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Experimental validation of a nonlinear quadrotor controller
with wind disturbance rejection

David Cabecinhas, Rita Cunha and Carlos Silvestre

Abstract— This paper addresses the problem of designing and
experimentally validating a controller for steering a quadrotor
vehicle along a trajectory, while rejecting wind disturbances.
The proposed solution consists of a nonlinear adaptive state
feedback controller for thrust and torque actuation that asymp-
totically stabilizes the closed-loop system in the presence of
constant force disturbances, used to model the wind action,
and ensures that the actuation does not grow unbounded as
a function of the position errors. A prototyping and testing
architecture, developed to streamline the implementation and
the tuning of the controller, is also described. Experimental
results are presented to demonstrate the performance and
robustness of the proposed controller.

I. INTRODUCTION

Flight control of Unmanned Aerial Vehicles (UAV) is an
active and challenging topic of research, with crucial impor-
tance to numerous civilian and military applications. Among
UAVs, we highlight the quadrotor as an ideal platform for
robotic systems, particularly suited for the development and
test of new control strategies due to its simplicity, high
maneuverability, and ability to hover.

Several linear and nonlinear approaches to the problem of
quadrotor flight control have been proposed, namely PI and
PID control [1], PID and LQ [2], backstepping [3], [4] and
sliding mode control [5]. Linear methods have been applied
to UAVs with success but are of limited applicability for
extended flight envelope regions, i.e. aggressive maneuvers,
where the linearity of the system breaks. Additionally, one
can only guarantee stability of the closed loop system for
small regions around the equilibrium point. The sliding mode
approach relies on a feedback linearizion controller that is
not globally stabilizing. There is a singularity in the control
law for zero thrust force and the proposed controller does
not actively avoid it.

Backstepping is a well known technique extensively used
for control of nonlinear systems. For example, it has been
applied to helicopter trajectory tracking [6] and [7], to
control of a two tilt rotor aircraft [8] and also to quadrotor
trajectory tracking [9] and tracking of parallel linear visual
features [10]. Several methodologies can be combined with
backstepping to attain desirable characteristics of a control
law, such as robustness to external disturbances and actuation
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boundedness. The use of integral control to achieve zero
steady-state error or equivalently rejection of constant distur-
bances in a closed-loop regulation system is standard in the
control literature and can be combined with the backstepping
technique as discussed in [11]. The control methodology
known as adaptive backstepping [12] relies on an estimator
to achieve the disturbance rejection effect of integral control.
Similarly, other linear estimators have been proposed in
connection with other nonlinear controllers for quadrotor
vehicles, as in [13].

One problem with a straightforward application of linear
estimators, as is the case of adaptive backstepping, is that
the parameter estimate can grow, without an a priori bound,
depending on the initial conditions of the system. The typical
approach to this problem is to use a projection operator
to constrain the parameter estimate to a given set [12].
The discontinuity of this projection method is a twofold
problem. First, it leads to practical problems when applied
to continuous systems. Second, the recursive application
of the backstepping procedure is no longer possible, as
Lipschitz continuity is violated and the usual theorems on
the existence and uniqueness of differentiable equations can
no longer be applied. To overcome both these problems, we
employ the arbitrarily smooth projection operator proposed
in [14], which generates parameter estimates with sufficient
smoothness to complete the backstepping procedure.

In this work, we address the problem of trajectory tracking
for quadrotors, using a backstepping procedure that builds on
the dynamic augmentation principle presented in [15]. The
desired trajectory is specified by a sufficiently smooth time-
parameterized position vector. The desired attitude of the
vehicle is not prescribed since attitude convergence (up to a
rotation about the body z axis) is naturally accomplished by
solving the position tracking problem. Robustness to exter-
nal constant disturbances is accomplished through adaptive
backstepping. These disturbances can be used to represent
both exogenous inputs such as constant wind and model
uncertainties such as quadrotor parameter mismatches.

This paper is structured as follows. Section II introduces
the quadrotor model. The problem and control objectives are
stated in Section III. Controller design is described in Sec-
tion 1V, including the necessary steps to ensure disturbance
rejection. Experimental results illustrating the performance
of the proposed control law are presented in Section V and
Section VI summarizes the contents of the paper.

