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Abstract— This paper presents a solution to the problem of
trajectory-tracking control for autonomous surface craft (ASC)
in the presence of ocean currents. The proposed solution is
rooted in nonlinear model predictive control (NMPC) tech-
niques and addresses explicitly state and input constraints.
Whereas state saturation constraints are added to the underly-
ing optimization cost functional as penalties, input saturation
constraints are made intrinsic to the nonlinear model used in the
optimization problem, thus reducing the computational burden
of the resulting NMPC algorithm. Simulation and experimental
results show that the NMPC strategy adopted yields good
performance in the presence of constant currents and validate
the real-time implementation of the proposed techniques.

I. INTRODUCTION

This paper addresses the problem of trajectory-tracking
control of an autonomous surface craft (ASC) under the
effect of constant ocean currents, taking explicitly into ac-
count the physical limitations of the vehicle. The increasing
demand by marine scientists for adequate technological tools
to sample the ocean at appropriate temporal and spatial scales
motivates the use of ASCs capable of automatically acquiring
and transmitting large data sets to one or more support units
installed on shore. In the future, this practical setup will en-
able scientists to control the execution of sea missions from
the security and comfort of their laboratories. trajectory-
tracking controllers are traditionally based on a two-step
design methodology: a fast inner loop that stabilizes the
vehicle’s attitude and, using a time-scale separation criterion,
a slower outer loop that relies on the kinematic equations
of the vehicle and converts the tracking errors into inner
loop commands. An integrated approach to the design of
inner-outer loop control structures for autonomous vehicles
moving in 3D space was proposed in [1] and [2]. The
methodology adopted relied on linearization techniques for
linear controller design about trimming trajectories, together
with gain scheduling techniques to switch among the linear
controllers. The interested reader is referred to [3] and [4]
for a discussion of topics related to this circle of ideas, and
[5] for the application of similar techniques to the control of
the DELFIMx ASC. It is also worth pointing out that some
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Fig. 1.

Delfim ASC system sea trials.

authors use nonlinear or adaptive control techniques to tackle
the ASC control problem [6], [7].

The design methodology proposed is formulated in the
scope of nonlinear model-based predictive control (NMPC)
(see [8] and [9]), in line with the methodology developed in
[10] for an autonomous rotorcraft. The control law adopted
here is obtained by solving on-line, at each sampling instant,
a finite horizon open-loop optimal control problem and using
the actual state of the vehicle as the initial state. The resulting
optimization problem is solved numerically using the quasi-
Newton method to compute search directions and resorting
to the Wolfe conditions in a line search algorithm to solve
a step size optimization subproblem [11]. Throughout this
work a nonlinear dynamic model of an ASC derived from
first physics principles is used. Based on the nonlinear model
derived, a trajectory-tracking error-space model is proposed
that, when linearized about trimming trajectories, yields a
time-invariant system. Furthermore, the intrinsic physical
limitations of the actuators are incorporated in the design
model using smooth saturation functions. This improved
model allows for the optimization algorithm to generate valid
control actions, even without using constraints in the cost
functional. The key contributions of this paper include: i) the
use of a conveniently defined trajectory-tracking error-space
that is rooted in a physically sound nonlinear vehicle model,
ii) the incorporation of the intrinsic physical limitations of
the vehicle into the design model; iii) the use of simple
and well established optimization techniques to solve the
trajectory-tracking NMPC problem for a full nonlinear model
of an ASC under constant disturbances, yielding a controller
structure that lends itself to real-time implementation; and iv)
the simulation and experimental evaluation of the methodol-
ogy, providing insightful information about the performance
of this strategy and its real-time implementation using the
DELFIM catamaran ASC, shown in Fig. 1.

The paper is organized as follows. Section II presents a



summary of the ASC dynamic model, Section III formulates
the NMPC problem by describing the control problem, the
constraints, and the optimization algorithms. Simulation and
experimental results from sea trials are presented in Section
IV, whereas Section V contains the main conclusions and
discusses issues that warrant further research work.

