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Abstract— This paper addresses the design of Model Pre-
dictive Control (MPC) laws to solve the trajectory-tracking
problem and the path-following problem for constrained under-
actuated vehicles. By allowing an arbitrarily small asymptotic
tracking error, we derive MPC laws where the size of the
terminal set is only limited by the size of the system constraints.
In fact, for the case of unconstrained inputs, the terminal set
can be neglected and the resulting MPC controllers provide
a global solution to the addressed constrained motion control
problems. Simulation results are presented where the proposed
MPC controllers are applied to 2-D and to 3-D moving vehicles.

I. INTRODUCTION

The motion control of underactuated vehicles has been
along the years an attractive topic because of the wide
range of practical applications and the theoretical challenges
associated with the control problem.

In spite of that and the numerous results published in
the technical literature, where a large set of the proposed
control algorithms are obtained via Lyapunov-based design
techniques, only few methods explicitly consider the case of
constrained inputs signals. This results in control laws that,
in practice, are only applicable in a limited region where
the control action, designed for the unconstrained vehicle,
does not violate the system constraints. We reference [1]-[5]
for semi-global and global solutions to the (unconstrained)
trajectory-tracking problem.

Model predictive control, given its ability to explicitly han-
dle constraints, represents a natural direction for the control
of constrained systems. A common approach to solve the
trajectory-tracking and the path-following problem consists
in rewriting them as stabilization problem in a conveniently
defined error space, and then use the classic tools for the
design of stabilizing MPC laws, e.g., [6]-[10]. However,
since the error dynamics are often time-varying, solving this
control problem remains a difficult task and only few results
have been presented in the literature. For an overview on
the topic see, for instance, the work [11]. In [12], sufficient
conditions for stability are presented and in [13]-[15] a local
solution to the trajectory-tracking problem can be found.
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Moreover, for the specific case of unicycle model see also
[16]. As main drawback of these approaches, the proposed
terminal set and the terminal cost are only locally defined,
resulting in a potentially limited region of the attraction.

Motivated by these observations, in this paper we ad-
dress the trajectory-tracking problem and the path-following
problem for underactuated vehicles with constrained inputs,
where the motion is considered in both 2-D and 3-D cases.
Allowing an arbitrarily small asymptotic tracking error, we
derive MPC controllers using the results from [17] together
with a nonlinear auxiliary control law proposed in [1]. The
resulting terminal set is only limited by the size of the
system constraints, leading to global solutions for the case
of unconstrained systems.

The remainder of this paper is organized as follows. In
Section II the addressed motion control problems are defined.
In Section III we recall some results from the literature,
which are used in Section III for the design of the MPC
control laws. Numerical results are shown in Section V,
where a model of a wheeled robot (2-D case) and a model of
an aero vehicle (3-D case) are considered. Section VI closes
the paper with some conclusions.

II. PROBLEM STATEMENT

This section describes the model of an underactuated ve-
hicle and formulate the motion control problems addressed.

Let I be an inertial coordinate frame and B be a
body coordinate frame attached to the vehicle. The pair
(p(t),R(t)) | SE(3)'! denote the configuration of the
vehicle, position and orientation, where R(t) is the ro-
tation matrix from body to inertial coordinates. Now, let
(v(t),Ale (t))) || se(3)' be the twist that defines the
velocity of the vehicle, linear and angular, where the matrix
Ae (t)) is the skew-symmetric matrix associated to the
angular velocity € (t) := (e 1(t), € 2(t), € 3(¢))’, defined as

J 0 763(1’) Eg(t) J
Ale (t)) == ) 63(?) 0( | —eol(t)J | R332,
—€9 t €1 t

The kinematic model of a vehicle moving in 3D space
satisfies

P(t) = R((t), R  =ROMe®). (1

'For a given n || N, SE(n) denotes the Cartesian product of R™ with the
group SO(n) of n X n rotation matrices and se(n) denotes the Cartesian
product of R™ with the space so(n) of n X n skew-symmetric matrices.



