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Abstract— In this work, a cascade of two estimators is
proposed as the solution for a joint parameter and state
estimation problem associated with a target maneuvering in
the three-dimensional space. A model for the target that
depends on its angular speed is considered and only the target
position is measured. A parameter identifier is used to obtain
estimates of the target angular speed, which are then fed into
an adaptive filter that estimates the position, linear velocity,
and linear acceleration of the target. The synthesis of the
parameter identifier resorts to Lyapunov techniques and the
synthesis of the adaptive filter is tackled using Linear Matrix
Inequalities (LMIs) and H2 optimization strategies. Under
persistence of excitation conditions, the error in the angular
speed identification and the error in the target state estimates
provided by the H2 adaptive filter are: i) proved to converge
exponentially fast to zero in the deterministic setup, i.e., in
the absence of noise, and ii) proved to be bounded when
bounded stochastic disturbances are considered and there is an
upper bound on the target linear velocity and angular speed.
To assess the proposed methods, simulations showing that the
aforementioned stability and convergence properties hold, even
when the estimates provided by an Extended Kalman Filter
diverge, are presented.

I. INTRODUCTION

The problem of 3D target positioning and tracking has
been widely studied over the last decades, mainly due to the
great impact that the availability of reliable estimates for the
position of a target has in the performance of many robotic
applications. Some examples of such applications appear,
for instance, in the contexts of security and surveillance,
trajectory determination, human-computer interaction, and
air traffic control, see [1], [2], [3], and [4].

Positioning and tracking consist in using measurements
provided by one or more sensors, at fixed locations or
at moving platforms, to estimate the state of a moving
object, which is usually composed of its position, velocity,
and sometimes acceleration. To estimate such quantities,
a dynamical model for the maneuvering target is usually
considered, see the comprehensive survey in [5]. Typical
models commonly depend on the target angular velocity, or
on its magnitude, the target angular speed. However, most
of the times this quantity is not known and measurements of
its value are not available. In fact, in most applications, only
the target position is measured.

In this work, the problem of estimating the position,
velocity, and acceleration of a target maneuvering in the 3D
space using only measurements of its position is addressed.
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A cascade of a parameter identifier and an H2 adaptive filter
is used, where the first estimates the target angular speed and
the second combines these estimates with measurements of
the target position to estimate the target state.

The problem at hand could have been addressed resorting
to other strategies, such as robust linear filtering, for instance.
However, it is straightforward to show that any linear filter
designed for the system considered in this work using a
wrong model for the target dynamics, i.e., a wrong value for
the target angular speed, will be biased. Other approaches
inspired, for instance, in Lyapunov theory or backstepping,
see [6], have also failed, since both strategies require the
observation of the target velocity and acceleration, which
are not available for measurement.

The main contributions of this work are:
1) a new H2 adaptive filter that estimates the position,

linear velocity, and linear acceleration of a target using
only position observations;

2) a new parameter identifier that estimates the (assumed
constant) target angular speed — the structure of
this identifier is slightly different from the usual ap-
proaches, since there is only one unknown parameter,
but several measurements depending on its value;

3) a guarantee that, under persistence of excitation con-
ditions, the error in the angular speed identification
and the error in the state estimates provided by the
adaptive filter converge exponentially fast to zero in the
deterministic setup, i.e., in the absence of noise, and
are bounded when bounded stochastic disturbances are
considered and there is an upper bound on the target
linear velocity and angular speed.

The proposed framework is not restricted to systems
with sensors that provide direct measurements of the target
position. It can be used with other sensors, such as RADAR
or SONAR, see [1] and [7], as long as their measurements
can be transformed into measurements of the target position.

This paper is organized as follows. The problem addressed
in this work is formulated in section II, and the design and
analysis of the online identification procedure that estimates
the target angular speed are provided in section III. In
section IV, an adaptive filter for the state of the target is
derived using H2 strategies, and its stability and performance
are discussed. Simulations illustrating the performance of
the proposed estimators, in comparison with an Extended
Kalman Filter (EKF), are presented in section V. Finally, in
section VI, concluding remarks are provided.

