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Abstract— This paper presents a strategy for formation con-
trol of autonomous vehicles using a leader-following approach.
A trajectory planner prescribes the motion of a group of
virtual vehicles, using a Lyapunov-based nonlinear controller
that stabilizes the position of the leader in the reference frame of
the virtual vehicles at a predefined distance vector. This strategy
differs from the standard approach of defining the desired
distance vector in an inertial frame and can be used to obtain
rich formation trajectories with varying curvatures between
vehicles. By imposing adequate constraints on the motion
of the virtual vehicles, the planner naturally guarantees the
generation of valid formation trajectories, without requiring the
parametrization of the space curve described by the leader. The
trajectories are generated online and provided to a trajectory
tracking controller specifically designed for quadrotor vehicles.
Results of experimental tests are presented demonstrating the
performance of the proposed solution for formation control of
autonomous vehicles.

I. INTRODUCTION

The problem of cooperative control of multi-vehicle sys-
tems poses an important challenge to automatic control. It
has been the scope of a number of publications and experi-
mental results are beginning to appear [1]–[7]. Multi-vehicle
systems have proven to be advantageous in carrying out a
variety of tasks such as surveillance and area exploration
[2], where it results in a faster and more efficient process, or
load transportations [3], where the employment of multiple
robots allows for the use of smaller vehicles.

Within the field of cooperative control, the problem of
maintaining a multi-vehicle formation while moving in
space, known as formation control, has received considerable
attention, with several methodologies proposed over the past
15 years. Most of them employ the concept of artificial po-
tentials to control the robot constellation. One such example
is the work developed by Leonard and Fiorelli [4], where
they proposed the use of potential fields associated with
moving reference points, which they called virtual leaders,
whose function was to shape and give reference movement to
the formation. With this strategy it is possible to control the
shape and orientation of the formation by proper positioning
of the virtual leaders, although generating their trajectories
may be difficult. Other approaches making use of artificial
potentials may be found in [5] and [6]. However, these later
strategies do not enforce a definite vehicle configuration, only
driving the vehicles to fixed distances relative to each other.

In the method for vehicle formation presented in this
paper, a trajectory planner prescribes the motion of a group
of virtual vehicles so as to follow a leader and a trajectory
tracking controller uses the generated trajectories as refer-
ences for real vehicles. The trajectory planner is in fact a
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nonlinear control law that stabilizes, at a predefined distance
vector, the position of the leader in the body frame of the
virtual follower. This strategy differs from the majority of
approaches found in the literature, which define the desired
distance vector in either the body frame of the leader (see
[8], for an example applied to unicycles) or the inertial frame
(see [9], for an example applied to quadrotors). Notice that
the latter can only be used to define formations where the
followers describe an offset version of the leader’s trajectory.
In contrast, the current approach can be used to generate
richer formation trajectories, in the sense that the followers
can describe trajectories that differ considerably from that of
the leader, namely in terms of curvature. Moreover, these and
other path parameters do not need to be explicitly computed
from the leader’s path.

The solution proposed exhibits some additional proper-
ties of interest. Given that the leader-follower distance is
expressed in the body frame of the follower, relative position
measurements can be directly acquired by sensors installed
on-board the follower vehicles. Also, the trajectories are
generated at runtime, based solely on the motion of the
leader, which is tracking a preassigned trajectory unknown
to the followers. As such, deviations in the leader’s motion
are captured by the planner and the trajectories to be tracked
are changed accordingly.

The adopted approach of defining the position error in
the body frame of the follower dictates the existence of
an internal dynamics given by the angular distance between
vehicles, whose boundedness must be guaranteed in order to
generate valid formation trajectories. Such result is ensured
by imposing adequate constraints on the motion of the virtual
vehicles and guaranteeing that well-defined conditions relat-
ing the curvature of the leader’s trajectory and the desired
distance between vehicles are satisfied, so that stabilizing
the position of the leader in the body frame of the virtual
follower naturally entails an attitude stabilization.

This paper is structured as follows. Section II describes
the trajectory planner and presents simulation results for
the generation of reference follower trajectories. Section III
focuses on the experimental part of the work. The testbed
used for the experiments is described and the results of a
test where two quadrotors follow a third one describing a
formation trajectory around a lemniscate are presented and
discussed. Finally, section IV summarizes the contents of the
paper.

