se(3).

The space se(3) is the Lie algebra associated with SE(3)
and it consists in a six-dimensional linear space tangent to

SE(3) at the identity element. The rigid body dynamics is

given by

Jω̇ = (Jω)×ω + τ , mv̇ = (mv)×ω + φ, (1)

where m and J denote the rigid body scalar mass and inertia

matrix, respectively, φ denotes the force applied to the rigid

body and τ the external torque, both expressed in the body-

fixed coordinate frame. The dynamic equations (1) can be

expressed in compact form as

Iξ̇ = ad∗ξIξ +ϕ,

where ϕ = [τ T φT ]T , ad∗ξ = (adξ)
T , I = diag(J,mI3), and

diag(A1, . . . ,An) denotes the block diagonal matrix with

the elements A1, . . . ,An in the main block diagonal. The

operator adξ stands for the linear adjoint representation of

the Lie algebra se(3) associated with the Lie group SE(3)
such that

adξ =

[

(ω)× 03×3

(v)× (ω)×

]

.

The sensor suite available provides information regarding

the configuration, velocities, forces and torques applied to

the vehicle. Our aim is to design a dynamic observer which

exploits the sensors measurements to estimate the configura-

tion (pose) and the velocities, such that the estimated states

converge to their true values in the absence of measurement

errors. The use of an observer has clear advantages over

the raw measurements as the sensor information is fused

with the rigid-body dynamics. The resulting estimates are

less noisy and the errors due to sensor bias have smaller

magnitude than the raw sensor data. Robustness to bounded

measurement errors is obtained consequently, and is shown

through numerical simulation results.

III. OBSERVER SYNTHESIS

In this section, we propose an observer for the configura-

tion and velocity. The configuration observer takes the form

˙̂
G = Ĝξ̂

∨
, Ĝ =

[

R̂ b̂

01×3 1

]

, (2)

where ξ̂ = [ω̂T

v̂T ]T ∈ R
6 ≃ se(3). We define the

configuration error as

G̃ = Ĝ−1G =

[

R̃ −R̂T b̃

01×3 1

]

∈ SE(3), (3)

where R̃ = R̂TR, and b̃ = b̂− b. The configuration error

can be expressed in exponential coordinates using

η̃∨ = logmSE(3)(G̃), (4)

where logmSE(3)(.) : SE(3) → se(3) denotes the logarithmic

map on SE(3) [24]. The time derivative of configuration

error (3) is given by

˙̃G = G̃(ξ∨ −AdG̃−1 ξ̂
∨
), (5)

where the adjoint action of G ∈ SE(3) on ζ ∈ se(3) is

given by AdGζ
∨ =

([

R 03×3

(b)×R R

]

ζ

)∨

, ζ ∈ R
6, G ∈

SE(3). In this work, we assume that full state measurement

is provided by the sensor suite on board the vehicle. Thus,

we pose the following assumption.

Assumption 1: The available sensor suite provides mea-

surements about the configuration, velocity, forces and

torques applied to the vehicle.
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Note that, even with full state measurements, the e existence

of an observer is valuable for any navigation and control

system as, like the EKF, it can mitigate the effects of sensor

uncertainties such as noise and bias.

Let us now define the following quantities

ξ̆
∨
= AdG̃−1 ξ̂

∨
, ξ̃ = ξ − ξ̆, (6)

Updating (5), it results in

˙̃G = G̃ξ̃
∨
. (7)

We express the exponential coordinate vector η̃ for the pose

estimate error as

η̃ =

[

Θ̃

β̃

]

∈ R
6 ≃ se(3),

where Θ̃ ∈ R
3 ≃ so(3) is the exponential coordinate vector

(principal rotation vector) for the attitude estimation error

and β̃ ∈ R
3 is the exponential coordinate vector for the

position estimate error. The time derivative of the exponential

coordinates of the configuration error are derived resorting

to (7) and [24]

˙̃η = G(η̃)ξ̃, G(η̃) =

[

A(Θ̃) 03×3

T (Θ̃, β̃) A(Θ̃)

]

, (8)

where

A(Θ̃) = I3 +
1

2
Θ̃

×
+

(

1

θ2
−

1 + cos θ

2θ sin θ

)

(

Θ̃
×)2

,

S(Θ̃) = I3 +
1− cos θ

θ2
Θ̃

×
+

θ − sin θ

θ3
(

Θ̃
×)2

, and

T (Θ̃, β̃) =
1

2

(

S(Θ̃)β̃
)×

A(Θ̃)