NOMENCLATURE

In this paper, |x| denotes the absolute value of the scalar
x, ||x|| the Euclidean norm of the vector x, and ||X|| the
induced 2-norm of the matrix X. If the vector x is a function

2013 American Control Conference (ACC)
Washington, DC, USA, June 17-19, 2013

978-1-4799-0176-0/$31.00 ©2013 AACC 4183



of time in Rn, x ∈ L2 and x ∈ L∞ mean, respectively,
that ||x||2 = (

∫∞
0
||x(t)||2dt)1/2 and ||x||∞ = supt≥0||x(t)||

are finite. The notation Xi,j is used to represent the entry
of X in the i-th line and j-th column. The vector ei,
i = {1, 2, 3}, denotes the i-th vector of the canonical
basis of R3; tr[X] stands for the trace of a square matrix
X, and diag[a1, . . . , an] corresponds to a diagonal matrix
whose diagonal entries, starting in the upper left corner, are
a1, . . . , an (when these entries are matrices, the resulting
matrix is block diagonal). The identity and zero matrices are
denoted respectively by Ik and 0m×n, where k corresponds
to the number of rows and columns of the identity matrix,
and m and n correspond, respectively, to the number of
rows and columns of the matrix of zeros. Finally, ⊗ denotes
the Kronecker product and min[a, b] is used to denote the
minimum of the two elements a and b.

II. PROBLEM FORMULATION

The problem addressed in this paper is that of tracking and
locating a target maneuvering in the three-dimensional space
using observations of its position. The target position, linear
velocity, and linear acceleration in the inertial (Cartesian)
frame are denoted by p = [x y z]T , v = [ẋ ẏ ż]T ,
and a = [ẍ ÿ z̈]T , respectively, where the dot represents
the time derivative. Using this notation, the state x =
[x ẋ ẍ y ẏ ÿ z ż z̈]T ∈ R9 of the target is considered to
evolve according to the 3D Planar Constant-Turn Model

ẋ(t) = F(ω)x(t) + Bd(t), (1)

as presented in [5], where

F(ω) = diag
[
F(ω), F(ω), F(ω)

]
, F(ω)=

 0 1 0
0 0 1
0 −ω2 0

,

B = I3 ⊗ b, b = e3,

and ω≥0 is the (assumed constant, unknown, and bounded)
target angular speed (norm of the target angular velocity
vector). The process noise is denoted by d(t)∈R3 and the
time is represented by t. The three eigenvalues of F(ω) are 0,
−ωj, and ωj, where j=

√
−1 is the imaginary unit. Therefore,

the nominal trajectories considered by this model are straight
lines, parabolic trajectories, and ellipses.

The measurements ym(t) ∈ R3 of the position of the
target with respect to the inertial reference frame are a linear
function of the target state, and can be written in the form

ym(t) = p(t) + Dn(t) = Cx(t) + Dn(t), (2)

where n(t) ∈ R3 denotes the measurement noise, C = I3 ⊗
eT1 , and D = I3. Both the process and observation noises are
assumed to be stochastic disturbances with bounded values,
i.e., βd = ||d||∞ and βn = ||n||∞ are finite.

A clear statement of the problem addressed in the remain-
ing of this paper is presented next.

Problem statement 1: Consider a target maneuvering in
the 3D space according to the model in (1), with constant,
unknown, and bounded angular speed. Moreover, assume that
measurements of the target position, as described in (2), are
available. In this case, design two estimators, one for the
target state and other for its angular speed, such that the
errors in both cases i) converge exponentially fast to zero
when no process and observation noises are present, and ii)

are bounded when bounded noise is considered and there is
an upper bound on the target linear velocity.

In order to solve this problem, a cascade of a parameter
identifier and an adaptive filter, as depicted in Fig. 1, is
proposed. In the figure, ω̂ and x̂ denote, respectively, the
estimates of the target angular speed ω and the estimates of
the target state x.

Parameter
Identifier

ym

ω̂

x̂H2 Adaptive Filter

Fig. 1. Parameter identifier and adaptive filter interconnection.

