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Abstract— This paper addresses the problem of adaptive state
and parameter estimation of open loop unstable plants using
a multiple model structure. A state estimate is obtained as
a probabilistically weighted sum of the estimates produced
by a bank of individual observers. Model identification and
convergence of the dynamic weights in the Multiple Model
Adaptive Estimation (MMAE) for open-loop unstable plants are
analyzed and the effect of the control action (by a controller
in the loop) is studied. In the present paper we show that the
techniques introduced in MMAE for open-loop stable plants
and in the absence of control action are applicable to open-
loop unstable plants with a stabilizing controller in the loop.
A distance-like pseudo norm between the true plant and the
identified model is developed and furthermore we show that
the model identified is the one that is the closest to the true
plant model in the defined norm among all models in the bank.
The performance and convergence of the MMAE procedure are
illustrated with Monte-Carlo simulation runs using the model of
an inverted pendulum installed on a system of masses, springs,
and dampers.

I. INTRODUCTION

The design of a single state-observer for a given plant
requires exact knowledge of the plant parameters for superior
performance. In practice, parameter uncertainty will impact
the performance and robustness of the observer. In fact,
incorrect modeling in the observer design may lead to large
estimation errors or even error divergence [1]. To cope
with this problem, adaptive estimation algorithms (where the
adaptation is with respect to the uncertainty in the plant pa-
rameters) have been proposed in the literature. Among these,
Multiple Model Adaptive Estimation (MMAE) algorithms
have received special attention [2]–[4]. Notice however that
the use of multiple models for Adaptive Estimation goes back
to the 1960s and 1970s when several authors including [2],
[3], studied Kalman filter based estimators.

In the stochastic version of the MMAE [2]–[4], a separate
discrete-time Kalman filter (KF) is developed for each “se-
lected model” (SM) defined by an hypothesized parameter
vector in the unknown parameter set. The resulting set of
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KFs forms a “bank” where each local KF generates its
own state estimate and an output error (residual), as shown
in Fig. 1. The bank of KFs runs in parallel and at each
sampling instant the MMAE uses a nonlinear function of
the measurement residuals of each SM to compute the
conditional (a posterior) probability pi that the filter selected
be the one corresponding to the true plant model. The state
estimate is a probabilistically weighted combination of each
KF estimate. The rationale is that the highest probability
should be assigned to the state estimation provided by the
most accurate KF, and lower probabilities assigned to the
remaining KFs.

In the last decade, MMAE have been the subject of
considerable research effort that is patent in a vast number of
publications; see [5]–[7] and the references therein. MMAE
is at the root of many techniques for estimation, navigation,
tracking, and surveillance. It is also the basis for Multiple-
Model Adaptive Control, see [6], [8]–[10]. However, as far
as we could ascertain the work reported is limited to open
loop stable plants and fails therefore to address the effect of
a stabilizing controller in the loop.

In [4], by introducing an information theoretic measure,
the authors analyzed the convergence of the conditional
probabilities pi and showed that the one corresponding to
the KF designed for the closest to the actual system (in a
stochastic norm sense) converges to one, while the others
tend to zero. The theoretical setup exploited in [4] is limited
to open loop stable plants in the absence of control action.
Similar results for open-loop stable plants in the absence
of control action are derived in [3] using the Kullback
information measure.
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Fig. 1. The MMAE architecture



The main contribution of this paper is the extension of the
MMAE structure to open loop unstable plants, showing that
the a posterior probability corresponding to the model closest
to the true plant converges to one. Moreover, we develop a
distance-like pseudo norm between the true plant and the
identified model (which depends on the controller that is
used in the loop).

The structure of the paper is as follows. In section II we
review the main issues of MMAE and define the structure
of a standard MMAE. Section III summarizes our main
results. Section IV illustrates the performance of the MMAE
algorithm proposed through computer simulations with a
model of an inverted pendulum installed on a Mass-Spring-
Dashpot mechanical system. The conclusions are summa-
rized in section V.