II. CATAMARAN MODEL

This section describes the dynamic model of an ASC,
which has two hulls, two propellers driven by electrical
motors, and a submerged torpedo-shaped sensor container,
attached to the vehicle by a central wing-shaped structure
(see [12] and [13] for an in-depth presentation of this model
and a description of the catamaran surface craft). Adopting
standard notation in the field, let {I} denote an inertial
coordinate frame and {B} a body fixed coordinate frame
attached to the vehicle’s center of mass. Further consider the
position “p; = [z y]T of the origin of {B} with respect to
{I}, the linear velocity v = [u v]T of frame { B} relative to
{I} and expressed in { B}, the heading angle v that describes
the orientation of frame {B} with respect to {I}, and the
angular velocity r of frame {B} relative to {I}, expressed
in {B}. In what follows, let the generalized variables for the
horizontal plane motion be given by v = [u v T]T, n =

[z y ¢, and 7 = [X Y N]', which denote the
generalized velocity, position and force vectors, respectively.
The actuation vector is given by n = [n. ng|T, where
n. and ng denote the common and differential modes of
the propellers’ speed of rotation, respectively. With this
notation, the generalized equations of motion for the vehicle
kinematics and dynamics are defined by

n=Jmnv,
Mv+C(v)v =7(v,v,n),

where J(n) is the rotation matrix from {B} to {I}, M is
the rigid body inertia matrix, and C is the matrix of Coriolis
and centripetal terms.

A model that captures the effect of constant currents on
the ASC dynamics can be obtained by rewriting the above
equations in terms of the vehicle’s velocity relative to the
fluid. It is assumed that the generalized velocity results from
the sum of two components v = v, + J(n)~' vy, where
v, is the vehicle’s generalized velocity with respect to the
fluid expressed in the body frame {B} and v is the fluid
generalized velocity described in the inertial frame {I}. To
obtain the new dynamic equations depending on v, instead
of v, note that the generalized force T can be decomposed
as 7(U,v,,n) = Maop, + 71(v,,n), where My is a
constant parameter matrix. Considering that 79(v,,n) =
—C(v,)v, +T1(v,,n) and M3 := M — M, is a full rank
matrix, it is a matter of algebraic manipulation to show that
the kinematic and dynamic equations of motion are given by

n=Jmv, +vy, (1)
v, = Mgl T2(V,,n) . 2)

A. Generalized Error Dynamics

This section presents a generalized error-space to describe
the vehicle’s motion about trimming trajectories in the ab-
sence of currents. Consider the equations of motion presented
in (1) and (2) without the effect of constant currents (that
is vy = 0), yielding v, = v, and let v, 1., and n,
denote the trimming values of the state and input vectors.
At trimming, the generalized velocity satisfies v, = 0,
implying that n. = 0. It can be shown that the trimming
trajectories are straight lines and circles described by the
vehicle at constant speed. These trajectories can be fully
described by the parameter vector & = [V, TC]T where
Ve = ||[vellz = Vu? 4 v2. Therefore, £ fully parameterizes
the set of achievable trimming trajectories.

The generalized error vector between the vehicle state and
the desired trajectory is defined as

Ve V—V,
Xe = |Ne| = J_1<;r'> (77 - T’c) B
X Jo T dt

where IT denotes the projection matrix IT = [Iox2  0Oax1].
Note that designing the controller to drive the error vector
component x; to zero will provide integral action. In the new
coordinates, the error dynamics take the form

b, = ©
he = V_J_l(ne) Ve — Q(”) Ne > (3)
Xi = Hne

where Q(v,) = S([0 0 7]T) and S(a) stands for the skew-
symmetric matrix that verifies S(a) b = a x b. Using (3), it
is straightforward to show that the linearization of the error
dynamics about v, = 0 and n, := n — n. = 0 is time
invariant. The ASC error model described in (3) can also be
rewritten as

Xe = f. (Xe,ne) -

In most practical mission scenarios involving ASCs, the only
available velocity measurements are those of the velocity
of the vehicle relative to the fluid, provided by a Doppler.
Therefore, the implementation of this error-space uses the
velocity relative to the fluid v, that is, v, ~ v, — V..