In this paper we consider constrained underactuated vehi-
cles where the control input

u(t) = Jui(t) €'t | U,

with v(t) = Jui(t) 0 0J || R3, consists of
only the forward and the angular velocity, and is con-
strained to lie inside the compact input constraint set
U || R* that, e.g, represents the physical limits of the
actuators. For the sake of simplicity, we drop the explicit
dependence on time wherever clear from the context. For
the 2-D case the same model (1) applies, where differ-
ently, (p,R) | SE(2), (v,Ale)) || se(2) with

Jur,0) and A(e) = Jo _OGJ | R2*2, and

w = Ju )| U || R We consider the following
trajectory-tracking and path-following problems:

Problem 1 (Constrained Trajectory-tracking): Consider a
constrained vehicle described by (1) and let p,(t), with
t || [0,] ), be a differentiable desired trajectory. Design a
control law such that, as ¢ goes to infinity, the position of the
vehicle converges and remains inside a tube, centered around
pa(-), that can be made arbitrarily thin, i.e., ||p(t) — pa(t)]]
converges to a neighborhood of zero that can be made
arbitrarily small.

Problem 2 (Constrained Path-following): Consider a
constrained vehicle described by (1) and let pg(e) be a
differentiable desired path parametrized with the parameter
e | [0,]| )- Moreover, let ¢ || G be a virtual input
constrained inside a compact set G || R. Design a control
law for w and € such that, as ¢ goes to infinity, i) the
position of the vehicle converges and remains inside a tube,
centered around pgy(e ), that can be made arbitrarily thin and
ii) the parameter ¢ asymptotically satisfies a desired speed
assignment € || G, i.e., ||€(t) — €4(t)|| goes to zero.

(Ib)
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III. BACKGROUND

This section contains the definition of the MPC optimiza-
tion problem and our previous result [17] that illustrates how
to design a stable MPC controller using a nonlinear auxiliary
law that exponentially stabilizes the unconstrained system.

A. MPC optimization problem

Consider the dynamical system
@(t) = f(z(t),u(t),  x(0) = xo,
with
@) | X0 R w@) | U R, (2b)

where z(t) || R™ and wu(t) || R™ are the state and the
input at time ¢, respectively, and X || R™ and U/ || R™
are the state and input constraint sets, respectively. For a
generic trajectory x(-) we denote by x([0,T]) the trajectory
considered in the time interval [0, T']. The MPC optimization
problem is defined as follows:

Definition 1 (MPC Problem): Let T || (0,] ) be a given
horizon length and Z ([0, T]) and @([0,T]) be a pair of state
and input predicted trajectories that satisfy (2) with initial

to @

t] o

condition Z(0) = z. The open loop MPC problem denoted
by Pr(z) consists of finding the optimal control signal
@' ([0,7T]) that solves the following optimization problem

Jr(z) = oiin Jr (2, a((0, T])) (3a)
s.t.
z(e) = f(z(e),ule)) le I 0,7]  (3b)
z(0) =z, z(T) || X (3c)
z(e) | &, ale) | u le I 0, 7T (3d)

with Jp(z,a([0,7])) := JOTl(ir(e),ﬂ(e))de + F(z(T)). O
The notation @ ([0,77];%) is used wherever we want to
make the dependence to the initial state z explicit. The
finite horizon cost Jr(-) is composed of the stage cost
1:X xU | R, and the terminal cost F : Xy || R, o.
Throughout this paper we denote by ky : Xy || U an
auxiliary control law defined over the terminal set X;. In a
state feedback sampled-data MPC framework the optimiza-
tion problem Pr(z) is repeatedly solved at discrete sampling
instants ¢; = i€, i | Np, with z = x(t;) and 0 < € || T,
where € is the sampling time of the MPC law defined as

u(t) = knpo(x) = (¢t —tizts)), 1t [t tivr). @)
B. Stable MPC using a pre-existing Auxiliary Control Law

We consider the following assumptions [17]:
Assumption 1: f(-) is locally Lipschitz continuous in the

region of interest and satisfies f(0,0) = 0. O
Assumption 2: The set Y || R™ is compact, X' || R™ is
connected, and (0,0) || int(X) x int(U)>2. O

Assumption 3: The stage cost [(-) satisfies [(0,0) = 0
and is lower bounded by a K, -class function? w(-), ie.,

w(llz)) | 1z, w), [[(z,u) | & >xU. O
Assumption 4: There exist a known control law
k¢ :+ Xp || R™ continuous around the origin and

a continuously differentiable Lyapunov function V'(-), and
the positive constants ki, ko, ks, and a such that

eV
kel I V(@) || Rallz ]l —f (@ ky(2)) | ksl
|z || Xp, for some set Xp | R"™ with
0 || int(Xp) || R™ O

Assumption 5: The control law k¢(-) from Assumption 4
and the stage cost [(-) satisfy
Uz kg (@) || ) aillal,
i=1
for some set &} || R™ with 0 || int(&;) and constants v || N,
withov || 1,and a; || R, 4= 1,...,v, where ki, ko, k3, and

| % &)

a are positive constants. (]
Note that Assumption 5 is trivially verified for the classic
case of a quadratic stage cost I(z,u) = ||z|lo + ||lu|lr,

L X
Rm m’

with @ || R™™, @Q = QT || 0 and R |
2Given a set A, we denote by int(.A) the interior of such set.
3A continuous function w : [0,a) || [0, ] ) is said to belong to class K
if it is strictly increasing and w(0) = 0. It is said to belong to class K,
ita=| andw(r) || | asr| |l .



