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Abstract: The availability of reliable underwater positioning systems to localize one or more
vehicles simultaneously based on information received on-board a support ship or an autonomous
surface vessel is key to the operation of some classes of AUVs. Furthermore, there is considerable
interest in reducing the number of sensors involved in acoustic navigation/positioning systems to
reduce the costs involved and the time consumed in the deployment, callibration, and recovery
phases. Motivated by these considerations, in this paper we address the problem of single
underwater target positioning based on measurements of the ranges between the target and
a moving sensor at the sea surface, obtained via acoustic ranging devices. In particular, and
speaking in loose terms, we are interested in determining the optimal geometric trajectory of
the surface sensor that will, in a well defined sense, maximize the range-related information
available for underwater target positioning. To this effect, an appropriate Fisher Information
Matrix is defined and its determinant is maximized to yield the sensor trajectory that maximizes
the accuracy of the target position estimate that can possibly be obtained with any unbiased
estimator. It is shown that the optimal trajectory depends on the relative velocity of the sensor,
the sampling time between measurements, and the number of measurements acquired for the
FIM computation. Simulation examples illustrate the key results derived.
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1. INTRODUCTION

One of the key issues in the operation of some classes
of autonomous underwater vehicles (AUVs) is the avail-
ability of reliable underwater positioning systems capable
of positioning one or more vehicles simultaneously, based
on information received on-board a support ship or an
autonomous surface vehicle. The info thus obtained can be
used to follow the state of progress of a particular mission
or, if reliable acoustic modems are available, to relay it as a
navigation aid to the navigation systems existent on-board
the AUV. Identical comments apply to a new generation
of positioning systems to aid in the tracking of one or
more human divers, as proposed in the context of the EC
CO3AUVs project, Birk et al. [2011].

Interesting results in the area of sensor networks for
positioning go back to the work of Abel [1990], where the
Cramer-Rao bound is used as an indicator of the accuracy
of source position estimation and a simple geometric
interpretation of this bound is offered. Related work in
this area can be found in Levanon [2000], Martinez & Bullo
[2006], Zhang [1995], Neering et al. [2008], Jourdan & Roy
[2008], Bishop et al. [2010]. In the marine systems field we
can find the works Bahr et al. [2009], Moreno-Salinas et
al. [2011] and Moreno-Salinas et al. [2013].

The body of work referred above exploits the geometric
configuration of multiple acoustic sensors in order to de-
fine the position of a target based on range or bearings
measurements. Because the latter are measured at differ-
ent sensor locations, this makes it possible to determine
the target position. However, in this paper an alternative
approach is presented: a single sensor is used that exploits
both spatial and temporal diversity in order to extract
position information. In particular, we are interested in
determining the optimal trajectory of a single sensor that
will, in a well defined sense, maximize the range-related
information available for underwater target positioning.
We assume that the range measurements are corrupted
by white Gaussian noise. The actual computation of the
target position may be done by resorting to trilateration
algorithms. See Alcocer [2009], Alcocer [2007], and the
references therein for an introduction to this circle of ideas.

The challenge of reducing the number of sensors involved
in underwater acoustic systems has been addressed previ-
ously in the literature in the different, yet related context
of underwater navigation (in contrast with positioning,
which is the core problem considered in this paper). This is
patent in a vast number of publications that tackle the un-
derwater navigation problem by assuming that only ranges



from a moving vehicle to a single beacon/transponder
installed at a known position are available. Early work
along these lines is that of Larsen who pioneered the term
Synthetic Long Baseline navigation, see Larsen [2001], and
Larsen [2000]. Observability is the key issue in this class
of problems. Recently, this problem has been addressed
from diverse perspectives, some of them establishing con-
nections with the multiple vehicle navigation problem.