II. THE MULTIPLE-MODEL ADAPTIVE
ESTIMATOR

This section introduces a class of MMAEs in a stochastic
setting. A MMAE relies on a finite number N of selected
models chosen from the original set of (possibly infinite)
plant models and consists of: i) a Posterior Probability
Evaluator (PPE) of N weighting signals and ii) a bank of
N discrete-time observers, where each observer is designed
based on one of the selected models adopted. The condi-
tional probabilities are provided by a discrete-time dynamic
equation called Posterior Probability Evaluator (PPE). Fig.
1 shows the structure of the MMAE in which the plant
is described by a LTI discrete-time equation, w(t) and
v(t) are plant disturbance and measurement noise sequences
respectively, and the observers are designed using different
values of the uncertain parameters. We assume that the plant
model is subjected to parameter uncertainty θ ∈ Rl. In what
follows we consider multiple-input-multiple-output (MIMO)
linear time-invariant (LTI) discrete plant models of the form

x(t+ 1) = Aθx(t) +Bθu(t) +Gθw(t), (1)
y(t) = Cθx(t) + v(t),

where x(t) ∈ Rn denotes the state of the system, u(t) ∈ Rm

its control input, y(t) ∈ Rq its measured noisy output, w(t) ∈
Rr an input plant disturbance that can not be measured, and
v(t) ∈ Rq is the measurement noise. The vectors w(t) and
v(t) are zero-mean, mutually independent white Gaussian
sequences, with covariances cov[w(t);w(τ)] = Qδtτ and
cov[v(t); v(τ)] = Rδtτ , respectively. The initial condition
x(0) of (1) is a Gaussian random vector with mean and
covariance given by E{x(0)} = 0 and E{x(0)xT (0)} =
P (0). The matrices Aθ, Bθ, Gθ, and Cθ contain unknown
constant parameters denoted by the vector θ ∈ Θ ⊂ Rl

where Θ is some compact set.
Consider a finite set of candidate parameter values ϑ :=
{θ1, θ2, . . . , θN} indexed by i ∈ {1, . . . , N}. We propose the
following MMAE. The state, output, and parameter estimates
are given in the form of

ẑ(t) :=
N∑
i=1

pi(t)ẑi(t), (2)

where the pair (ẑ(t) and ẑi(t)) shall be replaced by (x̂(t) and
x̂i(t)), (ŷ(t) and ŷi(t)), or (θ̂(t) and θ̂i(t)). The estimates of
the state x(t), output y(t), and parameter vector θ at time t,
are denoted by x̂(t), ŷ(t) and θ̂(t), respectively. The variables
pi(t) are conditional probabilities (which are defined below).
In (2), each x̂i(t); i = 1, . . . , N corresponds to a “local” state
estimate generated by the ith (steady state) Kalman filter [3]

x̂i(t+ 1) = Aθi x̂i(t) +Bθiu(t) +Hθi

(
y(t)− Cθi x̂i(t)

)
,

(3a)
ŷi(t) = Cθi x̂i(t), (3b)

Hθi = AθiPiC
T
θi [CθiPiC

T
θi +R]−1 (3c)

where Pi is the solution of the discrete Riccati equation

Pi = AθiPiA
T
θi + LθiQLT

θi

−AT
θiPiC

T
θi [CθiPiC

T
θi +R]−1CθiPiAθi , (4)

where it is assumed that [Aθi , Gθi ] and [Aθi , Cθi ]; i =
1, . . . , N are controllable and observable, respectively. The
symmetric positive definite matrices Q and R are the co-
variance matrices of the plant disturbance and measurement
noise, respectively. In the sequel we introduce the dynamics
for the weights in (2).

A. Posterior Probability Evaluator (PPE)
The key to the MMAE algorithm is the so-called posterior

probability evaluator (PPE) which evaluates, in real time,
the a posterior (conditional) probability that each model
generates the data, i.e. the probability that θ = θi; i ∈
{1, . . . , N}. Thus, the PPE together with the bank of KFs
represent the identification subsystem.

The a posterior probabilities can be computed on-line by
the PPE using the recursive formula

pi(t+ 1) =
βie

−wi(t+1)∑N
j=1 pj(t)βje−wj(t+1)

pi(t), (5)

where pi(0) are the prior model probabilities and wi(t) and
βi are defined as

wi(t) :=
1

2
[y(t)− ŷθi(t)]

TS−1
i [y(t)− ŷθi(t)], (6a)

βi :=
1

(2π)
q
2

√
|Si|

, (6b)

where q is the dimension of the measurement vector y(t) and
Si = CθiPiC

T
θi
+R is the covariance matrix of the residuals

of the ith KF.
Equation (5), which generates the time-sequence of the

a posterior probabilities pi, arises from the application of
Bayes rule (see [3], [11]). We impose the constraint that the
initial conditions pi(0) be chosen such that pi(0) ∈ (0, 1)
and

∑N
i=1 pi(0) = 1 for obvious reasons.