R = RT || 0, and a linear auxiliary control law v = Kz,
with K || R™*"™, where, for a given matrix A, € min(A)
and € pax(A) denote the smallest and largest real part of the
eigenvalues of A, respectively, and for a given vector a of
suitable dimension, we use the notation [[a|% = a’Aa. In
fact [(z, Kx) || ||z]|%€ max(Q+ K'RK), which satisfies (5)
withv = 2,a;1 =0, a2 = e mx(Q@+ K'RK), and X; = R™.

Moreover, it generalizes to the case where [(-) is upper
bounded by a polynomial (without the constant term) in
the state and in the input, and kz(-) is upper bounded by
a polynomial (without a constant term) in the state.

Theorem 1: Consider the constrained system (2) and the
optimization problem Pr(:) with

Sk ) aky

Fl)=) a”32" =lal ©)
i=1 B
Xp={e: V@) | e} &, )

where Xy = {z : 2 || X | Xp || X, kg(z) | U} and
e > 0. If Assumptions 1-5 hold and Pr(z(t)) is feasible for
t = 0, then the origin of the resulting closed loop system (2)
with (12) is asymptotically stable, with region of attraction
consisting of the set of states x || X" for which Pr(z) admits
a feasible solution. ]

1) Computation of the Terminal Set: From [17], we recall
a procedure to systematically compute the terminal set for
the MPC scheme introduced above.

Let R[z] and Alz] denote the set of polynomial and sun-
of-squares functions on x, respectively, with real coefficients.

Assumption 6: Suppose that the function V'(-) is a poly-
nomial function on x and the set X is a basic semi-algebraic
set, i.e., it can be rewritten in the form

{z|| R":qi(x) || 0, ¢; || Rlz], i=1, ..., ng}, (8)
for some polynomials ¢; || R[z], ¢ = 1, ..., ng with
ng || N. O

It can be shown that, the largest level value € such that
condition (7) is satisfied is the solution to the following sum-
of-squares optimization problem:

/ pp—
€= a,sllr,l.g.ii)fan € (93)
st. g — (e =V)s; || Alz], i=1,...,ny (9b)
si || Alz], i=1,...,n4 (9¢)

with deg(V's;) = deg(¢;), i =1,...,nq, where for a given
polynomial function f || R[z], deg(f) denotes the degree
of the polynomial f. Although the optimization problem (9)
cannot be directly solved using convex optimization methods,
due to the product €s; in (9b) that makes the problem
non convex, it can be solved via bisection over the scalar
variable €. In fact, for any fixed €, (9) becomes a convex
feasibility problem, which can be efficiently solved using
available toolboxes for sum-of-squares programming (e.g.
SeDuMi [18], SDPT3 [19], YALMIP [20]).

Remark 1: The representation (8) is quite general, al-
though, if the set X + can not be rewritten as (8), one could
choose the set (8) to be an inner approximation of Xy. In

this case, the proposed algorithm would return the largest
level set of V(-) contained in the inner approximation. [

IV. MAIN RESULTS

In this section, similarly to [1], we compute a trajectory-
tracking controller for the unconstrained model (1a), which
is then used, together with Theorem 1, to design the desired
MPC trajectory-tracking and path-following control laws.

Since we wish to control a vehicle with constrained inputs,
some assumptions on the constraint sets ¢/ and G and on
the desired vehicle velocity vq(t) are expected in order to
guarantee that a solution to the control problem exists.

Assumption 7 (Bounded Desired Velocity): The desired
vehicle velocity is bounded as ||vg(t)]| || €,/ || 0, with
€ || R/ 0- O
A. Auxiliary Control Law

Consider the error e := R/(p — pq) — €, where € is a

given nonzero arbitrarily small constant vector of appropriate
dimension. Note that as the error goes to zero the vehicle
position converges to an arbitrarily thin tube, the e-tube,
centered around p(-), i.e., [p —pall || el ase] O.