II. QUADROTOR MODEL

The quadrotor vehicle, depicted in Figure 1(a), is modeled
as a rigid body able to generate a thrust force along the
body z axis and is controlled in attitude through angular

1811



velocity inputs. A sketch of the quadrotor setup is presented
in Figure 1(b), together with illustrations of reference frames,
the force generated by each motor F; and the direction of
rotation for each propeller. Consider a fixed inertial frame
{I} and a frame {B} attached to the vehicle’s center of
mass. The configuration of the body frame { B} with respect
to {I} can be viewed as an element of the Special Euclidean
group, (R,p) = (LR,'ps) € SE(3), where p € R? is the
position and R € SO(3) the rotation matrix. The kinematic
and dynamic equations of motion for the rigid body can be
written as

p = Rv, D
= -S(@)v+ £+ R, o)
k= RS(w), 3)

where the angular velocity w € R3, linear velocity v € R3
and the external force f are expressed in the body frame { B}
and the map S(.) : R3 — R3*3 yields a skew symmetric
matrix that verifies S(x)y = x x y, for x and y € R
The unknown external disturbance b € R? is constant
and expressed in the inertial frame {I} and the scalar m
represents the quadrotor’s mass. The force disturbance can
model exogenous inputs, such as constant wind, and also
model uncertainties, such as variations in the vehicle mass
or in relation between the thrust input and the thrust force
output.

(a) Quadrotor platform

Ry —
’{/"\ : {B}F:T(’T’
T

—

(b) Quadrotor setup

Fig. 1. Quadrotor experimental platform and diagram.

The quadrotor platform used in this work is equipped with
an inner-loop control circuit, responsible for generating the
forces F; applied to each motor, so that the total thrust force
T and the angular velocity w can be considered as inputs for

the trajectory tracking controller design. The external force
in body coordinates is given by

f=—-Tesz +mgR"es (@)

where e3 = [0 0 1]” and g is the gravitational acceleration.

III. PROBLEM STATEMENT

Let the desired trajectory py(t) € R? be a curve of class
at least C3. The control objective consists of designing a
control law for the quadrotor actuations 7'(¢) and w(t) that
ensures convergence of the vehicle’s position p(t) to the
trajectory pg(t) with the largest possible basin of attraction.
Throughout the remainder of the paper, the time dependence
of variables is often omitted to lighten notation.

Due to the underactuated nature of the vehicle, the desired
attitude cannot be arbitrarily selected. From (2) and (4), it is
easy to observe that the equilibrium for trajectory tracking
satisfies

T,Rqes = mges — mpg + mb.

Consequently, the desired rotation matrix R, is automat-
ically prescribed up to a rotation about the body z axis
(TyR4R.(V)es = mges — mpg + mb, with ¢ € R), which
we take as a degree of freedom.

We consider the full state of the vehicle to be available for
feedback. In our setup, the state measurements are obtained
through a high speed motion tracking system, based on
external cameras tracking reflective markers on the vehicle,
as described in section V. An estimate of the external
disturbance, b is obtained by adaptive backstepping and
used for feedback control. We write the estimation error
as b = b — b. Stability and convergence of the estimation
error to zero is guaranteed by Lyapunov-like methods. The
external force disturbance b is assumed to be bounded in
norm, so that the quadrotor can perform a trajectory tracking
manoeuvre with bounded thrust input.

Assumption 1. The force disturbance b is bounded in norm
by ||b|| < B with B > 0.

Even though the disturbance is bounded, straightforward
or naive implementations of estimators can lead to wind-up
phenomena and result in unbounded growth of the estimate.
To avoid a wind-up effect on the disturbance estimator, and
keep the estimate bounded, we employ a projection operator
when designing the estimator. This procedure is detailed in
the next section, together with the design of the controller.

IV. CONTROLLER DESIGN

The translational subsystem of the quadrotor, viewed in
the inertial frame, can be regarded as a vectorial double
integrator, driven by

.. T
p = ——Res + ges + b.
m

We start the design process by considering a virtual controller
for the translational subsystem, which is backstepped through
the angular subsystem to obtain the final implementable
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controller. In order to define the virtual controller consider
the following error states for the double integrator

=P —Pd (&)
2o = 71 +0(21), (6)
where o is a sigmoidal saturation function, and
. T .
Z1=u= —EReg + ges + b — pgy.

A tentative Lyapunov function is devised as

Vot = 6(m)™ 1+ 5 (e — o(z1)) + Qo)
(Qz2 — o(21)) + (0 (21)))
with ¢(s) = [, o(t)dt. For a fully-actuated vehicle, the

control law

U(Zn,Zzl - 0(211))
*

u* = |u(z12,222 — 0(212))
u(z13, 223 — 0(213))
where
s ) = 2 0@+ o(z0) + o)
’ Y (22) (Qa2) + Qo(21)))
o'(x1)xs
' (x2)

and p and o are saturation functions, globally asymptotically
stabilizes the system and renders the Lyapunov function
derivative negative definite

VD[ = —O'(Zl)TO'(Zl) — k‘gZ%p(ZQ) = —WQ(Zl,Zg).