III. MAIN RESULTS
To the best of our knowledge, previous work on MMAE

is restricted to open-loop stable plant models. Furthermore,
the effect of the control action has not been studied. In [4],
Baram and Sandal proved that the output estimation errors



of the individual KFs in the MMAE structure, for open-loop
stable plants in the absence of control action, are ergodic
and stationary. Then, under the ergodicity and stationarity
condition, they showed that the conditional probability pi
corresponding to the KF designed for the closest model to
the actual system (in a well defined norm sense) converges
to one, while the others tend to zero.

In this section, we study the convergence of the a posterior
probabilities assigned to the individual KFs in the MMAE
structure for unstable plants with a stabilizing controller in
the feedback loop. For the time being, let us assume that the
output estimation error residuals, ỹi(t) = y(t) − ŷi(t), are
stationary and ergodic.1 We will soon verify these assump-
tions.
Assumption (1): We will assume that the innovation (resid-
ual) sequences in all the KFs are stationary and ergodic.
Let Yt ≡ {y(0), y(1), · · · , y(t)} condense the history of the
measurements from the beginning up to time t. Consider the
conditional probability density function fi

(
y(t)|Yt−1, θi

)
.

For each KF we have fi
(
Yt|θi

)
=

∏t
k=1 fi

(
y(k)|Yk−1, θi

)
.

We will denote p(θi|Yk) (shorthand for p(θ = θi|Yk)) as the
a posteriori probabilities. It is for the recursive calculation
of these quantities that the bank of conditional KFs comes
into play. The following equation, which is at the root of (5)
applies:

p(θi|Yk) =
fi
(
y(t)|Yt−1, θi

)
N∑
j=0

fj
(
y(t)|Yt−1, θj

)
p(θj |Yk−1)

p(θi|Yk−1)

(7)

For two different KFs based on θi and θj , if

fj
(
Yt|θj

)
> fi

(
Yt|θi

)
, (8)

or, equivalently, if

log fj
(
Yt|θj

)
> log fi

(
Yt|θi

)
,

we will say that the jth KF is preferred over (more likely or
probable than) the ith KF based on the observation vector
Yt. Define the likelihood ratio for the sequence of Yt

kji
(
Yt

)
=

fj
(
Yt|θj

)
fi
(
Yt|θi

) (9)

or, equivalently,

log kji
(
Yt

)
= log fj

(
Yt|θj

)
− log fi

(
Yt|θi

)
,

where log kji
(
Yt

)
can be regarded as a measure of the

information contained in Yt that can be used to select
between jth and ith KFs.2 Similarly, one can compute the
conditional likelihood ratio

kji
(
y(t)|Yt−1

)
=

fj
(
y(t)|Yt−1, θj

)
fi
(
y(t)|Yt−1, θi

) (10)

1We assume that a controller that stabilizes the open-loop unstable plant
for all values of the parametric uncertainty set is in the feedback loop.

2Positive values of log kji
(
Yt

)
mean that the jth KF is more likely to

be the optimal observer than the ith KF, based on the observation vector
Yt, while negative values show that the ith KF is preferred over the jth

KF.

or, equivalently,

log kji
(
y(t)|Yt−1

)
= log fj

(
y(t)|Yt−1, θj

)
− log fi

(
y(t)|Yt−1, θi

)
which can be interpreted as a measure of the information
contained in y(t) that can be used to select between jth and
ith KFs. We can define the mean information in y(t) for
preferring the jth KF over the ith KF as

dt(j, i) = E{log kji
(
y(t)|Yt−1

)
}. (11)

When dt(j, i)
3 is positive we can conclude that the jth KF

is more probable to be the true KF than the ith KF. The
above variable can be regarded as a yardstick against which
to select the “best” KF trough the bank. It is easy to see that
the true KF is always preferred over other KFs.