II. LEADER-FOLLOWER TRAJECTORY GENERATION

Consider a two-dimensional world where a group of
vehicles tries to follow a leader whose motion at each
time instant t is known up to the second derivative
{pL(t), ṗL(t), p̈L(t)}. The objective of the vehicles is to
move in such a way as to see the leader always in the same
relative position. Each follower moves independently of its
peers. Thus, for most of the coming description a generic
follower is used.
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A. Problem Formulation
The goal of the trajectory planner is to define a control

law for the virtual follower that drives the position of the
leader relative to the follower to a desired distance vector.
Let {I} denote the inertial reference frame, {L} the body
frame of the leader, and {F} the body frame of the follower.
The configuration of {F} with respect to {I}, can be
expressed using an element of the Special Euclidean Group,
(R,pF ) =

(
I
FR, IpF

)
∈ SE(2). The rotation matrix R

can be parametrized by an angle θ, representing the angular
displacement between the two frames, so that,

R =

[
cos θ − sin θ
sin θ cos θ

]
(1)

Using this notation, the position of leader relative to the
follower can be written as

FpL = RT (pL − pF ) (2)

and the trajectory generation problem can be defined as the
problem of designing a control law for the virtual follower
that drives FpL to a desired distance vector

d = [dx dy]T ∈ R2.

To guarantee that the trajectory generation problem is
well-defined, we introduce constraints on the motion of the
virtual followers. These are actuated in terms of forward and
angular accelerations so as to constrain their motion to the
longitudinal direction.

The kinematic equations of motion can written as

Ṙ = RS (ω) (3)
ṗF = Riu (4)

where u ∈ R and ω ∈ R are respectively the linear and
angular speeds, i = [1 0]T , and S (ω) is a skew-symmetric

matrix given by S (ω) =

[
0 −ω
ω 0

]
.

The derivatives of the angular and linear speeds constitute
the actuation and are given by

u̇ = T (5)
ω̇ = τ (6)

B. Controller Design
Let the position error be defined as

e1 = FpL − d (7)

and consider the candidate Lyapunov function given by

V1 =
1

2
eT1 e1. (8)

Computing the time derivative of V1 yields

V̇1 = eT1
[
−S(ω)FpL +RT ṗL − ui

]
= eT1

[
−S(ω)d +RT ṗL − ui

]
= −k1e1

Tσ(e1)

+ k1e1
T

[
σ(e1) +

1

k1

(
−S(ω)d +RT ṗL − ui

)] (9)

where the property that eT1 S(ω)e1 = 0 was used.
The term σ(.) is a sigmoidal saturation function, applied

element wise, which is introduced to limit the influence of
the position error on the actuation and is given by

σ(e1) = pmax tanh (x/pmax) (10)

where pmax is a configurable parameter.
Following the backstepping procedure, a new error is

created and the Lyapunov candidate function extended to
include it, so that

e2 = σ(e1) +
1

k1

(
−S(ω)d +RT ṗL − ui

)
(11)

V2 =
1

2

2∑
i=1

ei
Tei (12)

Defining

Γ =

[
1 −dy
0 dx

]
(13)

µ =

[
T
τ

]
(14)

δ = −S(ω)RT ṗL +RT p̈L (15)

V̇2 can be written as

V̇2 = V̇1 +
eT2
k1

(k1σ̇(e1) + δ − Γµ) . (16)

Notice that Γ is invertible provided that dx 6= 0. To obtain
the convergence of the errors in the presence of constant
perturbations, the integral state ξ with time derivative given
by

ξ̇ = e2 (17)

is introduced. Consider a new candidate Lyapunov function
given by

V3 = V2 +
k3
2
ξT ξ. (18)

The time derivative of V3 can be written as

V̇3 = V̇1 +
eT2
k1

(k1σ̇(e1) + δ + k1k3ξ − Γµ) . (19)

At this point we can define a control law for µ that
renders V̇3 negative semi-definite and globally asymptotically
stabilizes the origin of the error system. This result is stated
formally in the following theorem.