In the next step, we consider the real vehicle and the
errors introduced by the underactuation. Furthermore, a term
is added to the Lyapunov function to allow for disturbance
rejection. The new tentative Lyapunov function is

Vo=V, —bTb
2= Vpr+ o

and has the following time derivative
: %) o™ 1
Vo =-W. — b7 ——b
2 2(21,22) + 02, L~ u’) + (8z2 D)
where the real control input, computed using the estimated
disturbance, is

. T _
u = —fReg—Fgeg +b—pd.
m

The term 1 —u* can be regarded as an actuation error due
to the fact that the quadrotor is an underactuated vehicle and
that thrust must be align with the z body axis. Applying with
the backstepping procedure, we define the new backstepping
error

z3=1u0—u" @)

and the new Lyapunov function

1
Va="V+ §Z§Z3,

with
. oV,
Vs = —Ws(z1,22,23) + 25 (k3zz + — 02s + 23)
. av2 12
b"(—= — —b 8
s L)

The time derivative of the error state zs3 is

. T T . dur-
z3 = ——Re3 — —RS(w )83+b p(g) - 2 g
m m 0zo
where * denotes the estimation of the time derivative of u*
obtained using b instead of the unknown b. The error when
performing such estimation is given by
~ ou* ~
S L b
u—u 02,
Substltutlng z3 in (8) and defining the input vector u =
[T w1 wg] and the matrix

0 0 -1
M(T)y=|{0 T 0],
-T 0 0

we get an expression for the Lyapunov function time deriva-
tive,

. 1 oV
VS:—Wg(zl,zQ,Zgg)+z§(—RM( Y+ k3zs + o z
N ovLT  our” 1=
bh—p® _ &) 4B (L2 - —b
+hopg —w) (G — 5 = b)),

that can be rendered negative semi-definite to achieve con-
vergence of the trajectory tracking error to zero, with the
appropriate control inputs, 7' and w, and estimator law for
b.

To tackle the estimation of the disturbance we use a
projection operator that keeps the estimate b within some
a priori defined set and verifies the smoothness properties
required for the iterative application of the backstepping
procedure. Consider the estimate control law,

b = ky Proj(¢, b)

e . )
= ko <£ ~ 2(e2 — 2¢B)"+1B? b)
with
- 3V2T au*T
§= 87z2 - D24 Z3,

i

_ (b™b — B>)"*1 if (b"b— B?) >0
n 0, otherwise

2 =b"¢ =1/ (b7E)? + 62,
where € > 0 and § > 0 are arbitrary parameters and B is the
bound on the norm of the unknown parameter. The smooth
projection operator is taken from [14] and has the following
properties,
Pl - Hb H<B+e Vit > 0;
P2 — b7 Proj(¢,b) > b7¢;
P3— [Proj&b)| < NglL + (B + /B2
€)/(2B2))s;
P4 — Proj(¢,b) is C™.
From the estimator control law (9) and property P2 we
derive the lower bound for the Lyapunov function derivative

Vs
072

+ (B +

. 1
Vs < —Ws(z1,22,23) + Zg(aRM( Y+ kazs + ——

+b p(?’) f).

1813



Moreover, property P4 ensures that the derivatives of the
estimate are continuous up to b(®*1)., We are now able to
state Theorem 3, regarding the design of a stabilizing control
law. The Theorem requires the following assumption, which
is met under the appropriate conditions, that are to be detailed
in the sequel.

Assumption 2. The thrust actuation verifies T(t) > € > 0
for all time t > 0.

Theorem 3. Let the quadrotor kinematics and dynamics be
described by (1)-(3), let py(t) € C? be the desired trajectory,
and consider the transformation to error coordinates i,
Zo, Z3 given by (5), (6), (7), respectively. For any bounded
ws3(t) € C, the closed-loop system that results from apply-
ing the control law

oVe 2 5
mw= —mM_l(T)RT </€3Z3 + 87Z2 +b— p((i3) - u*)
2
(10)
and the estimator law (9) achieves global trajectory tracking
by guaranteeing that the errors zi, zo, and z3 converge to
zero for any initial condition.