The conditional probability density of y(t) given the past
observation Yt−1 when θi is the true parameter is

fi
(
y(t)|Yt−1, θi

)
=

exp{−1
2 ỹi(t)

TS−1
i ỹi(t)}√

(2π)q|Si|
, (12)

where q is the dimension of ỹ(t) and Si = CθiPθiC
T
θi
+ R

is the covariance of the innovation sequence. In fact, in
this case the conditional probability density of y(t) given
the past observation Yt−1 when θi is the true parameter,
fi
(
y(t)|Yt−1, θi

)
, is a gaussian distribution with mean ŷi(t)

and covariance E{ỹi(t)ỹTi (t)}, which we denote by Si.4

Let us denote by θ⋆ the true parameter in the plant; for
each KF in the bank (not necessarily the true one) we have:

E log{fi
(
y(t)|Yt−1, θi

)
} (13)

= −q

2
log(2π)− 1

2
log(|Si|)−

1

2
tr(S−1

i E{ỹTi (t)ỹi(t)})

= −q

2
log(2π)− 1

2
log(|Si|)−

1

2
tr(S−1

i S⋆
i )

where Sj
i is the covariance of output estimation sequence

when the true parameter in the plant is θj but the KF is
designed based on θi.5

Now, it is easy to write d(j, i) as

d(j, i) = (14)
+ E log{fj

(
y(t)|Yt−1, θj

)
} − E log{fi

(
y(t)|Yt−1, θi

)
}

+
1

2
log(|Si|) +

1

2
tr(S−1

i S⋆
i )−

1

2
log(|Sj |)−

1

2
tr(S−1

j S⋆
j ).

Let
Γ⋆
i ≡ 1

2
log(|Si|) +

1

2
tr(S−1

i S⋆
i ), (15)

from which it follows that

d(j, i) = Γ⋆
i − Γ⋆

j . (16)

3When the uncertain parameter θ is constant, it is reasonable to assume
that in steady state y(t) and y(τ), t ̸= τ have the same “amount” of
information for selecting between the KFs. So we drop the t in dt(j, i) and
use d(j, i) instead.

4According to the assumption of stationarity, Si is independent of t.
5We should highlight here that the notation of the term ỹi(t) in (13) is

ambiguous, since it may denote either the residual of the ith KF designed
based on the assumption that for the true plant θ = θi, or the residual of
the ith KF irrespective of the true value of θ in the plant. Clearly, in (13)
ỹi(t) has the second meaning.



It is also useful to mention that

d(⋆, i)− d(⋆, j) = Γ⋆
i − Γ⋆

j

so that
d(⋆, i) ≥ d(⋆, j),

if and only if
Γ⋆
i ≥ Γ⋆

j .

Theorem 1: For the jth and ith KFs in the bank, under the
assumption (1) (ergodicity and stationarity of the residuals)
we have

lim
t→∞

kij
(
Yt

)
= 0 (17)

if and only if
Γ⋆
i ≥ Γ⋆

j (18)
Proof: Note that

log kij
(
Yt

)
=

t∑
n=1

log kij
(
y(n)|Yn−1

)
. (19)

Under assumption (1) we can compute the expected value of
log kij

(
y(n)|Yn−1

)
as

lim
t→∞

1

t

t∑
n=1

log kij
(
y(n)|Yn−1

)
= E{log kij

(
y(n)|Yn−1

)
}

= dn(i; j) = Γ⋆
j − Γ⋆

i . (20)

If
Γ⋆
j ≤ Γ⋆

i (21)

then by comparing (19), (20), and (21), it follows that

lim
t→∞

log kij
(
Yt

)
= lim

t→∞

t∑
n=1

log kij
(
y(n)|Yn−1

)
= −∞

(22)
which implies that

lim
t→∞

kij
(
Yt

)
= 0. (23)

This theorem shows that the KF which has the minimum Γ⋆
i

will be selected.
When the open loop plant is stable and in the absence

of control action, Γ⋆
i is equivalent to the Baram Proximity

Measure (BPM), see [4], [10] for more information on the
BPM. Based on the results of Theorem 1 we can define a
(Pseudo) norm on the set of unstable plants given by

m(θi; θj) := |Γ⋆
i − Γ⋆

j |. (24)

It should be stressed that the above mentioned norm on
unstable plants depends on the controller in the feedback
loop. In fact, one cannot compute the term S⋆

i in (15) without
a stabilizing controller in the loop.

Lemma 1: The defined norm in (24) is a Pseudo Norm.
�

Proof: It is not difficult to see that

m(θi; θi) = |Γ⋆
i − Γ⋆

i | = 0.

To prove the symmetry property, use the fact that

m(θi; θj) = |Γ⋆
i − Γ⋆

j | =
|Γ⋆

j − Γ⋆
i | = m(θj ; θi).