Theorem 1: Consider the simplified vehicle model de-
scribed by (3)-(6) and the error system with state given by
e1, e2, and ξ. The control law

µ = Γ−1
(
δ + k1σ̇(e1) + k21k2e2 + k1k3ξ

)
, (20)

with k1 > 0, k2 >
√

2, and k3 > 0, globally asymptotically
stabilizes the origin of the error system.

Proof: Using the control law (20), the overall closed-
loop system can be written as

ė1 = −S(r)e1 − k1σ(e1)σ(e1) + k1e2, (21)
ė2 = −k1k2e2 − k3ξ, (22)

ξ̇ = e2. (23)

By noting that the dynamics of e2 and ξ do not depend on
e1, we can immediately conclude that for positive gains k1,
k2, and k3, the origin of the subsystem (22)-(23) is globally
asymptotically stable.

To analyze the stability of (21)-(23), note that substituting
(20) in (19) yields

V̇3 =− k1eT1 σ(e1) + k1e
T
1 e2 − k1k2eT2 e2

≤−
√
2
2 k1‖e1‖‖σ(e1)‖+ k1‖e1‖‖e2‖ − k1k2‖e2‖2
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which is negative semi-definite whenever ‖e2‖ ≤√
2
2 ‖σ(e1)‖ or ‖e1‖ ≤ k2‖e2‖. If k2 >

√
2 and ‖e2‖ ≤ K,

then at least one of these conditions is satisfied. Since
there exists a finite time T , such that for t > T we have
‖e2(t)‖ ≤ K, then V̇3 will become negative semi-definite in
finite time and we can apply LaSalle’s Invariance Principle
to conclude that the origin is globally asymptotically stable.

C. Internal Dynamics Analysis
Having a control law that stabilizes the error system may

not be sufficient to guarantee that the whole state of the
vehicle is stabilized. In fact, for a given leader’s position
and a given d, there are infinite solutions that satisfy (2),
which indicates the existence of an internal dynamics, whose
stability needs to be analyzed.

In this section, we show that the behavior of the zero-
dynamics depends heavily on the x-component of the dis-
tance vector dx, which should be judiciously chosen to
guarantee the generation of adequate formation trajectories.
Towards that end, consider the limit condition when the
errors have converged to zero. In that situation, we can write[

u

θ̇

]
= Γ−1RT ṗL. (24)

Let ṗL be given by

ṗL = VL

[
cos θL
sin θL

]
, (25)

with VL and θL continuous functions representing the norm
and direction of movement of the leader, respectively. Using
these definitions, equation (24) can be rearranged into the
form[

u

θ̇

]
=

VL cos (θL − θ) +
VLdy
dx

sin (θL − θ)
VL
dx

sin (θL − θ)

 . (26)

Applying the change of variables θd = θ − θL, the zero-
dynamics can be written as

θ̇d = −VL
dx

(sin θd + dxκL) , (27)

where κL = ωL/VL is the curvature of the leader’s path.
It is worth noting that (27) does not depend on dy . The
analysis that follows is divided in two cases: a) trajectories
with κ̇L = 0; and b) trajectories with κ̇L 6= 0.

For κ̇L = 0: Trajectories with κ̇L = 0 can be either
a circumference (κL 6= 0), or a straight line (κL = 0).
To analyze the stability of (27) for this type of trajectories,
consider the candidate Lyapunov function

Vθ =
1

2
(sin θd + dxκL)

2
, (28)

whose time derivative is given by

V̇θ = −2
VL
dx

cos θd Vψ. (29)

For simplicity, consider the case when dx > 0 (a similar
reasoning can be applied when dx < 0). From (29), it follows
that V̇θ is zero for θd = ±π/2 and for sin θd = −dxκL, and
negative definite whenever cos θd > 0. Analyzing (29), it can
be shown that, if |dxκL| ≤ 1 then θd = − arcsin(dxκL) is
an asymptotically stable equilibrium point, whereas θd =

π − arcsin(dxκL) is unstable. Also, if |dxκL| > 1 then
limt→+∞ |θd| = +∞. From (26), it follows immediately
that |θ̇| ≤ |VL

dx
| and therefore |θ̇| < |θ̇L|, meaning that the

follower can never reach the angular velocity of the leader
and the angular distance θd diverges. Notice however, that the
condition |dxκL| ≤ 1 imposes no constraint on the curvature
of the follower, since we can use dy to select an arbitrary
curvature.

