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ABSTRACT

This work aims to estimate multiple node positions in the
presence of unknown transmit powers within the context
of cooperative sensor network localization. In the adopted
scheme, each source can communicate with a set of anchors
(probably not in sufficient numbers) and a set of other sources.
Received Signal Strength (RSS) between them are measured.
Since finding the Maximum Likelihood Estimates (MLE) of
the positions and transmit powers given those measurements
poses a difficult nonconvex optimization problem, it is ap-
proximated by a Nonlinear Least Squares problem. Then, the
position and transmit power of multiple sources are estimated
jointly by solving Euclidean Distance Matrix completion
problem. Simulations show that the localization accuracy and
the running time of the proposed method is better than the
state of the art method and close to the Cramér-Rao Lower
Bound for some scenarios.

Index Terms— Cooperative sensor network localization,
unknown transmit power, received signal strength, Euclidean
distance matrix, semidefinite programming.

1. INTRODUCTION

Many wireless sensor network (WSN) applications require
the involved sensors to be localized [1]. Among the noisy
measurements upon which localization could be based, Re-
ceived Signal Strength (RSS) is an attractive method mainly
because of its low complexity and cost [2]. Since the RSS
measurement model is a function of the transmit power of the
source node, which depends on its battery and attenna gain
and might change with time, the anchor nodes are not able to
find the location of a source node if its transmit power is not
accounted for. Consequently, each source node has to report
its transmit power to anchor nodes during RSS measurements
which requires additional hardware and software in both an-
chor nodes and source nodes making the network more com-
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plex. Therefore, localization algorithms should tackle this is-
sue.

In noncooperative sensor networks, source nodes can
communicate only with anchor nodes [3]. The lack of ac-
cessible anchor nodes and also limited connectivity among
anchor nodes and source nodes lead to the emergence of the
cooperative localization paradigm, in which source nodes are
able to communicate with both anchor nodes and other source
nodes. Therefore, not only are RSSs between source nodes
and anchor nodes measured, but also the source nodes them-
selves are involved and collect RSS measurements from each
other. Thus, cooperative localization using RSS in the prac-
tical case where transmit powers are different and unknown
are currently open problems.

One of the common solutions is to eliminate the depen-
dency of the transmit power from the RSS measurement
model by using the differential RSS between a source node
and two anchor nodes [4] which enhances the noise and
degrades the accuracy. Another very recent method is to
estimate the transmit power of the source along with its lo-
cation [5, 6] which uses Semidefinite Programming (SDP)
similar to the proposed method with less accuracy and more
computational complexity.

To find the Maximum Likelihood Estimator (MLE) for the
sensor network localization problem with unknown transmit
powers, it is necessary to solve a nonlinear and nonconvex op-
timization problem. To avoid this difficulty, the original MLE
is transformed into an approximate Nonlinear Least Squares
(NLS) problem. Then, relaxation techniques are applied to
convert the NLS problem into a convex optimization problem
by resorting to Euclidean Distance Matrix (EDM) completion
(a type of SDP). Through this, the source transmit powers are
considered as nuisance parameters and estimated jointly with
the source locations. The advantage of an SDP is that its cost
function does not have local minima and thus convergence to
the global minimum is guaranteed [7]. The drawback is that
the SDP technique is sub-optimal and cannot achieve the best
possible performance under all conditions.

The remainder of the paper is organized as follows. Sec-
tion 2 formalizes the problem and shows the EDM comple-



tion as an SDP method. Section 3 shows the derivation of
Cramér-Rao Lower Bound (CRLB) for this problem. Sim-
ulations and computational complexity analysis are given in
Section 4. Conclusions are drawn in Section 5.

