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ABSTRACT

The paper introduces a method by which to design the topol-
ogy of a distributed sensor network that is minimal with re-
spect to a communication cost function. In the scenario con-
sidered, sensor nodes communicate with each other within
a graph structure to update their data according to linear dy-
namics using neighbor node data. A subset of sensors can also
report their state to a central location. One physical interpre-
tation of this situation would be a set of spatially distributed
wireless sensors which can communicate with other sensors
within range to update data and can possibly connect to a net-
work backbone. The costs would then be related to transmis-
sion energy. The objective is to recover the vector of initial
sensor measurements from the backbone outputs over time,
which requires that the dynamics of the overall networked
system be observable. The topology of the network is then de-
termined by the nonzero elements of the optimal observable
dynamics. The following text contributes an efficient algo-
rithm for designing the optimal observable dynamics and the
network topology for a given set of sensors and cost function,
providing proof of correctness and example implementation.

Index Terms— distributed sensor network, structural ob-
servability, optimal design, field reconstruction, output cacti

1. INTRODUCTION

Numerous applications including field surveillance, environ-
mental study, and geo-scientific exploration [1] employ dis-
tributed sensor networks for wide area monitoring, leading to
interesting topology and network configuration design prob-
lems that involve power, bandwidth, and range constraints
[2]. These networks typically consist of a set of sensor nodes,
each of which has a microprocessor that allows simple in-
formation processing and a transceiver that enables short
distance communication. This paper examines situations in
which some sensors can also potentially be equipped with
long range transmission capability in order to communicate
with a central reporting authority over the sensor network.

Consider sensor nodes communicating with each other
within a graph structure to update their data according to lin-
ear dynamics using neighbor node data. Each sensor main-
tains a state xi

n, where n is the iteration index and the initial
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Fig. 1. The figure depicts a set of sensors deployed over a ge-
ographic area in which each sensor is equipped with a short
range communication device (operating within a radius RC)
for local sensor-to-sensor communication. Some of the sen-
sors are also equipped with long range communication de-
vices to report their respective states to a central authority.

state xi
0 corresponds to the field measurement collected by the

ith sensor. A subset of sensors can also report their state to a
central location or backbone node. Denote by xn the vector of
sensor states and yn the reported outputs at iteration n. Thus,
network communication is described by a dynamic system of
the form

xn+1 = Axn, (1)
yn = Cxn, (2)

where A describes the state update dynamics, which respects
the communication graph structure, and C encodes the back-
bone reporting infrastructure.

The network objective is to determine the vector of initial
sensor states x0, the field measurements, at the central report-
ing authority based on the outputs (y0, · · · ,yN−1) obtained
over time, where N is the number of sensors in the network.
In order for this to be achieved, observable dynamics (A,C)
from (1)-(2) are desired. Such a network is said to be an ob-
servable distributed sensor network.

The notion of an observable distributed sensor network
has already been introduced in [3], where necessary condi-
tions to ensure observability of the network are given in terms



of graph partitions, though without providing or justifying the
complexity of verifying such conditions. In contrast, this pa-
per investigates the problem of optimal network topology de-
sign for attaining observable dynamics that incur minimum
cost with respect to a generic communication cost function
precisely defined in section 3. Also note that in contrast to the
typical problems in consensus or gossip algorithms literature
where the goal is to asymptotically recover the average or a
specific linear function of the initial sensor states, as in [4],
the observable dynamics discussed can be used to recover the
entire collection of the initial sensor states in finite time.

The paper proposes an algorithm to efficiently compute
the optimal observable dynamic structure, proving the cor-
rectness of the algorithm and demonstrating the algorithm in
implementation. Section 2 introduces some preliminary con-
cepts and terminology. Section 3 presents the problem formu-
lation in greater detail, and section 4 follows with the proof
of the main results. Section 5 illustrates concepts with simu-
lation results. Finally, section 6 concludes the paper.

2. BACKGROUND CONCEPTS

This section introduces elementary concepts in graph theory,
and structural systems [5]. The paper requires the following
standard graph theoretic terminology [6].