B. Intrinsic Input Saturation

As only the error states and inputs are used within the
optimization problem, the definition of input constraints on
the actual vehicle inputs could be achieved either by includ-
ing additional constraints or by using variable constraints for
the error inputs at each sampling instant along the prediction
horizon. Alternatively, even complex physical constraints can
be easily incorporated in the nonlinear design model of the
vehicle, as decribed below.

Let the new inputs i = [fi. 74)7 be defined as smoothly
saturated functions of the regular inputs n = [n. ng]7,
so that the dynamic equation is now given by v, =
M; ! 7o(v,,fi(n)). The saturation functions are derived
from the basic function a(a) = %\al’ applying translations
and scaling both to the function and its derivative, such that



inside the bounds @ = a and outside the bounds a tends
smoothly to the maximum value a,,,4, or the minimum value
amin- For the type of vehicle considered in this work, it is
necessary to impose a minimum value for the common mode
input n., and also bounds for the differential input, which
depend on the current value of the common mode input. The
saturation function of the common mode input is defined as

e S (P
i €+ le—fe n.>E
Ne(ne) = T yne—ee M c ,
Ne—¢
€t T s Me<E

with €, = n.,, —eand e, =n,,,, +¢€ where 0 <e <1
is a constant (typically 0.01), that defines the length of the
smooth transition. The saturation of the differential input
is given by the function 74(7.,ng), obtained using the
same approach presented above. In brief, considering that
n € N C R", the procedure described above defines the
new saturated input vector as n € R"», simplifying the
optimization problem formulation.

C. Discretization and Delay Modeling

In what follows, the control problem is formulated as a
discrete-time open-loop optimal control problem. For this
reason, the equations of motion of the vehicle are described
as difference equations. Considering the notation aj :=
a(kTs), for some time-dependent vector a(t) and sample
time Ty, the difference system equations are obtained using
the forward Euler discretization, yielding

Xeprn =~ Xep, T T fe(Xemnek)) = fd(xek7nek) .

To model the delay between the instant the state variables
X, are measured and the instant a new control action
n., ., is made available, the model is augmented with an
extra delay state. Considering the new state vector xX; :=

T xT' 1T the input vector u; := n,,, and f(xy,u;) ==

[Xek X’I‘Lk T T

[ fa(xey,%n,)" nl |7, the model takes the form
Xk4+1 = f (Xk, llk) . (4)

III. MODEL PREDICTIVE CONTROL PROBLEM

In this section the NMPC problem is formulated as a
discrete-time open-loop optimal control problem with finite
horizon, subject to the discrete nonlinear model equations as
well as state and input saturation constraints. From (4), the
vehicle dynamics can be modeled as a discrete-time state-
space equation with state x; € X and input uy € U, where
X C R™ and U C R" denote the sets of admissible state
and control vectors, respectively. At each instant of time, the
NMPC algorithm uses the nonlinear model of the vehicle and
the current state to predict the evolution of the system within
a predefined time horizon. For simplicity, each instant & is
considered to be the initial instant of the horizon prediction,
so that in the rest of this section xj4; and uy; are denoted
as x; and u;, respectively. Let N be the prediction horizon of
the control problem, U = {uy,...,uy_1} the sequence of
control inputs, and X = {xq, ..., Xy} the sequence of state
vectors generated by that control sequence. The saturation

constraints for the state and input sequences are defined by
the conditions X € Xy and U € Uy, where Xy = {X :
X; € X,Vi:o’”"]\[} and My = {U tu; € U,VZ‘ZO’,“’Nfl}.
Using (4) and denoting the model function as f; := f(x;, u;),
the model constraint can be written as

F]w(X,U) = [(fo - Xl)T (fN_1 - XN)T]T =0.