+

(

1

θ2
−

1 + cos θ

2θ sin θ

)

[

Θ̃β̃
T

+ (Θ̃
T

β̃)A(Θ̃)
]

−
(1 + cos θ)(θ − sin θ)

2θ sin2 θ
S(Θ̃)β̃Θ̃

T

+

(

(1 + cos θ)(θ + sin θ)

2θ3 sin2 θ
−

2

θ4

)

Θ̃
T

β̃Θ̃Θ̃
T

,

where θ = ‖Θ̃‖. The exponential coordinate vector Θ̃ for the

rotational motion and its time derivative are obtained from

Rodrigues’ formula

R(Θ̃) = I3 +
sin θ

θ
Θ̃

×
+

1− cos θ

θ2
(

(Θ̃)×
)2
,

which is a well-known formula for the rotation matrix in

terms of the exponential coordinates on SO(3), the Lie group

of special orthogonal matrices. In the context of (8), the

matrix R(Θ̃) = R̃, i.e., the attitude estimate error on SO(3).
We consider next a result that is important in obtaining the

observer described later in this section.

Lemma 1: The matrix G(η̃), which occurs in the kinemat-

ics (8) for the exponential coordinates on SE(3), satisfies the

relation G(η̃)η̃ = η̃.
Proof: In [24], an expansion for G(η̃) is given in terms

of matrix powers of adη̃, from which the above result can

be easily concluded given that adχχ = 0, χ ∈ se(3).
Remark 1: The exponential coordinate Θ̃ for SO(3) can-

not be uniquely obtained when θ = ‖Θ̃‖ = π radians,

since Θ̃ and −Θ̃ give the same rotation matrix in this case,

according to Rodrigues’ formula. In this case, the matrix

G(η̃) also becomes singular.

Consider the following Lyapunov function candidate

V =
1

2
η̃TKη̃ +

1

2
(k1η̃ + ξ̃)TKI(k1η̃ + ξ̃), (9)

where K = diag(I3, k2I3), k1, k2 > 0, which motivates the

development of the velocity observer. Letting u = k1η̃ + ξ̃

and taking the time derivative produces

V̇ =− k1η̃
TKη̃ + uTK(GT (Kη̃)η̃ + k1IG(η̃)ξ̃

+ ad∗ξIξ +ϕ− I
˙̆
ξ),

where it is exploited the equality K−1GT (η̃)K = GT (Kη̃).
Let

I
˙̆
ξ = ad∗−K(k1η̃−ξ̆)

Iξ +ϕ+ k1IG(η̃)ξ̃ +GT (Kη̃)η̃ + k3u,
(10)

where k3 > 0. Then, resorting to some algebraic manipula-

tions, the time derivative of (9) takes the negative definite

form

V̇ = −k1η̃
TKη̃ − k3(k1η̃ + ξ̃)TK(k1η̃ + ξ̃).

Thus, the point (η̃, ξ̃) = (0,0) is asymptotically stable in

sense of Lyapunov [25]. Topological limitations precludes

global asymptotic stability of the origin [26]. In fact, if θ =
π, the exponential coordinates of the configuration error η̃

cannot be computed without ambiguity from sensors. The

next proposition provides sufficient conditions ensuring that

for all t > t0, θ(t) < π.

Lemma 2: Let σ
J
= σmin(J) and σ̄J = σmax(J) denote

the minimum and maximum singular value of J, respectively.

For any initial condition such that

‖Θ̃0‖
2 + c1‖b̃0‖

2 + c2(σ̄J‖Θ̃0‖+ k2µm‖b̃0‖) + c3 < π2,

where µ =
√

1 + π2/2, c1 =
k2µ(1+k2

1
m)

1+k2

1
σ
J

, c2 = 2k1‖ξ̃0
‖

1+k2

1
σ
J

,

c3 =
ξ̃
T

0
Iξ̃

0

1+k2

1
σ
J

, Θ̃0 = Θ̃(t0), ‖b̃0‖ = b̃(t0), and ‖ξ̃0‖ =

ξ̃(t0), there is θ̄ < π such that the exponential representation

of the attitude error satisfies ‖Θ̃(t)‖ ≤ θ̄ for all t >
t0. Moreover, there is a one-to-one mapping between the

Lie group G̃ ∈ SE(3) and its Lie algebra (exponential)

representation along all the trajectories of the system.