The triangle inequality follows from

m(θi; θp) +m(θp; θj) =

|Γ⋆
i − Γ⋆

p|+ |Γ⋆
p − Γ⋆

j | ≥
|Γ⋆

i − Γ⋆
p + Γ⋆

p − Γ⋆
j | =

|Γ⋆
i − Γ⋆

j | = m(θi; θj).

The question that should be answered at this stage is how
to compute Γ⋆

i , i ∈ {1, . . . , N} in (15). The Si in (15) is
computed by solving the Riccati equation corresponding to
the ith KF. However, in the computation of S⋆

i the effect of
the controller should be considered. Let us assume that the
dynamics of the stabilizing controller in the loop are given
by

xc(t+ 1) = Acxc(t) +Bcy(t) (25)
u(t) = Ccxc(t).

Estimating the states of the plant when the true parameter in
the plant is θ⋆ using the ith KF yields x(t+ 1)

xc(t+ 1)
x̂i(t+ 1)

 =

 Aθ⋆ Bθ⋆Cc 0
BcCθ⋆ Ac 0
HθiCθ⋆ BθiCc AEi

 x(t)
xc(t)
x̂i(t)


+

 Gθ⋆ 0
0 Bc

0 Hθi

[
wt

vt

]
, (26)

where AEi = Aθi −HθiCθi . Let

Aaug
i =

 Aθ⋆ Bθ⋆Cc 0
BcCθ⋆ Ac 0
HθiCθ⋆ BθiCc AEi

 ,

Gaug
i =

 Gθ⋆ 0
0 Bc

0 Hθi

 , Qaug =

[
Q 0
0 R

]
.

Then, the matrix

Ξi = lim
t→∞

E{[x(t)T xc(t)
T
x̂i(t)

T ]T [x(t) xc(t) x̂i(t)]},

is computed by solving the Lyapunov equation6

Ξi = Aaug
i ΞiA

aug
i

T
+Gaug

i QaugG
aug
i

T
,

from which it follows that

Γ⋆
i = Caug

i ΞiC
aug
i

T
+R,

where Caug
i = [Cθ⋆ 0 Cθi ]. The existence of Γ⋆

i implies the
stationarity of the residuals, ỹi(t). Moreover, it follows from
[12] (pp. 464-467) that the innovation sequence, ỹi(t), is
ergodic iff

lim
t→∞

1

t+ 1

t∑
n=0

|Ri(n)|2 = 0,

6Such a solution always exists since the matrix Aaug
i has all its

eigenvalues inside the unit circle.
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Fig. 2. Inverted pendulum installed on Mass-Spring-Damper (IP-MSD),
test-bed example.

where |R(n)| denotes the determinant of the matrix

Ri(n) =E{[y(t)− ŷi(t)][y(t+ n)− ŷi(t+ n)]T }{
Caug

i Ξi C
aug
i

T
+R, n = 0

Caug
i Ξi C

aug
i

T
(Aaug

i )n, n > 0.

Since all the eigenvalues of Aaug
i are inside the unit circle,

we obtain ∥Aaug
i ∥ < 1 from which it follows that

lim
t→∞

t∑
n=1

|Ri(n)|2 = |Caug
i Ξi C

aug
i

T |2 lim
t→∞

t∑
n=1

|Aaug
i |2n

=
|Caug

i Ξi C
aug
i

T |2

1− |Aaug
i |2

< ∞,

which implies that

lim
t→∞

1

t+ 1

t∑
n=0

|Ri(n)|2 = 0

and hence, it follows that the innovation sequence are ergodic
(see from [12] (pp. 464-467)).

IV. ILLUSTRATIVE EXAMPLE

The proposed MMAE procedure is now evaluated through
an example of an inverted pendulum installed on the two-
cart mass-spring-damper (IP-MSD) depicted in Fig. 2. As
shown in Fig. 2, IP-MSD consists of a thin rod attached
to a moving cart connected to a wall with a known spring
and damper and to another cart through a known damper
and a spring with unknown stiffness coefficient. Whereas
a normal pendulum is stable when hanging downwards, a
vertical inverted pendulum is inherently unstable, and must
be actively balanced in order to remain upright, typically by
moving the cart horizontally as part of a feedback system. We
have designed a robust controller which stabilizes the plant
for all the values of the parametric uncertainty set, see [13]
for details on designing robust controllers for this plant using
the Mixed-µ synthesis [14]. Throughout this section we use
a sample time of Ts = 1 ms in all the numerical simulations.
The system in Fig. 2 includes random colored disturbance
forces, d(t) and f(t), acting on mass M1 and m. The control
force u(t) acts upon the mass M2. The disturbance forces
d(t) and f(t) are stationary first-order (colored) independent
stochastic process generated by driving a low-pass filter,
Wd(s), with independent continuous-time white noises w1(t)