Given these constraints, the NMPC problem can be defined
as the nonlinear optimization problem

U* = arg n{iTn J &)
s.t. XeXy,Uely (6)
Fy(X,U)=0 O

where J = Fy + Z,figl L;, F;, = %xiTPxi, L, =
2 [xF' Qx; + ul Ru;], whereas P, Q, and R are symmet-
ric positive definite matrices. In brief, the NMPC objective
is to find, at each instant k, the optimal control sequence U*
with horizon N, such that the resulting state sequence X*
together with U* minimize the cost functional J without
violating the state and input constraints imposed by (6).
Following a by now standard approach, the constrained
optimization problem presented above can be solved by
reformulating it as an unconstrained optimization problem

and using gradient methods to estimate the optimal solution.

A. State and Input Saturation Constraint

The saturation constraints defined in (6) are included in
the optimization problem to complement the intrinsic input
constraints described in Section II-B and enable the definition
of mission specific bounds for both state and input vectors.
These constraints can be incorporated in the cost functional
as a penalty function Fr (x,u), which is zero-valued for x €
X and u € U and behaves as a quadratic function outside
these sets. Defining the feasibility sets for state and input
vectors as X = {x € R : z0) < z0) < z() Viz1,..n.}
and U = {u € R™ : o < o® <70 v .1,
respectively, the penalty function is defined as

Faou) =3 fo@?) + 3 fo(u®) |
j=1 =1

Where fS (CL) = % hQ(‘a - acenter' - arange) Weq, Acenter +— (E“i’
@)/2, Grange = @ — Qceniers Wq 1S @ positive scalar weight,
whereas h(a) = a if a > 0, and h(a) = 0 otherwise.

B. Unconstrained Optimization Problem
Adding the saturation constraints to the optimization cost
functional, the new problem can be written as
U* = arg ml}n J )
s.t. F]\4 (X, U) =0 (9)
where J = FN“‘Z?:)l L; ,, F; = F;+Fr(x;,0) and L; =
L; + Fr(x;,u;). The elimination method using Lagrange
multipliers is used to solve the model constraint (9). Intro-

ducing the Lagrange multiplier sequence A = {A,..., AN}
and the Hamiltonian H; = H (x;,u;) = L; + A\, , f;, after



some algebraic manipulations, the cost functional J can be
rewritten as
N—1
J = FN — )\%XN + Z |}HZ —A?Xi] + Hy.
i=1
For a fixed initial state xg, the first order conditions of
optimality yield

oJ 0 H;
= —X=0, Vi1 . N_1, 10
% x. 1,.,N—1 (10)
oJ 0FN
— = —— - Ay=0, 11
8XN aXN N = ( )
oJ 0 H;
= L =0, V- 1, 12
Bu, B, , Vi—o,...,N-1 (12)
where %i}‘ — %El + gi Xiy1 and %f; _ 6x7 af Ait1.

Because in the cost functional the Lagrange multlphers
sequence is multiplied by zero value terms, A;4+1(f; — x;41),
they can be arbitrarily chosen. In particular, by choosing
Ay = 25 and Ay = 9% foralli = N —1,....1, the
first order conditions of optlmallty reduce to (12). Thus an
iterative algorithm based on the first order gradient method
can be readily applied to estimate U*, whereby at each
optimization iteration j, the control sequence is updated

according to

U+l — gl £ s AW , (13)

where s denotes the step size and AY) the search direction.
The optimization algorithm can be summarized as follows.

Algorithm 1: Minimization algorithm for the NMPC un-
constrained problem.

1) Initialize X(@, U®© and j=0;

2) Compute {\;},i=N,...,1;

3) Compute {%H } 1= O SN —1;

4) Compute the search direction AU ;
5) Compute the step size s using Wolfe conditions;
6) Compute UUHY using (13) and XU+ = {x;} using
Xii1 —f(xl,ui) fori=0,...,N —1;
7) If [|[VJW| || > e: repeat from (2) else, apply 4y to
system and set uo = {t1,...,an_1}.
The search direction is obtained using the quasi-Newton
method, AV = —DU VH®|), where VHD|y()
is the sequence of vectorized Hamiltonian derivatives

(7) .
A7), forall i = 0,...,N — 1, and DY is an

3
vee | —5ui—
estimate of the inverse matrix of the second-order derivative
of the Hamiltonian sequence, as detailed in [11].