Proof: The exponential coordinates of the configuration

error are related to R̃ and b̃ by [24]

Θ̃ =
ρ

sin ρ
(R̃− R̃T ), cos ρ =

tr(R̃)− 1

2
, |ρ| < π, (11)

β̃ = S−1(Θ̃)b̃,

where tr(R̃) 6= −1, tr(.) denotes the trace operator, and

S−1(Θ̃) = I3 −
1

2
(Θ̃)× +

2 sin θ − θ(1 − cos θ)

2θ2 sin θ
((Θ̃)×)2.

From the relation between matrix norms [27] we have

‖S−1(Θ̃)b̃‖ ≤ ‖S−1(Θ̃)‖2‖b̃‖ ≤ ‖S−1(Θ̃)‖F ‖b̃‖,
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where ‖.‖2 and ‖.‖F denote the Euclidean and Forbenius

norms of matrices, respectively. Through some algebraic

manipulations one obtains ‖S−1(Θ̃)‖F ≤ µ, where µ =
√

1 + π2/2. Hence, ‖η̃‖2 ≤ ‖Θ̃‖2 + µ2‖b̃‖2. Consider

the level set CV of the Lyapunov function (9) defined as

CV =
{

x : V (x, t) < π2

2

(

1 + k21σJ

)

}

, where x = (η̃, ξ̃).

The condition (11) guarantees that x(t = t0) ∈ CV . Since

CV is a positive invariant set we have x(t) ∈ CV . We

conclude the proof by noting that x(t) ∈ CV ⇒ ‖Θ̃(t)‖ ≤ π
for all t ≥ t0.

Note that, for all initial conditions such that ‖Θ̃0‖ = π−ǫ,
ǫ > 0, the tuning parameters of the proposed observer, k1
and k2, can always be selected such that (11) is satisfied.

To summarize, the observer design is given by equations (2)

and (10) . This observer directly integrates and propagates

the configuration (pose) on SE(3) and the velocities on se(3),
using the exponential coordinates for the pose estimate error,

given by η̃ in equation (4).

IV. OBSERVER PROPERTIES

This section evidences important characteristics of the

observer. Namely, it is shown that the observer is almost

globally exponentially stable and that, when there is bounded

perturbations in the forces and torques measurements, the

estimation errors are uniformly ultimately bounded. Explicit

convergence bounds for the estimation error are also pre-

sented.

Lemma 3: The Lyapunov function (9) and the correspond-

ing time derivative satisfy the following bounds

α1‖x(t)‖
2 ≤V (x, t) ≤ α2‖x(t)‖

2,

V̇ (x, t) ≤ −α3‖x(t)‖
2,

where α1 = σmin(P), α2 = σmax(P), α3 = σmin(Q), with

P =
1

2

[

K(I6 + k21I) k1KI

k1KI KI

]

,

Q =

[

(k1 + k21k3)K k1k3K
k1k3K k3K

]

.

Moreover, we have that

α1 ≥
1

2
min{1, k2}(−k1σI

+min{1 + k21σI
, σ

I
})

α2 ≤
1

2
max{1, k2}(k1σ̄I +max{1 + k21σ̄I, σ̄I})

α3 ≥ min{1, k2}(−k1k3 +min{k1 + k21k3, k3}),

where σ
I
= σmin(I) and σ̄I = σmax(I).

Proof: Let ρ = min{1, k2} and ρ̄ = max{1, k2}. To

compute α1 and α2 start by noting that

V (x, t) = xTPx,

Following [28, Theorem 6], we have that

σmin (diag(A,C))− σmin(B) ≤ σmin

([

A B

B C

])

, (12)

for any square matrices A, B and C. Exploiting this result,

we conclude that

2σmin(P) ≥ σmin

(

diag(K(I6 + k21I),KI)
)

− σmin(k1KI)

≥ k1ρ(−k1σI
+min{1 + k21σI

, σ
I
}).

From [28, Theorem 6], we have that

σmax

([

A B

B C

])

≤ σmax (diag(A,C)) + σmax(B).

Thus, σmax(P) ≤ 1
2‖x‖

2ρ̄(k1σ̄I +max{1 + k21σ̄I, σ̄I}).
Finally, α3 is obtained resorting to the same reasoning as

in α1 and α2. Note that

−V̇ (x, t) = xTQx,

Thus, −V̇ (x, t) ≥ σmin(Q) and using (12), we con-

clude that σmin(Q) ≥ σmin

(

diag((k1 + k21k3)K, k3KI)
)

−
σmin(k1k3K) ≥ ρ(−k1k3 +min{k1 + k21k3, k3}).