III. ANGULAR SPEED IDENTIFICATION

In this section, the design and analysis in continuous-time
of a parameter identifier that estimates the angular speed
of a target moving according to the model in (1) are pro-
vided. This identifier resorts only to position measurements
obtained as in (2), and builds on strategies commonly used
in adaptive control, see [8] and [9].

From the model in (1), it is easy to conclude that ȧ(t)=
αv(t) + d(t), where α = −ω2. By writing this relation
as a function of the measurements ym(t), the expression...
ym(t) = αẏm(t)+

...
n(t) − αṅ(t) + d(t) is obtained. Let s

be the Laplace operator and Ym(s) ∈ R3, D(s) ∈ R3, and
N(s)∈R3 be vectors where the i-th entry corresponds to the
Laplace transform of the i-th entry of ym(t), d(t), and n(t),
respectively. Taking the unilateral Laplace transform of the
previous expression, yields

s3Ym(s) = αsYm(s) + (s3 − αs)N(s) + D(s)+
+ s2p0 + sv0 + a0 − αp0,

where p0, v0, and a0 denote the initial values of p, v, and
a, respectively.

To avoid the use of differentiators, the entries of the
vectors in the previous expression are filtered with a third-
order stable filter 1/Λ(s), where Λ(s) is a monic Hurwitz
polynomial, e.g., Λ(s) = (s+ λ)3, λ > 0, which leads to

s3

Λ(s)
Ym(s)︸ ︷︷ ︸

Ψ(s)

=α
s

Λ(s)
Ym(s)︸ ︷︷ ︸

Φ(s)

+
(s3−αs)N(s)+D(s)

Λ(s)︸ ︷︷ ︸
Ξ(s)

+

+
s2p0 + sv0 + a0 − αp0

Λ(s)︸ ︷︷ ︸
Q(s)

. (3)

In this formula, Ψ(s) and Φ(s) denote the Laplace trans-
forms of the signals ψ(t) ∈ R3 and φ(t) ∈ R3, whose
entries are obtained by filtering each entry of ym(t) with
the causal linear time-invariant filters s3/Λ(s) and s/Λ(s),
with null initial conditions, i.e., by convolving each entry
of ym(t) with hψ(t) and hφ(t), where hψ(t) denotes the
inverse Laplace transform of s3/Λ(s) and hφ(t) the inverse
Laplace transform of s/Λ(s). Moreover, Ξ(s) denotes the
Laplace transform of the signal ξ(t) ∈ R3, that results from
filtering the process and observation noises with the filters
1/Λ(s) and (s3 − αs)/Λ(s), respectively. The term Q(s)
denotes the Laplace transform of the signal q(t) ∈ R3, which
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comes from the initial conditions. The two terms ξ(t) and
q(t) are not known since only measurements of the target
position are available and they are a function of the unknown
quantities d(t), n(t), p0, v0, a0, and α. However, it is
straightforward to show that ||q(t)|| converges exponentially
fast to zero, thus this term vanishes with time. Moreover,
||ξ(t)|| is bounded if the process and observation noises are
bounded.

A. Angular speed adaptive law
In order to derive an adaptive law that provides estimates

for α, consider the estimate ψ̂(t) of ψ(t), with expression
ψ̂(t) = α̂(t)φ(t), (4)

obtained resorting to an estimate α̂(t) of the unknown
parameter α, at time t. Since the value of α is unknown,
the error α̃(t) = α − α̂(t) in its estimation is not available.
However, the estimation error ε(t) = (ψ(t)− ψ̂(t))/m2

φ(t)
can be generated resorting to the measurements available and
reflects the difference between α and α̂(t):

ε(t) =
α̃(t)φ(t)
m2
φ(t)

+
ξ(t)
m2
φ(t)

+
q(t)
m2
φ(t)

. (5)

The new quantity m2
φ(t) corresponds to a normalization

signal that guarantees that the entries of φ(t)/mφ(t) are
bounded, and is sometimes used in the context of parameter
identification, see examples in [8] and [9]. This property is
useful in the analysis of the convergence of the estimates
α̂(t), to the real parameter α, when φ(t) is not guaranteed
to be bounded. In this work, the signal m2

φ(t) = 1 +
µφT (t)φ(t), µ > 0, is considered.