To some extent, the general problem that we address in
this paper is the dual of the single beacon/transponder
navigation problem referred to above, Here, we are in-
terested in tracking (that is, estimating the successive
position of a) target using a single acoustic device that
measures the ranges from the target to a companion sur-
face vessel. However, due to space limitations we restrict
ourselves to the case where the position of the target is
time-invariant. They key concept exploited is that, instead
of a static surface sensor network, one envisions a surface
vehicle that, by moving along convenient trajectories, ex-
ploits its spatial diversity while measuring ranges to the
underwater platform in order to determine the position
of the latter. An early reference to this problem can be
found in Been et al. [1991] where target motion analysis
(TMA) with respect to an unknown marine platform using
sonar measurements is discussed, i.e., the estimation of the
position and velocity of a target ship, given a sequence of
bearings measurements, is studied; see also Song [1996]
where observability requirements are obtained for three-
dimensional maneuvering target tracking with bearings-
only measurements. Other previous results in this chal-
lenging area go back to the work of Passerieux & Capel
[1998] where optimal control theory is used to determine
the course of a constant speed observer by minimization
of a criterion based of an appropriately defined FIM with
a mixed analytical and numerical procedure. In Oshman
& Davidson [1999] a fixed target location is estimated
from a sequence of noisy bearings measurements, and the
optimal trajectories for bearings-only target localization
are based on the maximization of the determinant of a FIM
subject to some constraints. Other interesting references
on the subject are Fallon et al. [2010] that describes
the experimental implementation of an online algorithm
for cooperative localization of AUVs supported by an
autonomous surface craft, or Arrichiello et al. [2011] where
the problem of observability of the relative motion of two
AUVs equipped with velocity and depth sensors, and inter-
vehicle ranging devices, is studied. Finally, in Scherbatyuk
& Dubrovin [2012] a number of algorithms to position an
AUV based on range measurements obtained with a single
acoustic sensor at the ocean surface are described. The
single moving beacon uses an acoustic positioning system
with long base line. The AUV position is computed using
a Kalman Filter, and the algorithm for mobile beacon
trajectory that minimizes the AUV positioning error is
presented. Motivated by this circle of ideas, in this pa-
per we seek to characterize the optimal trajectories that
a single sensor must execute, in order to maximize the
accuracy with which a target can be localized. From a
practical standpoint, this will provide guidelines as to how
one should operate in practical scenarios.

The key contributions of the present paper are twofold: i)
two different approaches to determine the optimal sensor

trajectories are studied; the first approach computes the
next desired way point for the moving sensor to move to,
the computation being repeated as the mission unfolds,
while the second approach computes a complete trajectory
off-line, ii) a general solution is obtained analytically and
numerically for positioning of a static underwater target
with the above approaches.

The paper is organized as follows. In Section 2 the optimal
sensor trajectory problem is formulated and the assump-
tions underlying the computation of the optimal trajec-
tories are established. Section 3 contains the derivation
of optimal sensor trajectories for the two above different
approaches. Simulation examples are included. Finally,
Section 4 contains the conclusions.

2. PROBLEM FORMULATION

Consider the problem of estimating the position of an
underwater target given a series of measurements of its
range to a moving sensor, the position of which is known
with good accuracy (target positioning problem). In an
estimation theoretic context, the optimal sensor trajectory
can be determined by examining an appropriately defined
Cramer-Rao Lower Bound (CRLB) or Fisher Information
Matrix (FIM), see Van Trees [2001]. Stated in simple
terms, the FIM captures the amount of information that
measured data provide about an unknown parameter (or
vector of parameters) to be estimated. Under well known
assumptions, the FIM is the inverse of the CRLB, which
provides a lower bound for the covariance of the estimation
error that can possibly be obtained with any unbiased
estimator. Thus, ”minimizing the CRLB” may yield (by
proper estimator selection) a decrease of uncertainty in
the parameter estimation process. In particular, the FIM
determinant is used as an indicator of the performance
that is achievable with a given sensor trajectory. Maxi-
mizing this quantity yields the most appropriate sensor
movements.

Given a target positioning problem, the optimal sensor
trajectory depends strongly on the constraints imposed
by the task itself (e.g. maximum number of measurements
used for the computation of the FIM and the type of sensor
that can be used) and the environment (e.g. ambient
noise). In what follows, we assume that the acoustic
sensor used is installed on board an unmanned surface
vessel (USV). As is well known, an inadequate sensor
trajectory may yield large positioning errors. It is therefore
of the utmost importance to define the constraints and
assumptions considered for the problem at hand, stated
next (see also Fig. 1).

• The variance of the range measurement error ω is
constant and equal to σ.

• The USV must localize a static target whose position
is estimated with a fixed number of measurements.

• The initial USV position is arbitrary because it should
not condition the final optimal solution.

• For ranging purposes, the acoustic signals are emitted
at constant intervals of time ∆t and there exists a
delay between the emission by the pinger on board
the USV and the reply from the target.

• The sensor moves with constant speed V (t) = V .
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Fig. 1. Problem Setup: the acoustic signal is emitted at
points Ek and received by the sensor at points Rk.