Proof. The proposed control law (10) is well defined, in
the conditions of Assumption 2. Starting with the positive
definite Lyapunov function

V = 0m)" 1+ 5 (s — o)) + QAo () "
(Q(z2 — 0(z1)) + Qo(21))) + 22525 + ﬁBTB,

and computing its time derivative, in closed-loop, we have
that

V < —0(2z1)"0(21) — kozd p(22) — k323 23,

which is a negative semidefinite function. Since the quadrotor
error dynamics are non-autonomous, we resort to Barbalat’s
Lemma to prove convergence of V to zero. From the
unboundedness of V' with respect to z1, z2,z3 and b, and
observing that V' is negative semi-definite, we conclude that
the states z, zo,z3 and b are bounded. The external input

pg’) is bounded by assumption and b is bounded from

property P4 of the projection operator. We have thus that Vis
bounded and, consequently, V' is uniformly continuous. We
can therefore apply Barbalat’s Lemma to prove convergence
of V' to zero and, consequently, of the states zi, zo and z3
to the origin. O

The proposed control law (10) can only be applied if
Assumption 2 holds. A conservative estimate of the initial
states for which T'(¢t) > e is guaranteed for all ¢ > 0 can
be obtained using (7) together with the bounds for the errors
and estimation derived from the Lyapunov function and its
derivative. Using |||, to denote the maximum norm of a
function, we obtain the following lower bound for the thrust,
for all t > 0,

T(0)] = mg — b = IBa(t)lc — 0", ~ V2V (0).

If the initial conditions and desired trajectories are such
that the lower bound for |T'(¢)| is positive, then the thrust

T'(t) that results from applying the proposed control law is
guaranteed to take only positive or only negative values.

V. EXPERIMENTAL RESULTS

In order to experimentally validate the proposed control
algorithms we developed a rapid prototyping and testing
architecture using a Matlab/Simulink environment to seam-
lessly integrate the sensors, the control algorithm and the
communication with the vehicles. The vehicle used for the
experiments is a radio controlled Blade mQX quadrotor [16],
depicted in Figure 1(a). This aerial vehicle is very agile and
maneuverable, readily available and inexpensive, making it
the ideal platform for the present work. The quadrotor weighs
80 g with battery included and the arm length from the center
of mass to each motor is 11 cm. The available commands
are thrust force and angular velocity. The maximum thrust
generated by the propellers is approximately 1.37 N (equiv-
alent to 140 g) and varies slightly with the battery charge.
The maximum angular velocity that can be commanded is
200 deg/s for the x and y axes and 300 deg/s for the z
axis. However, the commands issued to the quadrotor are
not instantaneously followed. This delay nonlinearity can be
well approximated by considering the motors as first order
dynamic systems with a pole at 1.5 Hz.

Due to the lack of support for on-board sensors, the state of
the vehicle must be estimated through external sensors. In our
setup we use a VICON Bonita motion capture system [17],
comprising 12 cameras, together with markers attached to the
quadrotor. The motion capture system is able to accurately
locate and estimate the positions of the markers, from which
it obtains position and orientation measurements for the
aircraft. VICON Bonita is a high performance system, able
to operate with sub-millimeter precision at up to 120 Hz.
The performance of the motion capture system is such that
the linear velocity can be well estimated from the position
measurements by a simple backwards Euler difference, with
relatively low noise level. For the experimental setup, the
state measurements from the motion capture system are
obtained at 50 Hz, allowing for improved accuracy without
compromising the overall stability due to delays.

The commercial off-the-shelf quadrotor vehicles are de-
signed to be human piloted with remote controls but not
directly from a computer. In order to be able to send
commands to a quadrotor from a computer we identified the
radio chip inside the remote control and connected the serial
interface of the RF module to a computer serial port. To
maintain the radio link, the radio transmitters must receive
the control signals via serial port and send them to the vehicle
once every 22.5 ms.

A graphical representation of the overall architecture
is presented in Figure 2. We use two computer systems,
one running the VICON motion tracking software and the
Simulink model which generates the command signals sent
to the other computer through Ethernet; and a second one that
receives the command signals and sends them through serial
port to the RF module at intervals of 22.5 ms. The decision
to separate control and communications was made to avoid
jitter in the transmission of the serial-port signals to the RF
module, which occurred when running all the systems in the
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same computer, and lead to erratic communication with the
vehicle.

o

Eal

Aerial vehicle

MATLAB
@ SIMULINK

Integrated observer and
high-level controller

S my

VICON motion
capture system

Soft real-time
RF transmission

Fig. 2. Quadrotor control architecture.