It is possible to show that

¢ =—Ae+ Au— R'py (10)
with
) 1 0 —€3 €2 J
A:Jl € ) or A = ;0 €3 0 —€
O —€1 ) J
0 —€2 €1 0

for the 2-D case or 3-D case, respectively, where €; denotes
the ith component of the vector e.

Proposition 1 (Trajectory-tracking controller): Consider
the system (la) in closed-loop with

u=k(R,e,pa) = A (R'pa — Ke), (11)

where A := A/(AA’)~!, K is a given positive-definite
matrix with suitable dimensions, and € is such that A is full
rank. Then, the origin e = 0 of the closed-loop (10) with
(11) is a global exponentially stable equilibrium point.
Proof: Consider the function V' = (1/2)e’e. Combining
its derivative V = e¢ = ¢ (—Ae+ Au — R'pg) with the
control input (11) we obtain V- = — ¢/(A+ K)e = —¢'Ke,
where we used the fact that A is a skew-symmetric matrix for
which 2’ Az = 0, ||z holds, which using standard Lyapunov

theory, concludes the proof. |
Note that Assumption 7 implies k(-,e,-) | V(e) with
) ) ik ) )
V(e) := conv J J — AKe, by,...,by, | {:I:l}J
J bnu Enu J

where k; := € ||[A];]|, n,, denotes the dimension of the input
space and, for a given set A and matrix A, conv.4A and
[A]; denote the convex hull of A and the ith row of A,
respectively.



Assumption 8 (Feasibility of the Auxiliary Law): The
control law (11) is feasible in a neighborhood of e = 0, i.e.,
k(R(t),0,va(t)) || int @), (||| [0, ). 0

Assumption 8 guarantees that once e = 0, i.e., the vehicle
entered the e-tube around the path, a feasible input that keeps
the error equal zero always exists. Since, due to the time-
varying nature of k(R(t),0,v4(t)), this assumption can be
difficult to be a priori verified, later in this Section IV-D an
alternative version is presented.

B. MPC for Trajectory-tracking

In this section Problem 1 is solved using Theorem 1
together with the control law from Proposition 1.

Corollary 1 (MPC for Trajectory-tracking): Consider the
constrained system (1) and the control problem Problem 1.
Let @},([0,T];2,t;) be the solution to the optimization
problem P;,.(z,t;) described by

J,(z,t) = ut,%(l)nT])Jtr(z yti, uer ([0, 7))
s.t.

1?(6) = R(e)o(e) e |l (0,77
R(e) = R(e)A(€) i e |l (0,77
e(T) || &, Jp(0) R(0))= =

e(e) = R(e)'(p(e) —pa(ti +€)) —e |le | [0,T]
() = Jon(t) e(e) )| u e || [0, 7]

with
Jir (2, t5, ([0, T))) := ) el

0
+ [[(Atier = R'palts + €)[[Hde + azlle(T)||?

where ay = %ﬁg?m, Q@ and O are a positive-definite
matrix and a posit%e—semideﬁnite matrix respectively, with
suitable dimensions, and Es(e) = Je: 1e’e|| € ), for any
positive constant € and positive- deﬁmte matrix K such
that k(R(t),e,0(t) | U, lle || &) [t || [0,] ).
If Assumptions 7-8 hold and the optimization problem
P, ((p(t), R(t)),t) is feasible at initial time ¢ = 0, then
the sampled-data MPC feedback law defined by

tis (p(t:), R(t:)),t:),

solves Problem 1 and the region of attraction coincides with
the set of initial positions and headings of the vehicle for
which P, ((p(0), R(0)),0) admits a feasible solution. [
Due to space constraints the full proof is omitted, although
note that the trajectory-tracking problem can be seen as a
dpec1ahzatlon of the path-following problem where pg; =

Pd (am and the proof of Corollary 1 follows sunllarly
to the proof of Corollary 2.

upr P ir(t) = g, (t — Nt [t tiv1)

C. MPC for Path-Following

Corollary 2 (MPC for path-following): Consider the con-
strained system (1) and the control problem Problem 2. Let

t,([0,7]; z) be the solution to the optimization problem
P,¢(z) described by

Lp(2) = apir?[g}m Jps (2, Upg([0,T7))
S.t.

ple) = R(e)u(e) le || [0, 7]

R(e) = R(e)A(€) le || [0, 7]

eaT) || &, Jp(0) R(O) €)== e | [0.7]

é(e) = R(e)'(ple) — pale(€)) —¢ e[| [0,T]
pp(e) = Jor(t) €ty é(e)) le || [0, 7]