The line search optimization subproblem is numerically
solved using the Wolfe rule. This approach guarantees a
decrease of the cost functional, as the well known Armijo
rule does, and ensures reasonable progress by ruling out
unacceptably short steps [11]. Consider the step size opti-
mization subproblem defined by

. .
s* = argmin ¢(s) ,

where ¢(s) = JUTD = j(X(j+1)7U(j+1))’ with U@+
as in (13) and its derivative is given by ¢'(s) = dj;j:l)

The Wolfe algorithm finds an acceptable step size, which is
an estimate of the optimal step size.

A formal stability analysis of the proposed NMPC method-
ology is beyond the scope of this paper, noting that signifi-
cant work on related approaches is available in the literature
(see [8] and references therein). From the literature, it can be
concluded that the stability of the proposed algorithm relies
on the choice of the horizon N, the parameter matrices P,
Q. and R, as well as the terminal cost function, F(xy). In
summary, considering a locally stabilizing terminal control
law, kf(x), and respective positively invariant terminal set
Xy, it must be guaranteed that the system converges to the
terminal set, which, by definition, ensures convergence to the
equilibrium point if the terminal control law is used, through
an appropriate definition of F'(xy). Although necessary for
the formal convergence analysis, most NMPC techniques do
not require the explicit use of the terminal set or the terminal
control law for the computation of the NMPC control law.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, the performance of the nonlinear NMPC
controller introduced above is first evaluated in simulation
by drawing a comparison with the results obtained with
a basic LQR gain switching methodology (see [14] for a
similar approach using H synthesis). In the results presented
hereafter, the ASC nonlinear model described in Section II is
parameterized for the DELFIMx Catamaran and used both
in the NMPC control algorithm and plant simulation. The
simulations where carried out in an Intel Pentium Centrino
processor at 1.7 GHz, using Matlab/Simulink with C mex-
functions. The reference trajectory, defined in the inertial
frame, was selected to illustrate the behavior of the control
algorithms in extreme conditions, which include discontinu-
ities in the reference velocities and non zero initial errors,
and is composed of three different sections: i) a straight line
(lve]l = 1 m/s and r. = 0 rad/s), to be tracked between
1N, = 03x1 and n, = [72 0 0]/, with initial conditions
vo = [06 00 and ny, = [0 —1 — x/4); ii) one
fourth of a circle turning to port side (||v.| = 1.5 m/s
and r. = —3 deg/sec); and iii) a complete circle turning
to starboard (||v.|| = 1 m/s and r. = 1.6 deg/sec). The
sample time is 7y, = 0.2 s and the horizon is N =
sample times, or equivalently, 6 seconds. The precision of
the solution is determined by the algorithm stop conditions,
e g, [T —JUV| <1072,

Two different scenarios were simulated in order to
highlight the major differences between the LQR and
NMPC controllers: 1) trajectory-tracking without current;
and 2) trajectory-tracking with a constant current (v; =
[-0.1 0.2 0] m/s). The simulation results of these two
scenarios are presented in Fig. 2, showing the trajectories
described by the ASC using the NMPC and LQR controllers,
as well as the time evolution of the position error and
the actuation. It can be seen that both the LQR and the
NMPC control methodologies achieve the tracking objective,
with or without constant current. However, the LQR method
presents larger excursions in actuation both at the initial stage
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Fig. 2. Simulation results

and during the transitions between sections, which generally
translate into larger position errors. Moreover, the control
effort demanded by the LQR method is far greater than that
of the NMPC, and it even violates the conditions for valid
operation (by having |ng| > n.). The major limitation of the
NMPC method is the computation time needed to determine
the next control action, which must be smaller than the
sampling time T = 0.2 s. For the specified simulations, this
threshold was never exceeded and the average and maximum
CPU times obtained in the absence of currents were 0.016 s
and 0.14 s, respectively, whereas in the presence of a constant
current these values increased slightly to 0.023 s and 0.16 s.