A graph G is a pair (V, E) in which V denotes a set of
vertices and E represents a set of edges, such that the un-
ordered pair (vi, vj) of vertices vi, vj ∈ V represents an
undirected link between vertex vi and vertex vj . Any graph
Gs(Vs, Es) with Vs ⊂ V and Es ⊂ E is called a subgraph of
G(V, E). If Vs = V , Gs is said to span G. A sequence of edges
{(v1, v2), (v2, v3), · · · , (vk−1, vk)}, in which all the vertices
are distinct, is called an elementary path from v1 to vk. When
vk coincides with v1, the sequence is called a cycle. A graph
is said to be connected if there exists an elementary path
between any two vertices. A tree is a connected graph with
no cycles. Finally, a weight graph Gw is a triple (V, E , w)
consisting of an undirected graph (V, E) and an edge weight
function w : E �→ R that assigns a weight w(e) to an edge
e ∈ E . For brevity, the notation (Vw, Ew) will be used often
to denote the weighted graph (V, E , w). Directed graphs, also
known as digraphs, may be defined in a similar fashion. A
directed graph D is a pair (V, E) in which V denotes the set of
vertices and E represents the set of directed edges, such that
the ordered pair (vi, vj) ∈ E of vertices vi, vj ∈ V represents
a directed link from vi to vj .

2.1. Minimum Weight Spanning Tree

Key to the algorithm presented in section 4 is the concept of a
minimum weight spanning tree. Let a connected, undirected,
weight graph Gw = (Vw, Ew) be given, where the weight
function w : Ew → R assigns a weight w(e) to each edge
e ∈ E . The minimum weight spanning tree problem consists
of finding a spanning connected subgraph of Gw with |V| − 1
edges, a tree T = (Vw, ET ), such that the following function
is minimized:

w(T ) =
�

e∈ET

w(e).

The solution to the minimum weight spanning tree prob-
lem can be found by resorting to any of several efficient al-
gorithms, such as those of Kruskal, Prim, or Boruvka [6].

Prim’s algorithm is used in this paper, and it has complex-
ity O(|Vw|2) or O(|Ew| log(|Vw|)) depending on the choice
of the implementation.

2.2. Structural Dynamic Systems

Consider the system in (1)-(2) and denote the state vari-
ables and output variables by X = {x1, · · · , xN} and Y =
{y1, · · · , yM}, corresponding to the set of state vertices and
output vertices, respectively. Let EX ,X = {(xi, xj)| [A]ji �=
0} and EX ,Y = {(xi, yj)| [C]ji �= 0} and define the directed
graph D(A,C) = (X ∪ Y, EX ,X ∪ EX ,Y).

Given a digraph D(A,C), define the following special
subgraphs:

• State Stem - An elementary path exclusively composed
of state vertices, or a single state vertex.

• Output Stem - An elementary path composed of a state
stem with an output vertex (the output stem tip) linked
from the tip of the state stem.

• State Cactus - Defined recursively as follows: A state
stem is a state cactus. A state cactus connected to a
cycle from any point other than the tip is also a state
cactus.

• Output Cactus - Defined recursively as follows: An
output stem with at least one state vertex is an output
cactus. An output cactus connected from a cycle to any
point other than the root of the state stem is also an
output cactus. The root and the tip of the output stem
are also the root and tip of the associated cactus.

• Output Cactus Patch - A disjoint union of output cacti.

Note that the definition allows an output cactus to have an
output vertex linked from several state vertices. That is, the
output vertex must connect from the tip of a state stem but
could be linked from one or more other states in state cycles.
Furthermore, consider the following definition and result:

Definition 1 (Structural Observability) A system defined

by (1)-(2) is said to be structurally observable if there are

observable matrices (A1, C1) with identical zero-nonzero

sparsity structure as the matrices (A,C).

A pair (A,C) is said to be structurally observable if there
exists a pair (A�, C �) with the same structure as (A,C), i.e.,
same locations of zeros and non-zeros, such that (A�, C �) is
observable. By density arguments, it may be shown that if a
pair (A,C) is structurally observable then, in the Lebesgue
measure theoretic sense, almost all pairs with the same struc-
ture as (A,C) are observable. In essence, structural observ-
ability is a property of the structure of the pair (A,C) and not
the specific numerical values.

Theorem 1 (Structural Observability and Cacti)

For a linear time invariant system described by (1)-(2), the

following statements are equivalent [5]:

(i) The corresponding structured linear system (A,C) is

structurally observable.

(ii) The digraph D(A,C) is spanned by an output cactus

patch.



3. PROBLEM FORMULATION

Consider a set V of N indexed sensor nodes with distance Dij
between each pair of sensor nodes vi, vj ∈ V. Suppose that
each node vi ∈ V can communicate with any node vj ∈ V
of distance less than a maximum communication radius RC
with transmission energy related cost (ECC)2ij = αD2

ij pro-
portional to the square of communication distance1. That is,

(ECC)ij =

�
αD2

ij Dij ≤ RC

∞ Dij > RC
. (3)

Let G(V, E) be the resulting communication graph where

E = {(vi, vj) ∈ V2|(ECC)ij < ∞} (4)
and (ECC)ij is the weight of edge (vi, vj). Note that the
graph G is not necessarily connected, and allows self loops of
weight 0.