Estimates α̂(t) of the unknown parameter α can be ob-
tained by minimizing the cost function

J(α̂(t)) =
||ε(t)||2m2

φ(t)
2

=
||ψ(t)− α̂(t)φ(t)||2

2m2
φ(t)

, (6)

which depends quadratically on the estimation error ε(t).
The minimization of this function with respect to α̂(t) is per-
formed resorting to the normalized (the normalization signal
m2
φ(t) is considered) gradient method ˙̂α(t) = −γ∇J(α̂(t)),

where γ>0 is a constant usually referred to as the adaptation
gain and ∇J(α̂(t)) is the gradient of J(α̂(t)) with respect
to α̂(t). The following adaptive law results

˙̂α(t) = γεT (t)φ(t), α̂(0) = α̂0, (7)
where α̂0 denotes the initial estimate of α.

B. Angular speed convergence – deterministic framework
For convergence study purposes, let us start by considering

a deterministic framework, i.e., consider that the process and
observation noises introduced in section II are not present
(the influence of these noises is addressed in section III-
C). In this case, the proposed adaptive law ensures that
the estimation error ε(t) converges to zero, but does not
imply that α̂(t) converges to α. In order to guarantee this
property, some conditions must be imposed on φ(t). These
conditions are derived in Theorem 1, whose proof depends
on Definition 1 and on Lemma 1.

Definition 1 ([10]): The linear state equation ẋ(t) =
A(t)x(t), x(t0) = x0, is called uniformly exponentially
stable (UES) if there exist finite positive constants γu, λu
such that for any initial time instant t0 and any initial

condition x0, the corresponding solution satisfies ||x(t)|| ≤
γue
−λu(t−t0)||x0||, t ≥ t0.

Lemma 1 ([11]): Consider the system ẋ(t) = A(t)x(t)+
u(t). If ẋ(t) = A(t)x(t) is UES and ||u(t)|| is exponentially
decaying, then ||x(t)|| converges to zero exponentially fast.

In [8], stability and convergence guarantees for identifi-
cation algorithms where one or more unknown parameters
are considered, and ψ(t) is a scalar, can be found. In this
work, these properties are generalized for cases where there
is only one unknown parameter, but ψ(t) is a vector, see
Theorem 1. The reasoning used to prove this generalization
is completely different from the ones in [8].

Theorem 1: In the deterministic case, the identifier struc-
ture described previously, combined with the normalized
gradient algorithm (7), guarantees that α̂(t) converges to the
nominal parameter α exponentially fast, if ||φ(t)||= || φ(t)

mφ(t) ||
is persistently exciting.

Proof: Let the parameter estimation error be denoted
by α̃(t) = α − α̂(t). Since α is constant, when the process
and observation noises are not considered we have

˙̃α(t)=−γεT(t)φ(t)=−γ ||φ(t)||2
m2
φ(t)

α̃(t)− γqT(t)φ(t)
m2
φ(t)

, (8)

with α̃(t0) = α̃0, where t0 denotes the initial time instant
and α̃0 the initial parameter estimation error. Moreover, if
||φ(t)|| is persistently exciting (PE), then there exist θ0 > 0
and T0 > 0 such that

∫ t+T0

t
||φ(τ)||2dτ ≥ θ0T0, ∀t ≥ 0,

see the definition of persistence of excitation in [8].
In order to prove this theorem, we are going to start by

proving that the homogeneous part of the equation in (8) is
UES, see Definition 1, if ||φ(t)|| is PE. With this purpose,
consider the continuously differentiable function

V (t, α̃(t)) =
∫ t+T0

t

α̃2(τ)dτ , ∀ t ≥ 0. (9)

Since the solution of the homogeneous equation is given by

α̃(τ) = α̃(t)e−γ
R τ
t
||φ(σ)||2dσ , τ ≥ t, (10)

the function in (9) can be written in the form

V (t, α̃(t))=
∫ t+T0

t

α̃2(t)e−2γ
R τ
t
||φ(σ)||2dσdτ , ∀ t ≥ 0. (11)

Moreover, ||φ(t)|| is bounded, i.e., β = supτ≥0

∥∥φ(τ)
∥∥ is a

finite constant, thus 0≤
∫ τ
t
||φ(σ)||2dσ≤β2(τ−t), τ ≥ t.