Trajectory tracking

For the first experimental evaluation of the proposed
controller we selected for the desired trajectory a lemniscate
(figure eight) parameterized as

. sin(¢(t)) cos(p(t
cos(/4)  sin(m/4) 0 W
— | —qj cos(p(t
pa(t) = |—sin(n/4) cos(n/4) O SeOrET |
0 0 1 1

where ¢(t) obeys

o(t) = V1 +sin?¢.

This parametrization results in a trajectory with unitary norm
time derivative and constant desired speed for the quadrotor
of V m/s, chosen for this experiment to be V' = 0.5. The
control law coefficients are ko = 2, k3 = 4, k, = 1 and the
initial estimate b(0) is set to zero. For the sigmoid saturation
function we use o(s) = M rs/+v/1+ r2s2, which has the
bound |o(s)] < M and derivative at the origin o/(s) = r,
with M = 1.5 and r = 3.

The time evolution of the actual quadrotor position and the
reference is shown in Figure 3. The quadrotor follows closely
the desired path, with neglectible error in steady state. The
RMS trajectory tracking error in steady state is 4.61 cm and
the maximum error is 7.6 cm. The position error in steady
state can be attributed to unmodeled dynamics of the plant
and to the fact that the issued commands are not perfectly
followed by the aircraft. The main contributions to the
unmodeled dynamics are threefold: i) there exist unmodeled
cross-couplings between the angular velocity commands and
lateral forces acting on the quadrotor, due to an uneven and
not perfectly symmetric mass distribution of the vehicle; ii)
the issued thrust and angular velocity commands are not
perfectly followed due to motor inertia and incorrect thrust
command to thrust force identification; iii) there exists a
non-constant wind disturbance affecting the vehicle. Notice
that the vehicle has a large initial position error, leading
to the saturation function having a preponderant role in the
control signal. Despite this unfavorable initial configuration,
the actuation commands are kept within their performance
limits (see Figure 5) and convergence to the reference
trajectory occurs in just 5 seconds time, after which only
small corrections are performed to the quadrotor trajectory.

T
x reference
y reference

z reference
z actual
y actual

z actual

Position (m)

0 5 10 15 20 25 30

Time (s)
Fig. 3. Time evolution of the position and reference signals.

Although the trajectory tracking experiment is performed
on a closed division, with wind disturbances arising only
from an air conditioning system, the effect of the integral
action is evidenced on the vertical axis. After the initial
transient, where the vertical error decreases rapidly, there is a
slower approximation of the altitude to the desired one, until
they match in steady state. This slower convergence is the
result of the imposed integral action, through the disturbance
estimator, which enables perfect theoretical tracking, even
though the thrust command to thrust force relation is not
perfectly known. The time evolution of the disturbance
estimate is presented in Figure 4 where a convergence of
the estimated can be seen, although they do not converge
perfectly due to the presence of unmodelled dynamics.

1 =

—
b
bs

0.5F

Acceleration (m/s?)

5 10 15 20 25 30
Time (s)

Fig. 4. Force disturbance estimate.

The quadrotor actuation signals are depicted in Figure 5.
The initial transient starts with a high thrust, to take the
quadrotor to the desired height, and large angular velocity
commands, to turn the quadrotor to the desired direction to
minimize the errors. Once in steady state, the actuation sig-
nals are primarily the ones necessary to drive the controller
through the reference trajectory, with only small corrections
being performed according to the control law, without large
variations. The effect of the integral action can also be seen
in the thrust actuation, as it slowly increases with time,
compensating for imprecisions in the conversion between

1815



commanded and actual thrust due to its variation with battery
charge. Moreover, the thrust actuation is always well above
zero and Assumption 2 holds for all the trajectory.

> o2 : : : : :
3
=1 ]
i /
—_ A
B OT al
. V
2o
<
5 ; ‘ ‘ ‘
0 5 10 15 20
Time (s)
Fig. 5. Time evolution of the actuation signals.

Finally, the time evolution of the backstepping errors is
shown in Figure 6. A video of the quadrotor takeoff and
trajectory tracking is available at [18].

VI. CONCLUSIONS

This paper presented a state feedback solution to the
problem of stabilizing an underactuated quadrotor vehicle
along a predefined trajectory in the presence of constant
force disturbances. A Lyapunov function for the system
was derived using adaptive backstepping techniques, where
an adaptive estimator was introduced so as to compensate
for the force disturbance and add integral action to the
system. A rapid prototyping and testing architecture was
developed to expedite the development process by creating
an abstraction layer that integrates the sensors, controller,
and communication with the vehicle. Experimental data for
trajectory tracking applied to a small-scale quadrotor vehicle
was presented which evidenced the effects of the adaptive
action and demonstrated the robustness and performance of
the proposed control law.
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