Sensors within range are allowed to communicate with
each other and update their data as a linear function of data
from their neighbors defined by a matrix A ∈ RN×N . If the
coefficient corresponding to a neighbor is 0, then no commu-
nication need take place, incurring no cost. It is clear that
for A to be a feasible matrix, it must satisfy Aij = 0 if
(vi, vj) /∈ E . Let x0 be the vector of sensor readings and
xn be the vector of data at the nodes at update time step n.
Thus, the node update dynamics are described by (1).

Furthermore, suppose that a subset U ⊆ V of the nodes
can be connected to the sensor network backbone node b with
cost given by

(EBC)ii = βD
2
bi, (5)

for node vi ∈ U where Dbi is the distance between vi and b.
For notational convenience, let (EBC)ij = ∞ when i �= j or
when vi /∈ U . Define an output matrix C ∈ RN×N satisfying
Cij �= 0 only if i = j and vi ∈ U. Let yn be the output vector
of reported states at time n. Then the backbone reporting
function is described by (2).

Thus, total cost associated with a pair (A,C) is given by

f(A,C) = 1T (Ã ◦ ECC)1+ 1T (C̃ ◦ EBC)1 (6)

where

Ãij =

�
0 Aij = 0
1 Aij �= 0 , C̃ij =

�
0 Cij = 0
1 Cij �= 0 ,

and ◦ is the Hadamard (entrywise) product of matrices.
Now, consider the problem of choosing a node update and

backbone reporting dynamics (A,C) incurring minimum cost
as calculated in (6) that is feasible with respect to the com-
munication graph and such that the initial sensor measure-
ment x0 can be inferred from N backbone output readings
(y0, ...,yN−1). This means the constraint that (A,C) is ob-
servable must be imposed.

Note that the cost does not depend on the values of the
dynamic matrices (A,C) but only on their sparsity structure.
From Theorem 1 it is known that if (Ã, C̃) is structurally ob-
servable, then there exist matrices (A,C) with the same spar-
sity structure as (Ã, C̃) that are observable. Thus, replace-
ment of the constraint that (A,C) must be observable with

1Note that, the transmission energy related cost structure is used for illus-
tration purposes only. Our framework allows for more general cost structures
as noted in A.1.

the constraint that (Ã, C̃) be structurally observable allows
the minimization to be performed without considering suit-
able values for the dynamics, which are guaranteed to exist
(see Definition 1) and can be determined later. Hence, the op-
timal solution will specify the network topology of minimum
cost such that observable dynamics exist. For this paper, the
problem is solved for arbitrary communication cost functions
under the following mild assumptions:

A.1 (Symmetric Communication Cost): The sensor to
sensor communication cost matrix ECC is symmetric
but otherwise arbitrary. The sensor to backbone com-
munication cost matrix EBC has arbitrary diagonal
entries for the ith diagonal element if vi ∈ U . It has in-
finite off-diagonal entries and infinite diagonal entries
for the ith diagonal element if vi /∈ U .

A.2 (Connectedness): Consider the graph G(V, E) already
defined in (4), and construct the augmented undirected
graph G�(V �, E �) comprised of all possible communica-
tion links between the sensors nodes and the backbone
node. Hence, V � = V ∪ {b} and E � = E ∪ {(v, b)|v ∈
U}. The augmented graph G� must be connected.

Note that A.2 requires that there exists a path between
each node in V and the backbone b. Thus, A.2 does not re-
quire the sensor to sensor communication graph, G itself, to
be connected. The problem is transformed to the following
final form: given arbitrary communication costs that satisfy
the assumptions in A.1 and A.2, find the arguments (Ã, C̃)
that produce the optimal solution to

min
Ã,C̃∈{0,1}N×N

1T (Ã ◦ ECC)1+ 1T (C̃ ◦ EBC)1 (7)

subject to the constraint that (Ã, C̃) be structurally ob-
servable.

4. MAIN RESULTS

This section presents the main result of the paper, which con-
sists of an algorithm for solving the optimization problem in
(7) with O(N2) computational complexity, where N is the
number of sensor nodes2. In particular, it provides proof of
the correctness of the algorithm in Theorem 2 and its com-
plexity in Theorem 3.

Algorithm 1 is composed of five steps, the first three of
which construct the minimum spanning tree of the augmented
graph G� and assign orientations to the tree edges, such that
each edge points toward the central reporting authority. The
final two steps replace the single backbone node with sev-
eral output nodes and turn the resulting directed output graph
into an output cactus patch. From this spanning output cactus
patch, the structure (Ã∗, C̃∗) is then inferred.