Resorting to these inequalities and to the expression in (11),
it is possible to conclude that

1− e−2γβ2T0

2γβ2
α̃2(t) ≤ V (t, α̃(t)) ≤ T0α̃

2(t), ∀ t ≥ 0.

From (9), the derivative of V (t, α̃(t)) with respect to time
is V̇ (t, α̃(t)) = α̃2(t+T0) − α̃2(t). If ||φ(t)|| is assumed to
be PE and (10) is used with τ= t+ T0, it is straightforward
to show that there exist θ0 > 0 and T0 > 0 such that

V̇ (t, α̃(t)) ≤ −
(
1− e−2θ0T0

)
α̃2(t), ∀ t ≥ 0.

If such θ0 > 0 and T0 > 0 are considered, then there exist
positive constants k1 =(1−e−2γβ2T0)/(2γβ2), k2 = T0, and
k3 = 1 − e−2θ0T0 , such that k1α̃

2(t)≤V (t, α̃(t))≤ k2α̃
2(t)

and V̇ (t, α̃(t))≤−k3α̃
2(t), for all t≥0. Therefore, if ||φ(t)||

is PE, the homogeneous equation associated with the time-
varying system in (8) is UES, see Theorem 4.10 in [12].

Since ||q(t)|| is exponentially decaying, ||φ(t)/mφ(t)||
is bounded, and mφ(t) ≥ 1, the norm of the term
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−γqT (t)φ(t)/m2
φ(t), in (8), converges exponentially fast to

zero. Therefore, according to Lemma 1, |α̃(t)| also converges
to zero exponentially fast.

When v(0) and a(0) are not both null, the signal ||φ(t)|| is
PE, which is easily understood by analyzing the trajectories
that the model in (1) assumes for the target. Therefore,
according to Theorem 1, in a deterministic framework α̂(t)
is guaranteed to converge to α exponentially fast unless
v(0) = a(0) = 0, i.e., unless the target does not move, which
was expected since trying to identify the target angular speed
ω does not make sense in this situation.

C. Angular speed convergence – stochastic framework
When a stochastic framework is considered, i.e., when the

process and observation noises, d(t) and n(t) respectively,
introduced in section II are taken into account, the error α̃(t)
associated with the estimation of the target angular speed
cannot be expected to converge exactly to zero. However, it
is possible to prove that this error converges to the vicinity
of zero if some conditions are imposed on d(t), n(t), and
||φ(t)||. These conditions are stated in Theorem 2.

Theorem 2: If the process and observation noises, d(t)
and n(t) respectively, are bounded and ||φ(t)|| is PE, then
the normalized gradient algorithm (7) guarantees that there
exist finite positive constants γ1, λ1, and βα̃ such that

|α̃(t)| ≤ γ1e
−λ1(t−t0) + βα̃, ∀ t ≥ t0. (12)

Proof: This theorem is proven using linear systems the-
ory and bounded-input, bounded-output stability principles,
see [10]. Its proof is omitted here due to lack of space.

According to Theorem 2, when the process and obser-
vation noises are bounded, ||φ(t)|| is PE, and the initial
transient is vanished, the norm of the error in the estimation
of the unknown parameter verifies |α̃(t)| ≤ βα̃, which
guarantees that the angular speed estimates converge to the
vicinity of the target angular speed.

D. Gradient projection method
The parameter α=−ω2 to be estimated cannot be positive.

Therefore, instead of minimizing (6) for all α̂(t) ∈ R, we
want to constrain the estimation to be within the convex
subset S , {α̂(t) ∈ R : α1 ≤ α̂(t) ≤ α2} of R, where
α1 ≤ α2 ≤ 0. This is accomplished resorting to the gradient
projection method, see [8] for details. According to this
method, instead of the adaptive law in (7), the new law

˙̂α(t)=


γεT(t)φ(t), if α1 < α̂(t) < α2

or if α̂(t)=α1 and εT(t)φ(t)≥0,
or if α̂(t)=α2 and εT(t)φ(t)≤0,

0 , otherwise,

(13)

is used. This adaptive law retains the properties derived in
the absence of projection, while guaranteeing that α̂(t) ∈
[α1, α2], for all t, as long as α̂0 ∈ S and α ∈ S. The proof
of this statement is omitted here due to space constraints.