)G Jm) ewySu le || [0, 7]

with

o (2, 1,5 ([0,T))) :=

+[l€ = éall3de +ax [le(T)|I*

JT _ €Pd, ?
lelly + fAm,; — R'==
0 @)

€€

0 .
where ay = %ﬁ(?m, Q and O are a positive-

definite matrix and a positive-semidefinite matrix, re-
spectively, with suitable dimensions, o | Rso, and
Ere) = {e:(1/2)'e|| €}, for any positive constant
e || R, and positive-definite matrix K such that
k(R(t),e;o(t)) | U el Ee) [l t [l [0 ). If As-
sumptions 7-8 hold and the optimization problem P, ;(z(t)),
with z(t) = Jp(t) R(t) e(t)), is feasible at initial time
t = 0, then sampled-data MPC feedback law defined by

t=tisz(t)), 1 [t tiva),

solves Problem 1 and the region of attraction coincides with
the set of z for which P, (z) admits a feasible solution. [J

Proof: 1In this proof we first rewrite the error system
(10), and the associated input constraint set, in a new
input coordinates system, then Theorem 1 with the auxiliary
control law obtained from k(-), is applied to stabilize the
redefined error system. Performing the input coordinates
transformation v = € (u) := Au— R'<E¢ apd = (t)é the error sys-
tem (10) becomes é = —A(t)e+v,t || [0 || ), which satisfies
Assumption 1, and the input constraint set {/ and the control

uA,pr,pf(t) = ﬂ;f ( (12)

law k(-) became U : = {v : u || int(U), € || G} =
{ v Aw + R'9¢) || intW), ¢ | G} and
v = ke(e) := — Ke, respectively. Defining the auxiliary

control law as v = k.(e) and ¢ = é,4, which is feasible in
a neighborhood of e = 0 by Assumption 8, we have that
0 || int(i,) and, thus, Assumption 2 is satisfied. Moreover,
the stage cost I(e,v,¢) lellg + llvll% + [lé — €all?
satisfies Assumption 3 and the auxiliary control law with
the Lyapunov function V(-) satisfies Assumption 4 with
]{71 = kQ = 05, a = 2, k3 = Emin(K)s and XD = RQ o1, for
the 3-D case, Xp = R3. Note that, although the auxiliary
control law identically sets ¢ = €4, this does not apply to
the resulting MPC controller, which will optimally choose
the input €. Combining stage cost with the auxiliary control
law, Assumption 5 is satisfied with a2 = €mux(Q+ K OK),
v = 2,and X} = R2? or, for the 3-D case, A} = RS3.



Applying Theorem 1 we obtain Corollary 2, where we made
explicit the dependence on the vehicle model. |

Remark 2: Corollary 1 and Corollary 2 still hold if we
enforce the error vector e to lie inside a connected set
containing the origin in its interior. This can be of interest
for some applications where we would like to enforce the
closed-loop trajectory of the position of the vehicle to be
bounded inside an outer tube around the desired path. [

D. Computation of the Terminal Set

In order to verify the feasibility of the auxiliary control law
in Assumption 8 along all the time ¢, we use the bound from
Assumption 7, and we introduce the following assumption:

Assumption 9: The input constraint set I/ is a closed basic
semi-algebraic set that contains 1(0) in its interior. O

Note that Assumption 9 implies Assumption 8 and can be
considered its robustified version, thus more conservative.

Moreover, note that {e Vi(e) I u }
is a basic semi-algebraic set that inner approximates
{e: ki (e) = — Ke || U} ={e:k(R,e,pa) || U},
which from Assumption 9, is never empty and, following
Remark 1, it can be used to efficiently solve the optimization
problem (9) and to compute the desired terminal set.

Remark 3: It is worth noting that, for the case of vehicles
with unconstrained inputs, i.e. &/ = R", any choice of
€ > 0 is a feasible. Thus, the terminal set can be neglected,
resulting in MPC controllers that globally solve the addressed
motion control problems. [

V. SIMULATION RESULTS

This section illustrates the previous results with a models
of a wheeled robot (2-D) and of an aero vehicle (3-D). For
each vehicle and from different initial configurations, we
simulate and compare the closed-loop trajectories of the sys-
tem with the three proposed controllers, i.e., the auxiliary law
from Proposition 1, the MPC trajectory-tracking controller
from Corollary 1, and the MPC path-following controller
from Corollary 2.