A. Almost global exponential stability

The following theorem characterizes the stability of the

estimation errors and provides explicit convergence bounds.

Theorem 1: Under Assumption 1, let the configuration

and velocities observer be given by (2), (10) and (6), and

k1, k2, k3 > 0 be such that the the conditions of Lemma 2

are satisfied. Then, the estimation errors x = (η̃, ξ̃) are

almost globally exponentially stable with convergence rate

upper bounded by

‖x(t)‖ ≤ κe−γ(t−t0)‖x(t0)‖,

where κ =
√

α2/α1 and γ = α3/(2α2).
Proof: Lemma 3 shows that V satisfies V̇ ≤ −α3

α2
V .

Thus, we conclude that

V (x, t) ≤ e−
α3

α2
(t−t0)V (x(t0), t).

Again from Lemma 3, we have that V (x(t0), t) ≤
α2‖x(t0)‖

2, V (x, t) ≥ α1‖x(t)‖
2. Then, α1‖x(t)‖

2 ≤

e−
α3

α2
(t−t0)α2‖x(t0)‖

2, and consequently,

‖x(t)‖ ≤
√

α2/α1e
−

α3

2α2
(t−t0)‖x(t0)‖

.

Note that satisfaction of the conditions of Lemma 2 ensure

that unwinding does not occur for the attitude estimate

obtained with this observer design. In other words, the

norm of the attitude estimate error expressed in exponential

coordinates always remains bounded above by π radians.

B. Unmodeled torques and forces

In real mission scenarios, the rigid body can be affected by

external time-varying unmodeled disturbances. The follow-

ing proposition shows that, for bounded unmodeled forces

and torques, the configuration and velocity estimates are

uniformly ultimately bounded with ultimate bound function

of the observer gains.

Assumption 2: The forces and torques applied to the rigid

body are composed of modeled and unmodeled components,

such that,

ϕ(t) = ϕr(t) +ϕd(t),
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where ϕr ∈ R
6 and ϕd ∈ R

6 denote the modeled and

unmodeled torques and forces, respectively. Moreover, ϕd(t)
is uniformly bounded, i.e., there exists ϕ̄d > 0 such that, for

all t > t0, ‖ϕd(t)‖ ≤ ϕ̄d.

In the presence of unmodeled forces and torques, Lemma 2

is no longer valid and an additional condition is needed

to guarantee that the exponential coordinates of G̃ can be

computed uniquely for all t > t0.

Lemma 4: Under Assumption 2, let the velocities observer

be given by

I
˙̆
ξ =ad∗

−K(k1η̃−ξ̆)
Iξ +ϕr + k1IG(η̃)ξ̃ +GT (Kη̃)η̃ + k3u.

(14)

Then, if the conditions (11) and

min{k21 , k
2
3/σ̄

2
I
}(1 + k21σJ

) >
ρ̄2

π2ρσ
I

ϕ̄2
d.

are satisfied, there is θ̄ < π such that ‖Θ̃(t)‖ ≤ θ̄ for all

t ≥ t0 and there is a one-to-one mapping between G̃ ∈
SE(3) and its exponential representation along all the system

trajectories.

Proof: From Lemma 2, we have that in order to the

attitude error satisfy ‖Θ̃(t)‖ ≤ θ̄, θ̄ < π and to exist a

one-to-one mapping between G̃ ∈ SE(3) and its exponential

representation for all t > t0, the following condition is

necessary

V (x(t)) <
π2

2
(1 + k21σJ

). (15)

This inequality defines a level set with boundary given by

Ω = {η̃, ξ̃ ∈ R
6 : η̃TKη̃+(k1η̃ + ξ̃)TKI(k1η̃ + ξ̃)

= π2(1 + k21σJ
)}.

Our goal is to provide sufficient conditions such that

V̇ (η̃, ξ̃) < 0 for any (η̃, ξ̃) ∈ Ω, which guarantees that (15)

holds.

The time derivative of the Lyapunov function, V , taking

into account unmodeled forces and torques, satisfies

V̇ ≤−min{k1, k3/σ̄I}(η̃
TKη̃ + uTKIu)

+
√

η̃TKη̃ + uTKIu

√

ρ̄2/(ρσ
I
)ϕ̄d.