Algorithm 1

Input Sensor nodes V , reporting node subset U , central node

b, possible communication links E , sensor to sensor

communication costs ECC , and reporting costs EBC

2Note that naively approaching the optimization problem in (7) using an
exhaustive search over all possible network topologies would lead to expo-
nential computational complexity.



Step 1 Form the undirected weighted graph G�(VG� , EG�) de-

fined in A.2 with (ECC)ij + (ECC)ji = 2(ECC)ij as

the weight of (vi, vj) and 2(EBC)ii as the weight of

(vi, b).

Step 2 Find the minimum weight spanning tree T �(VG� , ET �)
of G�

.
3

Step 3 Identify the minimal weight directed graph

T ��(VG� , ET ��) from T �
such that for every v ∈ V there

is a directed elementary path in T ��
from v to b. In

other words, T ��
is an orientation of T �

that satisfies the

above condition with (ECC)ij as the weight of (vi, vj)
and (EBC)ii as the weight of (vi, b).

Step 4 Form the directed spanning output forest F(VF , EF )
where an introduced output node ri represents the

backbone output capability of sensor node vi for each

vi ∈ U ,

VF = V ∪ {ri|(vi, b) ∈ ET ��},
EF = {(vi, vj) ∈ ET �� |vi, vj ∈ V}

∪ {(vi, ri)|(vi, b) ∈ ET ��}

with (ECC)ij as the weight of (vi, vj) and (EBC)ii as

the weight of (vi, b).

Step 5 Construct a spanning output cactus patch P(VP , EP) �
D(Ã∗, C̃∗) from F (ensuring structural observability)

as follows. Let

VP = VF ,

EP = EF ∪ {(vi, vi)|vi ∈ V, ri /∈ VF}.

That is, add a self loop to every node that is not con-

nected to an output. Then set

Ã
∗
ij =

�
1 (vi, vj) ∈ EP
0 (vi, vj) /∈ EP ,

C̃
∗
ij =

�
1 i = j, (vi, ri) ∈ EP
0 otherwise

.

Output Optimal matrix structure (Ã∗, C̃∗)

The steps of Algorithm 1 are depicted in Figure 2. The-
orem 2 now proves the optimality of the matrix structure
(Ã∗, C̃∗) output by this algorithm.

Theorem 2 (Correctness) The pair (Ã∗, C̃∗) output by Al-

gorithm 1 is the optimal structurally observable solution to

the optimization problem in (7).

Proof First, it will be shown that (Ã∗, C̃∗) is structurally
observable and, thus, a feasible solution. From Theorem 1,
(Ã∗, C̃∗) is structurally observable if and only if D(Ã∗, C̃∗)
is spanned by an output cactus patch. Step 5 of the algo-
rithm defined (Ã∗, C̃∗) such that D(Ã∗, C̃∗) is isomorphic
to P , where the isomorphism consists of a relabeling from

3The minimum weight spanning tree exists by the assumption in A.2.

Fig. 2. Schematic representation of the steps in Algorithm 1.

vi ∈ VP to xi ∈ X and from ri ∈ VP to yi ∈ Y . Since
F is constructed as an output forest and P is formed from
F by the addition of self loops to all nodes that do not have
backbone outputs, P fits the recursive definition of an output
cactus patch as it is composed of output stems of length one
and self-loops attached to other self-loops or an output stem.
Hence, P � D(Ã∗, C̃∗) is an output cactus, so (Ã∗, C̃∗) is
structurally observable.

Next, it is shown that no other feasible solution has lesser
cost. Let w(H) be the undirected edge weight sum of a graph
H. Note that all steps from 2 to 5 of the algorithm pre-
serve edge weights except for step 3, which cuts it in half.
Thus, w(T �) = 2w(P). Assume by way of contradiction that
(Ã∗, C̃∗) is not a minimum solution to optimization problem
(7). Then there is a feasible matrix pair (Ã1, C̃1) which is
a minimum solution and has lesser cost with respect to the
objective function.