A. 2-D case : Wheeled Robot

Consider the constrained unicycle model (1) with
U = I eJ:u| [-3,3), ¢ [-10,10]). The

desired trajectory is defined as py(t) = J0.4t sin0.4t)
and the auxiliary control law from Proposition 1 is

chosen with ¢ = 0.2 0) and K = 0.815x0,
where for a given n I N>y, we denote by
Inxn || R™™ the identity matrix with given

dimensions. The trajectory satisfies Assumption 7 with

e = {104 041 | 104 04cos0.4tJ4 = |pal.-

Using 7 € with” the” chosen € e  obtain
_ ) )b10.5657) )

V(e) = conv by2.8284 — A0.8e, by,ba || {—1,+1}

which satisfies Assumptions 8-9. The stage cost function
is chosen with () = 10I542 and O = 0.11549, and the
terminal set £y = {e:¢e’e || 3.18} is computed following
the procedure proposed in Section IV-D.

Position Trajectories
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Fig. 1. Trajectories of the position of the wheeled robot in closed-loop
with the proposed control laws for different initial positions and headings,
which are by the arrows. The black dotted line represents the desired path.
One initial configuration, identified with the dotted circle, is chosen and the
details on control inputs, tracking error, and velocity of the desired point
are displayed. In order to emphasize the direction of the desired position
we define b(t) := sign(py(¢)[1, 0]") [|Pa(?)|.

For the path-following controller, the trajectory is
parametrized with the parameter € as pg(e) = Je sine J,
and we chose the desired parameter speed é; = 0.4 || G,
with G = [—1,1]. Similarly to the trajectory-tracking case,
Assumptions 7-9 hold and the MPC path-following and
the stage cost is choose with @ = 101, O = 0.113x2,
o = 2. Numerical results are presented in Fig. 1 where,
for simulation purposes, the system is discretized with a
discretization step of 0.15 seconds. The horizon length is
chosen as T' = 1.5 seconds. Note that, contrarily to the
auxiliary control law and to the MPC trajectory-tracking
controller uy,-(-) where py(t) is a priori fixed, in the MPC
path-following law we have p4(t) = B%é where ¢ is an
input that can be controlled. As effect, during the initial
phase, the desired position goes in the direction of the
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Fig. 2. Using different initial positions and headings of the vehicle,
represented by the arrows, the trajectories of the position of the vehicle
in closed-loop with the proposed control laws are displayed. With the black
dotted line we identify the desired path.

negative x in order to decrease the error e “waiting” for
the vehicle to approach the desired path.

B. 3-D case : Aero Vehicle

Consider the constrained Aero Vehicle model (1)
with U = e ) u|[-3,3, - | | €7,

€ = JI0 10 0J, where we are able to only
control forward velocity, roll and pitch (i.e. the yaw
is identically set to zero). The desired trajectory is

defined as pg(t) = 5 kin(0.08t) cos(0.08t) 0.08t)

and the auxiliary law from Proposition 1 is
chosen with € = )02 0 —02) and
K = I343. The trajectory satisfies Assumption 7
with e =

JD.4 0.4 0.4”. Using ¢ and the chosen ¢
we obtain V(e) = conv /B 1.4142 5,25 b35) — Ae,
by,b2,b3 || {—1,+1}} which satisfies Assumptions 8-9.
The stage cost function is chosen with Q = 10543 and
O = Iyx4, and the terminal set & = {e:e'e|| 1.7} is
computed following the procedure proposed in Section IV-D.

For the path-following controller the trajec-
tory is parametrized with the parameter € as
pale) = (cose, —sine, €)', and we chose the
desired speed ¢4 = 0.08 | G, with G = [-1,1].

Similarly to the trajectory-tracking case, Assumptions 7-
9. The stage cost function is chosen with @@ = 10[3x3,
O = I4x4, 0 = 1. Numerical results are presented in Fig. 2
where, for simulation purposes, the system is discretized with
a discretization step of 0.1 seconds. The horizon length is
chosen as 7' = 1 seconds.

VI. CONCLUSION

The motion control problem of underactuated vehicles
is addressed and two MPC controllers, one for trajectory-
tracking and one for path-following, that guarantee asymp-
totic convergence of the position of the vehicle to a tube

centered around the desired path are presented. Allowing
an asymptotic tracking error, we are able to compute the
terminal set and the terminal law avoiding linearization
procedures. This results in MPC strategies where, for a
given horizon length, the size of the region of attraction is
only limited by the size of the constraints leading to global
solutions for the case of unconstrained systems.
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