For κ̇L 6= 0: When the trajectory being tracked has
a time-varying curvature, the analysis is more involved and
asymptotic stability for the general case is difficult to assess.
Nevertheless, it is possible to prove the boundedness of
θd, provided that |dxκL| < 1, for all time. The following
proposition is provided for dx > 0. A similar reasoning can
be applied for dx < 0.

Lemma 2: Assume that dx > 0 and |dxκL(t)| < ε < 1,
for all t ≥ 0. Let Ω1 and Ω2 denote the sets Ω1 = {θd :
| sin θd| ≤ ε, cos θd > 0} and Ω2 = Ω1∪{θd : | sin θd| ≥ ε},
respectively. Then θd(t) is bounded, Ω1 and Ω2 are positively
invariant, and any solution starting in Ω2 will enter Ω1 in
finite time.

Proof: Consider the Lyapunov function

Wθ = 1− cos θd. (30)

Computing the time derivative of Wθ, it can be shown that

Ẇθ ≤ −
VL
dx
| sin θd| (| sin θd| − ε) ,

which is negative definite for | sin θd| ≥ ε. Hence, the sets Ω1

and Ω2 are positively invariant and any solution starting in
Ω2 will enter Ω1 in finite time. Solutions starting outside the
set Ω2 cannot grow unbounded, since to do so they would
have to enter Ω2, in which case the above applies. Thus,
provided that ε < 1, θd is bounded irrespective of its initially
value.

Above certain values of |dxκL|, inversions in the directions
of motion of the virtual followers may occur. Such behavior
can affect the performance of the real vehicles tracking the
generated trajectories and thus it is of interest to avoid it.

Rewriting the first part of (26) as

u
dx
VL

= dx cos θd − dy sin θd,

and assuming once again that dx > 0, it can be shown that
u will remain positive as long as

dy sin θd > dx cos θd

holds. Combining this condition with Lemma 2, we can
obtain a bound for the initial value of the angular distance
θd(0), which guarantees that no inversion will occur. More
specifically, if

arcsin |dxκL(t)| < atan2(dx, |dy|) (31)

u(0) > 0, and θd(0) ∈ Ω1, then u(t) > 0, for all t > 0.
Lemma 2 shows that if a bound on the curvature of

the leader’s path κL is known, dx can be chosen so as to
guarantee that the angular distance between the leader and
follower given by θd also remains within known bounds. This
boundedness property (which is a direct consequence of the
kinematic constraints imposed on the motion of the virtual
follower) together with the stability in position guarantee
that the generated trajectory is "well-behaved" and simultan-
eously that it is more complex than a simple offset version
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of the leader’s trajectory. The simulation results presented in
the following section illustrate the type of trajectories that
can be generated without the need to explicitly compute the
leader’s path parameters.

D. Simulation Results
This section presents the results of a simulation where

two virtual vehicles were set to follow a leader describing a
trajectory given by

pL(γ) =


3

2

sin (γ/3)

1 + sin2(γ/3)
3

4

sin (2γ/3)

1 + sin2(γ/3)

 (32)

where γ̇ =
√

1 + sin2 γ, in order to produce a constant linear
speed.

The desired distance for follower 1 is set to d1 =
[0.35 0.35]

T and its initial state to pF1(0) = [−1 2]
T ,

uF1(0) = 0.5, ωF1(0) = −0.5, θF1(0) = 3π/2. For follower
2, we select d2 = [0.35 − 0.35]

T and set the initial state to
pF2(0) = [2 2]

T , uF2(0) = 0, ωF2(0) = 0.5, θF2(0) = π/2.
The controller parameters are k1 = 0.3, k2 = 1.1, k3 = 0.17,
and pmax = 5.
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Fig. 2. Virtual followers states.