2. PROBLEM FORMULATION

This section formulates the cooperative RSS based localiza-
tion problem in which there are more than two source nodes
with unknown locations, and moreover, source nodes can
communicate not only with anchor nodes but also with each
other. The power of the transmitted signal of each source can
be measured at both anchor nodes and other source nodes.
In other words, two sets of RSS measurements are available
to the estimator: source-anchor and source-source measure-
ments. Lets; € R%, j € S = {1,...,N} and a;, € R?,
i€ A={N+1,...,N + M} denote source and anchor
locations', respectively. The following two sets are defined
as

B; = { i | anchor ¢ can communicate with source j },
C; = { i | source 7 can communicate with source j,i>j }.

The cooperative RSS measurement model is expressed as
Pij = Pj — IOBloglodij + nij, jes, i€ Bj UC]', (D)

where P; is the reference power at a reference distance (1m)
from the jth source, d;; = ||s; — s;||, i € C; and d;; =
lla; —s;|| ¢ € B;. In addition, n;; are the log normal shadow-
ing terms which are modeled as independent and identically
distributed (i.i.d.) zero mean Gaussian random variables with
standard deviation o;;. Consequently, there are in total 2N+N
elements that should be estimated including the source node
locations and the transmit powers of the source nodes defined
asS =[s1,...,sy] ER®>*N and P = [Py,...,Py]T € RV
respectively.

2.1. EDM Formulation
By rearranging the logarithmic term and dividing both sides
by 55, (1) can be reformulated [6] as

B \ij = ;1057 2)

Py P;
where \;; = 1037 and a; = 10%¢. For sufficiently small
noise, the right hand side (RHS) of (2) can be approximated
using the first order Taylor series expansion as

In10
d%)\ij = O[j(]. -+ 756 nz-j), (3)
and this can be rewritten as
d?j/\z‘j = aj + €5, “

!'The generalization to three-dimensional space is straightforward.

where ¢;; is a zero mean Gaussian random variable with stan-
Inio

dard deviation c; =55=0;. The corresponding NLS estimator
of the unknown parameters S and « is
... 2 2
minimize Z Z (dijNij — ). )

JES i€B;UC;

The unknown squared distances can be arranged into a
single symmetric EDM matrix of size (N + M) x (N + M),
with elements E;; = dfj, and satisfying the properties of the
EDM cone £ [7, 8]

E; =0, E;; >0, —JEJ =0, (6)

where J = (Ip — %1,)1,,T)7 p = N 4+ M, is a centering
operator which subtracts the mean of a vector from each of
its components and I, is p X p identity matrix. Therefore, the
nearest EDM problem is formulated as

1 1 1 .. PR R— . 2
minimize Z Z (EijAij — a )
JES i€B;UC;
subjectto E €&, E(A4)=A
rank(JEJ) = 2,

)

The constraint E(A) = A enforces the known a priori spa-
tial information related with anchors in the appropriate EDM
submatrix. The rank constraint in (7) ensures that the solution
is compatible with a constellation of source/anchor points in
R2. Dropping the rank constraint, a compact relaxed SDP
formulation is obtained.

Note that the solution of (7) is a distance matrix E. De-
tailed explanations of how to estimate the spatial coordinates
of the sources from EDM and the usage of anchors are given
in [9]. The basic idea is to use a linear transformation to
obtain the Gram matrix (ZJ)"ZJ = —1JEJ, from which
spatial coordinates Z = [s1,...,SN,8N41,--., AN N] are
extracted by the singular value decomposition up to a unitary
matrix. The anchors are then used to estimate the residual
unitary matrix by solving a Procrustes problem [9].

3. DERIVATION OF CRLB

The log of the joint conditional pdf for the RSS based coop-
erative localization problem with unknown transmit power is
(up to an additive constant) [2]

1

202,
ij | jes,ieB;

logf(p[S,P) = —

+ Y (Py—P;—108log(si — i)

jES ieC;
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Y. (P — Py —108logo(llai - sj]))



The Fisher information matrix, F, is obtained by taking the

negative expected value of the second derivative of (8) with e e
respect to S and P as [10] 357 _+ Epm Pty
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based cooperative localization with unknown transmit power
is taken as the inverse of F'.