The real-time implementation of the trajectory-tracking
NMPC methodology for ASCs presented in this paper is
also experimentally validated in this section. The vehicle
used for these sea trials is the ASC DELFIM catamaran,
shown in Fig. 1, which was designed, built, and instrumented
by IST/ISR. The vehicle is equipped with a MEMSENSE
nanoIMU and a global positioning system (GPS) unit work-

ing in differential mode, from which the position, attitude,
and velocities of the vehicle in {I} can be computed using
well known Kalman filtering techniques [15]. In order to
enable real-time implementation of the NMPC strategy, the
controller is implemented in a dedicated onboard computer
featuring a Intel® Core™ 2 Duo T9550 processor, with 4GB
of memory and Ubuntu 12.04 operative system with the
Robotics Operative System (ROS) software framework. The
ASC Delfim was tested in the Lisbon Oceanarium lake, in
Portugal, using a trajectory very similar to the one used in the
simulation results and a horizon of N = 50 sampling periods.
This is a harsh trajectory, with abrupt changes in velocity
and direction, and is used with the objective of testing the
robustness of the proposed algorithms.

The main goals of presenting these experimental results
are twofold: the validation of the proposed NMPC strat-
egy for real-time control of ASCs and the evaluation of
performance of different configurations of the error-space
model. In particular, two different error-space vectors are
considered: 1) the complete error-space vector, as defined
in (II-A), which includes position integral action; and 2)
the error-space vector without integral action, defined as
x. = [V] nZ]T. The results from the described sea-trials
are shown in Fig. 3, which provides the time evolution of the
generalized position errors, actuation, and the computation
time. It can be seen that both algorithms were able to
successfully control the catamaran along the desired trajec-
tory. The analysis of these results shows that the position
tracking error is always lower than 1.21 m, when using
integral action, and below 0.85 m without integral action.
Nonetheless, the average error is lower when using integral
action, 0.26 m, than when no integral states are considered,
0.45 m. This is the result of demanding more from the NMPC
controller, naturally yielding lower steady state errors, even
in the presence of disturbances or unmodeled dynamics. Fig.
3(d) shows the CPU time that the algorithms used in each
sampling period to compute the next actuation values. As
the CPU time is limited above by the sampling time, the
implemented algorithms are forced to abort the optimization
procedure whenever the elapsed time values go beyond
1.25T,, maintaining the previous control value, and saving
the optimization terminal conditions conditions to enable a
better initialization value for the next sampling period. It
can be seen that the algorithm that does not use integral
action is much faster, with a maximum CPU time of 92
ms. Conversely, the integral action gets the NMPC algorithm
close to the CPU limit, as the maximum CPU time is reached
during some transitions between trimming trajectories. How-
ever, this does not compromise the operation of the vehicle.

V. CONCLUSIONS

This paper presented a NMPC strategy for motion control
of ASCs under the effect of constant currents. A nonlinear
model of an ASC catamaran is used to define an error-space
dynamic model, which is then used by the NMPC algorithm
to find the adequate control action. In contrast to the standard
approach in NMPC literature, the actuation constraints were
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Fig. 3. Trajectory-tracking NMPC sea trials data.

incorporated into the model so that, while working with an
error dynamics model, every control action provided by the
NMPC algorithm is always valid without affecting the overall
computational time. The simulation and experimental results
validate the real-time implementation of the proposed NMPC
strategy and show that the presented solution can effectively
steer the vehicle along a demanding reference trajectory and
in the presence of constant currents.

For some vehicles, the use of trajectory-tracking may
impose performance bounds on the controlled system. As
some of these bounds are not present when using path-

following, and bearing in mind mission scenarios with no
time-critical requirements, further modifications shall include
the formulation of a path-following error-space. Additionally,
it is important that the model of the vehicle include wave dis-
turbances in order to test the control algorithm performance
under more realistic scenarios.
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