and w2(t); with zero mean and intensities of W1 = 0.1 and
W2 = 10−5,

d(s) =
.8

s+ 0.8
w1(s), (27)

f(s) =
.8

s+ 0.8
w2(s). (28)

The position of the cart 1, x1(t), (in meters) and the angle
of the pendulum θ(t) (in radians) are measured outputs
that are corrupted by independent zero mean white noise
with intensity of 10−7 and 10−8, respectively. The following
parameters in the equations are fixed and known:

M1 = M2 = 1 (kg); m = .25 (kg); k2 = .15 (N/m);
b1 = b2 = .1 (N s/m); L = 1 (m). (29)

The upper and lower-bounds for the uncertain spring con-
stant, k1, are:

k1 ∈ {k1 : 0.5 6 k1 6 2.5}. (30)

Five KFs based on the nominal values of

k1 ∈ {0.632, 0.94, 1.27, 1.64, 2.177}. (31)

were designed. In the case that the true uncertain parameter
is not one of the nominal values selected in (31), theorem
1 tells us that the a posterior probability assigned to the KF
whose model is closest to the true plant (in the sense of the
above defined norm) converges to one (and clearly the other
probabilities converge to zero).
Fig. 3 shows the distance of the true plant (for different val-
ues of uncertain parameter) and the nominal models selected
by (31). It follows from the Fig. 3 that if the uncertain k1
lies in [0.5 0.797] (N/m), then the probability assigned to
the first KF will converge to one, since m(0.632; k1) is the
smallest among m(0.94; k1), m(1.27; k1), m(1.64; k1) and
m(2.177; k1). In other words, the model adopted based on
the first nominal value in (31), i.e. 0.632 (N/m), is the closest
to the true plant when uncertain k1 lies in [0.5 0.797] (N/m).
Similarly, the model adopted based on the second nominal
value in (31), 0.94 (N/m), is the closest to the true plant
when the uncertain k1 lies in [0.797 1.118] (N/m); similar
conclusions apply to the other cases. Fig. 4 shows the
results of a simple simulation. In this experiment the spring
coefficient k1 is constant (k1 = 1.05 (N/m)). Fig. 4 represents
the time evolution of the a posterior probabilities in the
MMAE and it shows that in about 2 seconds the correct
model is identified. Fig. 5 depicts the time evolution of
the output (x1 and θ) and the estimated output (x̂1 and θ̂),
respectively.

We stress that the performance of any adaptive system
must be evaluated not only for constant unknown parameters
but also, for time-varying parameters which undergo slow
or rapid time-variations. Fig. 6 shows the results of the
simulation where uncertain parameter changes in time. In this
experiment k1 varies according to the sinusoidal waveform
shown in the first subplot of Fig. 6. The model boundaries,
as defined Fig. 3, are also shown (using the dashed lines)
in the first subplot. Note that the a posterior probabilities
respond very fast to the model changes. It is shown that the
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Fig. 4. The a posterior probabilities while k1 = 1.05 (N/m)

MMAE can trace the changes in the uncertain parameter and
adapt accordingly.

V. CONCLUSIONS

This paper studied the application of Multiple Model
Adaptive Estimation (MMAE) techniques to open-loop un-
stable plants. We proved that by having a stabilizing con-
troller in the feedback loop, the residuals of the KFs in the
bank are ergodic and stationary; moreover, we showed that
under the ergodicity and stationarity of the residuals, the a
posterior probability assigned to the KF corresponding to the
model that is closest to the true plant converges to one while
the others probabilities converge to zero. We also developed
a pseudo norm on open-loop unstable dynamic linear sys-
tems. The defined norm depends on the dynamics of the
stabilizing controller in the feedback loop. The performance
and convergence of the MMAE procedure were illustrated
with Monte-Carlo simulation runs using the model of an
inverted pendulum installed on a system of masses, springs
and dampers.
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