Estimates ω̂(t) for the target angular speed can be obtained
from α̂(t) as ω̂(t) =

√
−α̂(t).

IV. H2 ADAPTIVE FILTER

In this section, a continuous-time H2 adaptive filter that
estimates the state of a target moving according to the model
in (1), resorting only to measurements of the target position

and estimates of its angular speed, is proposed. The stability
and performance of the filter are studied.

If, instead of the target angular speed ω, α = −ω2 is
considered, the model in (1) for the target can be written as
an affine parameter dependent system

ẋ(t) = A(α)x(t) + Bd(t),
where A(α)=diag

[
A(α), A(α), A(α)

]
∈ R9×9 and

A(α) =
[

03×1 e1 e2

]︸ ︷︷ ︸
A0

+α
[

03×1 e3 03×1

]︸ ︷︷ ︸
A1

.

Moreover, consider that the target angular speed is bounded,
i.e., that there exist α1≤0 and α2≤0 such that α ∈ [α1, α2].
If estimates α̂(t), obtained according to (13), of the value of
α and measurements ym(t), as defined in (2), of the target
position are used, the following adaptive filter for the state
x(t), with structure motivated by a linear filter, results

˙̂x(t) = A(α̂(t))x̂(t) + L(ym(t)− ŷ(t)), x̂(0) = x̂0, (14)
where x̂(t) is an estimate of x(t), ŷ(t) = Cx̂(t), and x̂0

denotes the filter initial conditions. The matrix L ∈ R9×3 is
the gain of the filter.

The dynamics of the state estimation error x̃(t) = x(t)−
x̂(t) associated with the filter can be written in the form

˙̃x(t) = (A(α)− LC− α̃(t)A1)x̃(t)+
+ α̃(t)A1x(t) + Bd(t)−LDn(t), (15)

where A1 = diag
[
A1, A1, A1

]
∈ R9×9.

A. Filter stability
In a deterministic framework, i.e., when the process and

observation noises introduced in section II are not present,
conditions on the gain L that ensure that the error of the filter
in (14) converges exponentially fast to zero can be imposed.
These conditions are provided in Theorem 3.

Theorem 3: When a deterministic framework is consid-
ered and ||φ(t)|| is persistently exciting, the error of the
filter in (14), with α̂(t) computed resorting to (13) and gain
L chosen to guarantee that both ˙̃x(t) = [A(α1)− LC] x̃(t)
and ˙̃x(t) = [A(α2)− LC] x̃(t) are UES for given values of
α1 ≤ 0 and α2 ≤ 0, converges to zero exponentially fast.

When both the process and observation noises are consid-
ered, it is possible to prove that the filter estimation error
converges to the vicinity of zero and that, after the initial
transient, its maximum norm has an upper bound if some
conditions are imposed on L, d(t), n(t), ||φ(t)||, and on the
target maximum linear velocity. These conditions are stated
in Theorem 4.

Theorem 4: Consider the filter in (14), with α̂(t) com-
puted resorting to (13) and gain L chosen to guaran-
tee that both ˙̃x(t) = [A(α1)− LC] x̃(t) and ˙̃x(t) =
[A(α2)− LC] x̃(t) are UES for given values of α1 ≤ 0
and α2 ≤ 0. Moreover, assume that ||φ(t)|| is persistently
exciting and that the process noise d(t), the observation noise
n(t), and the target linear velocity v(t) are bounded. In this
case, there exists a finite positive constant βx̃ such that, after
an initial transient, the filter estimation error verifies

||x̃(t)|| ≤ βx̃, ∀ t ≥ t0. (16)