Although the trajectories of both followers are different,
see Fig. 1(a), their angular velocities and angular positions
converge to the same values, as shown in Fig. 2(b). This is in
accordance with the analysis made in Section II-C, as these
variables do not depend on dy , the only parameter that is
different between followers in this simulation.
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Fig. 3. Errors during a simulation.

Figure 1(b) indicates that the distance between followers
and between these and the leader converge to fixed values.
The latter is a direct implication of the asymptotic stability
of the origin of the error system, see Fig. 3. The former
results from the fact that dx is equal for both followers, and
thus their zero-dynamics are identical. The limit to which
the distance between followers converges is equal to the sum
of the leader-follower distances, in this case 0.35 + 0.35 =
0.7m. These results indicate that, a formation where all the
followers have the same value of dx is asymptotically a rigid
formation.

E. Three-dimensional trajectories
So far only two-dimensional motion has been considered.

However, to generate trajectories for quadrotors it is ne-
cessary to consider three-dimensional motion. Instead of
deriving a law for the entire state space, a separate control
law is designed to drive the vertical coordinate of the virtual
follower to a desired distance to the leader. Consider that the
desired vectorial distance d is extended to include a third
component dz and let ez be the vertical position error given
by

ez = pLz − pFz − dz (33)

A simple control law that stabilizes ez is given by

p̈Fz = σK(p̈Lz) + σK(kz1ez + kz2ėz), (34)

where

σK(x) =

{
x if |x| ≤ K
sign(x)K if |x| > K

(35)

This saturation is introduced to protect the followers from
any unexpected acceleration of the leader. The control law
asymptotically stabilizes ez at the origin, provided that
|p̈Lz| < K holds.

F. Planner initialization
As noted in Section II-C, inversions in the directions of

movement of the virtual followers can affect the performance
of the real vehicles tracking the trajectories. In order to
prevent this behavior, the trajectory described by the leader
and the desired configurations of the virtual followers have
to satisfy (31). To comply with the bounds on the initial
conditions, the virtual followers are initially placed with θd =
0 and null errors, with respect to the reference trajectory of
the leader, while the real vehicles are converging to their
formation positions.

Until both the leader and follower vehicles approach
the initial reference and virtual followers, respectively, the
planner is kept turned off. Once that happens the planner
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is turned on and the leader starts tracking the reference
trajectory. The choice to initially place the virtual followers
with respect to the reference trajectory of the leader allows
for faster formation initialization, and guarantees that, when
the planner is finally started, the actual values of the angles
θd are within the computed bounds.

The tracking is triggered when the components of the
position error of each vehicle satisfy the condition ei =
‖pFi − pvFi(0)‖ < emax, i.e.,

trigger =(eL < emax) ∧ (e1 < emax) ∧ · · · ∧ (en < emax)
(36)

where emax is a configurable parameter that defines the
threshold used to start the tracking.

III. EXPERIMENTAL TEST

This section presents the results of an experimental test
carried out at the Sensor-Based Cooperative Robotics Re-
search Laboratory – SCORE Lab of the Faculty of Science
and Technology of the University of Macau.

Three quadrotors Blade mQX [10] were used in the
experiment. These vehicles weigh 78g, have a length of
353mm and are actuated in terms of thrust and angular
velocity. They are designed to be human piloted with remote
controls. However, it was possible to identify the radio chip
inside the remote control and connect the serial interface of
the RF module to a computer serial port. A VICON [11]
system, composed of 12 high speed cameras and a set of
markers attached to the quadrotors, was used to capture the
motion and attitude of the vehicles at 50Hz.

Two computers were used to perform the flight tests. One
running the VICON software and a Simulink model, which
generates the command signals sent to the other computer
through Ethernet, and a second one that sends them through
serial port to the RF module at 44Hz. The decision to
separate control and communications was made to avoid
jitter in the transmission of the serial-port signals to the
RF module. A block diagram of the overall architecture is
presented in Fig. 4.

Fig. 4. System architecture.

The Simulink model used contains the trajectory planner
developed and three quadrotor controllers. This controller is
an adaptation of the one presented in [12], with actuation
in thrust and angular velocity rather than thrust and torque,
given that the Blade mQX quadrotor is actuated in thrust and
angular velocity. An inner-loop controller is responsible for
tracking the angular velocity commands.