Because (Ã1, C̃1) is a minimum feasible solution, P1 �
D(Ã1, C̃1) must be spanned by an output cactus patch. More
precisely, it must be a minimum spanning output cactus patch,
with the possible addition of extra zero cost self loops and
with w(P1) < w(P), since an additional directed edge would
increase the cost. Because the minimum spanning cactus
patch for G can have no cycles other than self loops (oth-
erwise, breaking the cycle by removing an edge and giving
all member nodes self loops would improve the cost), P1
has no cycles other than self loops. Now, consider the graph
T �
1 obtained by removing all self loops from P1, connect-

ing all nodes in P1 that connect to a reporting node to b,
and making all edges bidirectional. By this construction, T �

1
must be a spanning tree for G� since P1 had no cycles other
than self loops, which were removed, and since each con-
nected component of P1 has only one reporting node. Then
w(T �

1 ) = 2w(P1) < 2w(P) = w(T �).
Hence, the weigh of T �

1 is less than the weight of T �,
contradicting the hypothesis that T � is a minimum spanning
tree for G�. Thus, (Ã∗, C̃∗) is the minimum feasible solution
to the problem in (7). �



Theorem 2 stated that Algorithm 1 achieves the global
minimum of the function (7) but made no comment concern-
ing uniqueness. Note that since self loops have zero cost,
there exist several alternatives that consist of disregarding par-
ticular combinations of self loops. Also, the minimum span-
ning tree T � might not be unique, leading to alternative solu-
tions. To conclude this section, Theorem 3 shows that Algo-
rithm 1 is computationally efficient.

Theorem 3 (Computational Complexity) Algorithm 1 has

computational complexity given by O(|V|2).

Proof First, remark that Step 1 creates an undirected graph
G� that can be generated linearly in the number of vertices
and edges. In other words, the computational complexity is
at most O(|V|2). Step 2 generates the minimum weight span-
ning tree T � of G�, which requires computational complexity
O(|E| log(|V|)) or O(|V|2) depending on the implementation
of Prim’s algorithm. This paper chooses the O(|V|2) imple-
mentation. Hence, Step 2 has complexity O(|V|2). Step 3 and
4 can be implemented with linear computational complexity
O(|V|) since it orients the tree edges, of which there are
only N , and splits the backbone node into at most |V| output
nodes. Finally, Step 5 adds self loops to the nodes, a O(|V|)
process, and constructs the matrices (Ã∗, C̃∗), a linear op-
eration in the number of the edges of the digraph generated
in Step 4 (which is linear due to the aforementioned reason).
Hence, the overall complexity is O(|V|2). �

5. SIMULATION

In order to demonstrate the application of Algorithm 1, this
section shows the results when an implementation of the al-
gorithm is applied to N = 50 sensor nodes and a central
authority node all randomly deployed in a 10 × 10 square
region. All nodes have a sufficiently large communication ra-
dius to communicate with any other node, and all nodes have
reporting potential. Sensor to backbone communication over
a given distance is equal in cost to sensor to sensor commu-
nication over the same distance (α = β = 1). This scenario
can be visualized in Figure 2. The outcome of the simula-
tion is depicted in Figure 3. Actual observable matrix values
(A,C) can be derived from (Ã∗, C̃∗) by sampling random
matrices with the same sparsity structure as (Ã∗, C̃∗) and ver-
ifying observability by evaluating the rank of the observabil-
ity Gramian. Since the set of unobservable matrix pairs with
the same sparsity structure as (Ã∗, C̃∗) has zero measure, this
observability test is passed on the first iteration with proba-
bility 1. The dynamic matrices obtained could then be used
to simulate communication and reporting in the network and
then estimate the sensor reading data x0 from the reported
outputs. See, for instance, Theorem 15.4 in [7].

6. CONCLUSION

This paper posed the problem of finding the optimal network
structure and linear update dynamics with respect to a com-
munication cost function for a set of sensor nodes for which
data must be communicated to a network backbone in order

Fig. 3. A visualization of the communication graph corre-
sponding to the optimal structurally observable network dy-
namics sparsity structure is shown. It is a minimum weight
spanning tree of a randomly generated sensor network with
added self loops (blue circles) at some nodes (blue points).
All edges are directed towards the central node (red x).

to reconstruct the set of initial sensor measurements. To ad-
dress this problem, a solution algorithm was developed and
shown to be formally correct and computationally efficient,
the proofs of which are rooted in theorems from the field of
structural dynamic systems and comprise the main result of
this paper. Additionally, use of the algorithm was demon-
strated in a simple simulation.

While the paper noted one approach by which observable
dynamics can be found from the network structure produced
by the algorithm, it does not guarantee good numerical prop-
erties of the observability Gramian matrix, such as a good
ratio of maximum to minimum eigenvalues, that would be
necessary to produce useful observers. Future work that pro-
duced well conditioned matrices from a given sparsity struc-
ture would greatly increase the usefulness of the algorithm
as a network design tool, as would identification of practical
sensor network applications in which a linear dynamic update
scheme provides advantages.
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