It is possible to show that a gain L verifying the constraints
imposed on this quantity in Theorems 3 and 4 can always be
found. The proof of this statement and the proofs of these
two theorems are omitted here due to lack of space.
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B. Design of the gain of the H2 filter
The gain of the filter is obtained using H2 and LMI-based

methods, see [13] and [14] for details about the use of LMIs
in the design of H2 filters. In order to design this gain,
rewrite the dynamics in (14) in the form
˙̂x(t)=A(α)x̂(t)+L(ym(t)−ŷ(t))−A1α̃(t)x̂(t), x̂(0) = x̂0.
This estimator has the structure of a linear filter, but with the
extra term A1α̃(t)x̂(t), which will be treated as a disturbance
in this section, since it depends on the unknown time-varying
quantity α̃(t), whose impact on the filter performance we
want to minimize. This term can be rewritten in the form
α̃(t)Bv̂(t), where v̂(t) corresponds to the target linear
velocity estimates, i.e., v̂(t) = [x̂2(t) x̂5(t) x̂8(t)]T , where
x̂k(t) denotes the k-th entry of x̂(t).

When the disturbance introduced in the previous paragraph
is considered, together with the process noise d(t) and the
measurement noise n(t), the dynamics of the error in (15)
can be written in the form

˙̃x(t)=(A(α)−LC) x̃(t) + B[d(t) + α̃(t)v̂(t)]−LDn(t).
The term α̃(t)v̂(t) ∈ R3 and the process noise d(t) affect
the estimation error x̃(t) in the same way (through B),
i.e., they both corrupt directly the error associated with the
target acceleration estimates. Therefore, for design purposes,
a single disturbance term δ(t) = d(t) + α̃(t)v̂(t) is con-
sidered to model the effects of these two quantities. By
concatenating this disturbance with the noise that corrupts
the measurements of the target position into a single vector,
the following generalized disturbance vector results w(t) =
[δT (t) nT (t)]T ∈ R6. Rewriting the dynamics of the error
as a function of this generalized disturbance yields

˙̃x(t)=(A(α)−LC) x̃(t) + (Bw − LDyw) w(t), (17)
where Dyw = [03×3 D] and Bw = [B 09×3].

If only the target position estimation error e(t)=Cx̃(t)∈
R3 is considered for performance purposes, the gain L that
minimizes the H2 norm

∥∥FL∥∥2
of the system obtained from

w(t) to e(t) can be computed using the strategies described
in [14]. Since α is unknown, these strategies are used with
two modified versions of (17), obtained by replacing α by
α1 and α2. This is a standard approach that provides an
upper bound for

∥∥FL∥∥2
if α∈ [α1,α2], see [15]. It is easy to

show that the gain computed using this method verifies the
stability constraints imposed in Theorems 3 and 4.

V. SIMULATION RESULTS

In this section, continuous-time simulation results illustrat-
ing the performance of the proposed parameter identification
procedure and adaptive filter are presented.

For comparison purposes, results obtained with an Ex-
tended Kalman Filter, see [16] for details, are also provided.
This filter was designed for the nonlinear system that results
from augmenting the state x ∈ R9, of (1), with the target
angular speed ω. The new state variable was modeled as a
Wiener process [5]. The model considered for the measure-
ments was the one introduced in (2).

In this section, measurements obtained with a single PTZ
(pan, tilt, and zoom) camera are considered. In particular,
measurements of the center of the target in the images
and measurements of its distance to the camera, which
can be obtained using the strategies proposed in [17], for

instance, are used. These (range and bearing) observations
can be transformed to Cartesian coordinates using a nonlinear
transformation, see examples in [1], which leads to the model
in (2) for the position measurements.