Notice how the sensor (red) emits the acoustic signal at
time Ek and the reply from the target (green) is received
by the sensor at time Rk, with dk being the distance
between the two above points. Clearly, dk depends on the
velocity of sound in water, the sensor speed V , and the
range distances r′k and rk associated with the ”interrogate
and reply” time travel of the acoustic signal. The emission
point Ek defines the point p′k, the reception point Rk

defines the k − th measurement point pk, and the range
distance measured for the FIM computation is considered
to be rk, i.e., the distance between the target position
q and the point pk, at the moment of the reception of
the acoustic signal. In this theoretical framework it is
considered that r′k and rk, and therefore p′k and pk, are
known, so we can define analytically the distance dk that
separates the emission and reception points. Let cs be the
speed of sound in the water. Then,

dk/V = r′k/cs + rk/cs (1)

Moreover, if γ is the angle defined by r′k and dk, from the

theorem of the cosines it follows that, r2k = r′
2
k + d2k +

2dkr
′
k cos (γ) with

γ = arccos

(

〈(q − p′k) (p
′
k − pk−1)〉

r′k · (∆tV (t)− dk−1)

)

(2)

where <> denotes the inner product between its operands,
see Fig. 1. It follows from (1) that

dk/V − r′k/cs =
√

r′2k + d2k + 2dkr′k cos (γ)/cs (3)

Now taking the square of both sides and rewriting the
equation yields

dk =
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(4)

so that the measurement points may be explicitly defined
considering only the orientation angles αi that the sur-
face sensor takes at the Rk points, and the past known
trajectory information.

As is well known, the FIM associated with a classical
estimation problem is defined as the expected value of
the logarithm of the derivative of the maximum likeli-
hood function, see Van Trees [2001]. In the present case,
straightforward computations yield

FIM =
1

σ2

n
∑

i=1





(uix)
2

(uiy) (uix) (uiz) (uix)

(uix) (uiy) (uiy)
2

(uiz) (uiy)

(uix) (uiz) (uiy) (uiz) (uiz)
2



 (5)

where uij = ∂‖qi−pi‖
∂qi,j

, for i ∈ {1, ..., n} and j ∈ {x, y, z},

pi = Ri, and qi corresponds to the target position at
the moment at which the measurement i is taken (for
this particular case of study, the origin of the inertial
coordinate frame). In this work the simpler situation
where the position of the target is known is studied to
characterize the types of optimal solutions. In a practical
situation, the position of the target is only known with
uncertainty. One can think of an iterative cycle where an
initial estimate of the target position is used to compute
the corresponding optimal trajectory. Once the mission
unfolds the information acquired by the sensor can be used
to refine the underwater target position, after which the
cycle repeats itself. Clearly, having the means to generate,
for an assumed position of the target, the corresponding
trajectory is also advantageous in this case. See Moreno-
Salinas et al. [2013] for a discussion of this circle of ideas
in the case of positioning with multiple sensor.

3. OPTIMAL TRAJECTORY COMPUTATION

In this section we define the trajectory that a moving sur-
face sensor must follow in order to maximize the accuracy
with which a static underwater target can be localized
by resorting to any unbiased estimator. The computation
of the optimal trajectory is done using two different ap-
proaches: i) iteratively, by computing the immediate best
next measurement point in the current sensor trajectory
(to update the FIM), after eliminating the oldest one,
and ii) using batch optimization to compute a complete
trajectory, with a number of points equal to the number
of range measurements available.

3.1 Next optimal range measurement algorithm

Once the mission is running and an initial estimation of
the target position is available, possibly with a large error,
it is necessary to determine the next measurement point,
i. e., the direction in which the single tracker must move in
order to maximize the FIM determinant. Suppose a given
number of measurements have been taken and one wishes
to determine the next point at which a new measurement
should be made. For given values of sensor speed and
sampling time, it is easy to derive the analytical expression
that provides the next optimal point because the new
FIM determinant will only have one unknown parameter,
the new angle αk+1, that defines the sensor movement
direction. As mentioned above, the single tracker computes
the FIM with a given number of measurements, therefore it
is necessary to delete the oldest one in order to update the
FIM. Since the sensor speed V and the sampling time ∆t
are known, the new measurement point yields pk+1 = pk+
[ξ cos(αk+1); ξ sin(αk+1), qz], with ξ = (V∆t−dk +dk+1);
and dk, dk+1 defined as in Section 2.