4. SIMULATIONS

In this section, computer simulations are performed to evalu-
ate the performance of the proposed algorithm which will be
called “EDM?” in the figures. The comparison metric is the
total root mean-square error (RMSE) defined as

RMSE = (10)

L N
ZZ s: = 8117

&=
2\

where 8 denotes the i-th estimated source position in the k-th
Monte Carlo run (L = 1000) for the specific noise realization.
To assess the fundamental hardness of the position estimation,
error plots also show the total CRLB with known (“CRLB”)
and unknown transmit power (“CRLB-Unknown-P”’) for each
noise variance. Through out the simulations the value of the
path loss exponent 3 was known and set to 4. The standard
deviation of the shadowing is o;; = o € [18].

To compare the proposed algorithm with MLE, Mat-
lab’s function Isgnonlin is initialized with true values of the
positions and transmit power of sources, denoted below as
“MLE”. Additionally, the results will be benchmarked with
a recently published method “SDP-URSS” [6] which resorts

connected to all anchor nodes and also to all other source
nodes. Fig. 1 shows that the RMSE of EDM and SDP-URSS
are almost the same and they are close to MLE and CRLB.

Experiment 2: In the second scenario, the location of the
source nodes is the same as in experiment 1, but the anchor
nodes placed irregularly as A = [22;416;1010; 12 14; 17 5].
For this irregular scenario the performance of EDM is supe-
rior than SDP-URSS as shown in Fig. 2. However, the perfor-
mance gap between MLE and the algorithms are higher than
the previous scenario. Moreover, MLE attains the CRLB only
at small noise levels.

A Note on Practical Computational Complexity: The
worst case computational complexity of SDP based algo-
rithms for sensor network localization is bounded by O((N +
M)) [11]. In detail, without imposing any structure on ma-
trix variables [12], Oppy = (N + M)? 4+ N)?(N + M)?)
and Ospp_vrss = (BN + N? + L)2L?), where L is
the total number of connections. For full connectivity
L=NM+(N-1)/2).

For the proposed algorithm, CPU time empirically in-
creases with (N + M)*®. The experiments were conducted
on a laptop with Intel Core i5-2430M 2.4 GHz CPU and 4 GB
of RAM, using MATLAB 7.11, CVX 1.22 and SeDuMi as
a general purpose SDP solver. The CPU time used by EDM
and SDP-URSS is about 0.3 and 0.7 seconds, respectively for
this network.



45) | — ~ — SDP-URSS L]
—%— - EDM % .
4t | — ©— MLE T

— — — CRLB-Unknown-P|

CRLB " e

RMSE [m]

5 6 7 8
Shadowing, o [dB]

Fig. 2. RMSE comparisons for the second scenario where the
sources are not inside the convex hull of the anchors

Experiment 3: The sample mean and the uncertainty el-
lipsoids of EDM are given in Fig. 3 when ¢ = 4 for the
first scenario. Two of the sources ([s1s10] = [219;1818))
are only connected to two anchors and all others communi-
cate with five anchors. With the limited connectivity to an-
chors the localization problem becomes harder, similarly to
what is known to occur even with full connectivity when some
of the sources lie outside the convex hull of the set of an-
chors. Moreover, although two anchors are not enough for
those sources to be localized in 2D, all positions are eventu-
ally determined with good accuracy through cooperation, as
the remaining sources are within range of a sufficient number
of anchors
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Fig. 3. Sample mean (shown as crosses) and uncertainty el-
lipsoids of EDM when sources [s1819] = [219;1818] are
connected to only two anchors.

5. CONCLUSION

EDM completion, a type of SDP technique with reasonable
computational cost, is proposed to localize multiple sources

when transmit powers are not known. It is shown that co-
operation among sources provides accurate localization even
if some sources are connected to few anchors. Additionally,
EDM is better than the recently published method both in
accuracy and computational complexity. Its performance is
close to CRLB at some scenarios.
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