In the simulations presented in this section, the intrinsic
parameters of a 215 PTZ camera from AXIS are used.
The inertial reference frame is considered to have its origin
in the camera optical center, with the z-axis aligned with
the optical axis of the camera in the beginning of the
experiments. This is without loss of generality, since the
placement of the inertial reference frame in some other
location can be tackled by determining the camera extrinsic
parameters during calibration, see [18] for details about
camera models and calibration procedures. The target angular
speed is considered to belong to the interval [0, 0.5] rad/s,
thus α1 = −0.25 and α2 = 0. In the online angular speed
identification procedure, the parameters µ = γ = 10−10 and
the Hurwitz polynomial Λ(s) = (s + λ)3, λ = 0.2, are
used. The gain L of the H2 adaptive filter was computed
using the strategy described in section IV-B and ensures that∥∥FL∥∥2

< 199.445. Its non-null entries are L1,1 = L4,2 =
L7,3 = 1.33, L2,1 = L5,2 = L8,3 = 0.77, and L3,1 =
L6,2 = L9,3 = 0.13. In the design of this gain, the vector
b = e3 and the matrix D = I3, introduced in section II,
were replaced by b = bd e3 and D = dnI3, where bd and
dn are positive constants. This strategy allows us to consider
different intensities for the process and observation noises,
d(t) and n(t), by choosing the values of bd and dn. In this
case, the parameters bd = 10 and dn = 100 were used.

The measurements of the center of the target in the images
and the measurements of its distance to the camera are
corrupted by uniformly distributed noise, with values in the
intervals [−10, 10] pixel and [−1, 1] m, respectively. In the
design of the EKF, the process noise that affects the target ac-
celeration and the measurement noise that corrupts the target
position measurements are considered to have power spectral
density matrices 102I3 mm2Hz5 and 1002I3 mm2Hz−1,
respectively. The power spectral density considered for the
noise that affects the target angular speed is 10−6 rad2Hz3.

In the sequel, two experiments are reported. The first
illustrates the performance of the proposed estimators when
the target moves along a straight line with ω = 0 rad/s,
and the second illustrates their performance when the target
angular speed varies over time. The trajectories described by
the target in the two situations are shown in Fig. 2.
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Fig. 2. Trajectories described by the target.

In Fig. 3(a), the target angular speed estimates provided by
the identification procedure proposed in section III and by the
EKF, for the first experiment, are depicted. As can be seen,
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the estimates provided by the parameter identifier converge
to the vicinity of the target real angular speed ω = 0 rad/s,
whereas the EKF diverges.
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Fig. 3. Performance analysis for ω = 0 rad/s.

The results obtained with the H2 adaptive filter in the
first experiment are depicted in Fig. 3(b). These results are
compared with the estimates provided by the EKF and with
the measurements of the target position computed resorting
to the aforementioned nonlinear transformation. As expected
from the performance of the EKF in the estimation of the
target angular speed, its estimates for the target position
diverge. Even though the EKF diverges, the error in the
estimates provided by the adaptive filter, and the error in
the estimation of the target angular speed, converge to
the vicinity of zero. These results are in accordance with
Theorems 2 and 4. Moreover, the steady-state performance of
the adaptive filter is significantly better than the one obtained
with the measurements of the target position.

The results for the second experiment, in which the target
moves along a trajectory with three different angular speeds,
are presented in Fig. 4. As can be seen, the angular speed
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Fig. 4. Performance analysis for a target with changing angular speed.

identification strategy proposed in section III is robust to
variations in the parameter to be estimated, since the angular

speed estimates converge to the target real angular speed
even after abrupt changes in its value. The degradation in
the performance of the position estimates obtained with the
H2 filter, around time instants 100 s and 200 s, is due to
the transients in the estimates provided by the parameter
identifier when the target changes its angular speed.

VI. CONCLUSIONS

In this work, the problem of estimating the position, linear
velocity, and linear acceleration of a target maneuvering
in the 3D space was addressed. A model for the target
that depends on its angular speed was considered and only
measurements of the target position were used. This problem
was tackled resorting to a cascade of a parameter identifier,
which estimates the angular speed of the target, and an H2

adaptive filter, which combines the angular speed estimates
with measurements of the target position to estimate the tar-
get state. Under persistence of excitation conditions and for
experiments where the process noise, the observation noise,
the target linear velocity, and the target angular speed are
bounded, the errors associated with the proposed estimators
were proved to converge to the vicinity of zero. Simulations
showing that the convergence and stability guarantees de-
rived in the paper hold, even when the estimates provided
by an Extended Kalman Filter diverge, were presented.
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