Evaluating V̇ at Ω, it can be concluded that

V̇ ((η̃, ξ̃) ∈ Ω) ≤−min{k1, k3/σ̄I}π
2(1 + k21σJ

) (16)

+
√

π2(1 + k21σJ)
√

ρ̄2/(ρσ
I
)ϕ̄d.

Then, from (16) we conclude that V̇ ((η̃, ξ̃) ∈ Ω) < 0 holds

for min{k21 , k
2
3/σ̄

2
I
}(1 + k21σJ

) > ρ̄2

π2ρσ
I

ϕ̄2
d.

If there are unmodeled forces and torques, the estimation

errors are no longer asymptotically stable. However, it can be

shown that, with ‖ϕd‖ ≤ ϕ̄d, for a sufficiently small initial

estimation error, the estimation errors are uniformly bounded

with ultimate bound proportional to ϕ̄d.

Theorem 2: Under the conditions of Lemma 4, the es-

timation errors are uniformly ultimately bounded, with

ultimate bound given by
√

α2

α1

α4

α3
ϕ̄d, where α4 =

2max{k1, k2, k1k2}.
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Fig. 1. Estimation error in linear (a) and logarithmic scales (b).

Proof: Under Assumption 2 and (14), we have that

V̇ < −α3‖x‖
2 + ‖x‖2ϕ̄dmax{k1, k2, k1k2}

≤ −‖x‖(α3‖x‖ − ϕ̄dα4),

where α4 = 2max{k1, k2, k1k2}. Thus, V̇ < 0 for ‖x‖ >

α4

α3
ϕ̄d and the set I =

{

x : V (x, t) <
(

α4

α3
ϕ̄d

)2
}

is positive

invariant. Finally, from the results in Lemma 3, we conclude

that

‖x(t)‖ ∈ I ⇒ ‖x(t)‖ ≤

√

α2

α1

α4

α3
ϕ̄d. (17)

V. SIMULATIONS

In this section, simulation results for the proposed nonlin-

ear observer are presented. The performance of the solution

is studied for a typical trajectory. This trajectory is generated

by torques and forces with an oscillatory profile with fre-

quency of 1
2πHz and amplitude of τ = 0.1[1.5 −2 1]T rad/s2

and φ = [−3 2 1]T m/s2. The inertia of the rigid body is

given by J = diag(1.1, 1, 0.9) kg.m2, m = 2 kg.

We performed simulations under two different conditions,

perfect sensor measurements and with unmodeled torques

and forces. The exponential convergence of the estimation

errors is studied first. The observer parameters are given by

k1 = 1, k2 = 1, k3 = 4, Θ̃(t0) = [−0.4 −0.2 −0.1]T rad, β̃ =
[−1.073 −0.349 0.488]T m, ω̃(t0) = 10−3[7 4 10]T rad/s,

ṽ(t0) = 10−3[10 0 −5]T m/s. Note that these parameters

satisfy the condition (11).

The configuration and velocity estimation results are

depicted in Fig. 1 in both linear and logarithmic scales.

The exponential upper bound derived in Section IV-A is

also shown. The robustness properties of the observer are

illustrated by considering the presence of unmodeled torques

and forces with an oscillatory profile with frequency 1 Hz

and amplitude 0.01 rad/s2 and 0.01 m/s2 in each axis of the

torques and forces, respectively. The norm of the unmodeled

torques and forces is depicted in Fig. 2(a). The estimation

error is shown in logarithmic scale in Fig. 2(b) where, the

estimation error converges in finite time to the region defined

by (17).
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Fig. 2. Norm of the unmodeled forces and torques, ϕd(t) (a), and
estimation error in the presence of unmodeled forces and torques (b).

VI. CONCLUSIONS

A nonlinear observer for arbitrary rigid body motion

with full state measurements was devised. This observer

was obtained and expressed in terms of the exponential

coordinates on the group of rigid body motions in three-

dimensional Euclidean space. This observer was shown to

be exponentially stable whenever the exponential coordinates

are defined, which includes all attitude estimate errors except

those corresponding to a principal rotation angle of 180◦ or π
radians. Therefore, the convergence of estimates given by this

observer was almost global over the state space of rigid body

motion. Boundedness of the estimation error under bounded

unmodeled torques and forces was established. Numerical

simulation results confirmed the convergence and stability

properties of this observer.

Future work will address the stability analysis for the cases

with sensor noise in all measurements and in the absence of

some measurements.
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