The VICON system outputs a pre-filtered position of the
vehicle and using the Euler approximation, it is possible

to obtain a clean estimate of the velocity. However, the
Euler approximation applied to the velocity estimates is
highly contaminated by noise, degrading the quality of the
estimated acceleration signals. To overcome this problem,
a low-pass filter was applied to the measurements. Using
experimental data taken from earlier tests performed with a
quadrotor, it was possible to test the performance of various
filters, with different dimensions. The best trade-off between
responsiveness and smoothing was achieved with a moving
average filter with 100 coefficients, which introduces a delay
of approximately 1s.

A. Results

In this experimental evaluation the leader is tracking a
trajectory given by (32) at a constant height of h = −1.6m.
The trajectory is rotated by π/4 rad counter-clockwise and
translated by [0 0.5 0] m, to take full advantage of the space
available in the laboratory (see Figure 5).
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Fig. 5. Leader trajectory (blue), generated trajectories (green and cyan),
and follower trajectories (red and magenta).

At the beginning of the test the quadrotors were
at rest. The initial positions of the leader, follower
1, and follower 2 were pL(0) = [−1 0.48 0]

Tm,
pF1(0) = [−0.57 − 0.37 0]

Tm, and pF2(0) =
[−1.26 − 0.77 0]

Tm, respectively. The distance vectors d
for each follower were d1 = [0.35 0.35 − 0.3]

Tm and
d2 = [0.35 − 0.35 − 0.3]

Tm. The control gains and
saturation parameters used for the planner were k1 = 0.3,
k2 = 1.1, k3 = 0.17, kz1 = 0.2, kz2 = 1, and pmax = 5.

Figure 5 shows in separate plots the x-y plane view and the
time evolution of the z-coordinate for the trajectory described
by the leader, the reference trajectories described by the
virtual vehicles, and the actual trajectories described by the
follower vehicles. The triangles indicate the initial positions
of the vehicles and the squares the positions at the end of
the simulation. Figure 5 shows that the planner is able to
generate adequate reference trajectories and the quadrotors
are able to track them, using the trajectory tracking controller
proposed.

The generated reference trajectories capture the essence
of leader’s motion, while neglecting the higher frequency
perturbations. For example in the z-coordinate plot, the
longer and slower variations found in the leader’s height
can also be found in the height of the virtual followers.
The high-frequency variations in the leader’s height are
filtered and do not appear in the generated trajectories. This
process results in smoother trajectories that can be adequately
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tracked, as can be seen from the time evolution of velocities
and trajectory tracking errors (see Figures 6 and 7).
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Fig. 7. Time evolution of the trajectory tracking errors for both followers.

Figure 8 shows the time evolution of the errors for the
virtual vehicles, which exhibit an oscillatory behavior. This
oscillation is a result of the trade-off that was found between
mitigating the position error e1 and limiting the sensitiveness
of the trajectories to the perturbations in leader’s trajectory.
It is possible to maintain the virtual errors close to the
origin, but at the cost of degrading the trajectory tracking
performance.
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Fig. 8. Time evolution of the errors for both virtual followers.

IV. CONCLUSION

This paper presented a strategy for formation control of
autonomous air vehicles. A leader-follower approach was
adopted, which relies on a nonlinear control law to stabilize,

at a predefined distance vector, the position of the leader
in the body frame of a set of virtual followers. Global
asymptotic stabilization of the leader-follower linear distance
together with local boundedness of the leader-follower an-
gular distances are guaranteed, provided that well-defined
conditions relating the curvature of the leader’s trajectory
and the desired distances between vehicles are met.

Experimental tests were performed to demonstrate the
applicability of the method to the task controlling quadrotors
in formation, showing that the generated trajectories are
easily tracked by the vehicles. In spite of the fact that only
the leader’s position was being measured, the computation
of smoothed single and double differences allowed for an
adequate generation and accurate tracking of formation tra-
jectories.

Directions of future work include exploring other pos-
sibilities of virtual vehicle models, developing collision
avoidance capabilities for the planner, and improving and
optimizing the motion estimation.
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