The derivative of the FIM determinant with respect to
the new direction angle αk+1 can now be computed. We
consider that FIM∗

k is the FIM computed with the current
n known range measurements except the oldest one, and
FIMk+1 is the updated FIM that has been computed
with the new range measurement obtained from a point
to be defined. From the above, the new (unknown) FIM is
given by FIMk+1 = FIM∗

k + FIM ′
k+1, where FIM ′

k+1 is



a 3x3 symmetrical matrix with elements FIM ′
k+1(i, j) =

pk+1,i·pk+1,j

r2
k+1

, with i, j = x, y, z. Thus, the problem to solve

can be defined as that of finding

α∗
k+1 = argmax

αk+1

|FIMk+1| (6)

The derivative of (6) with respect to αk+1 can now be
computed by decomposing the above determinant in terms
of its adjoints, that is,

∂|FIMk+1|

∂αk+1
=

n
∑

i,j

(−1)i+j |Adji,j(FIMk+1)| ·Θ(i, j) (7)

where Θ(i, j) =
∂FIMk+1(i,j)

∂αk+1
and |Adji,j(FIMk+1)| is the

determinant of the adjoint matrix of FIMk+1 with respect
to the element (i, j). The derivatives of each FIMk+1

element with respect to αk+1 are actually the derivatives
of each element of the matrix FIM ′

k+1 with respect to
αk+1. The details are omitted due to space limitations.

Equating (7) to 0 yields the angle that maximizes the
determinant of FIMk+1. It can be easily seen that even
though (7) depends only on αk+1 and an analytical solu-
tion may be defined from this equation, the computation
of the optimal solution is not immediate. In a practical
situation, the optimal value of αk+1 can be obtained by
using the gradient of the FIM determinant, i.e., by using
(7) at the current sensor position to define the desired
sensors direction of motion. In fact, the solution that the
gradient provides is very close to the analytical one.

3.2 Optimal trajectory algorithm

In this approach, we now determine the optimal trajectory
to be followed by the sensor so that the next n range
measurements maximize the positioning accuracy of the
underwater target. Therefore, in contrast to the previous
approach, the whole trajectory of n points is optimized and
a new target position estimate is obtained at each n · ∆t
seconds. The same assumptions about the sensor speed
V , sampling time ∆t, target q, and noise ω still hold for
the scenario at hand, the only difference being that the
optimization procedure deals with n range measurements
to be computed, not just one.

The solution may be computed analytically from the
derivatives of the FIM determinant with respect to the
angles αi, i = 2, · · · , n, that determine the distance and
relative orientation of two consecutive measurements. It
is clear, by considering that the initial sensor position is
known, that we have n − 1 variables αi , i = 2, · · · , n,
and n − 1 derivatives with respect to these angles αi,
so that a system of equations with the same number of
equations and unknowns is obtained. The complexity of
this approach resides in the fact that the process to obtain
the solution of this system of equations is complex and
tedious. Moreover, we must resort to numerical methods
to solve it. Therefore, these derivatives are used in a gra-
dient optimization algorithm. Following the methodology
adopted in the previous section, the derivatives can be
computed as follows:

∂|FIM |

∂αi

=

3
∑

j,k

(−1)j+k|Adjj,k(FIM)| ·
∂FIM(j, k)

∂αi

(8)

where |Adjj,k(FIM)| is the determinant of the adjoint
matrix of the FIM with respect to the element (j, k). The
details are omitted. The optimal solutions are obtained
using a gradient optimization algorithm with the Armijo
rule. As will become clear in the forthcoming examples,
it is interesting to notice that this approach provides
optimal trajectories very similar to those obtained with
the algorithm of Section 3.1. The difference lies in that, for
the approach at hand, the optimal trajectories are defined
with a far less number of iterations of the algorithm, and
therefore, in a practical situation, the optimal trajectory
will be reached faster. At this point it is interesting to
comment that if the values of V , ∆t, and n are the optimal
ones for the target depth so that the maximum theoretical
FIM determinant can be obtained, the solution defined in
Moreno-Salinas et al. [2011] for surface sensor networks is
recovered.

3.3 Simulation Examples

We now present some examples of optimal sensor tra-
jectory computations. For comparison purposes, the two
algorithms described will be computed for each example.
We consider that the optimal trajectories are computed
for n = 5 range measurements but the procedure is sim-
ilar for any number of measurements. The initial sensor
position is p1 = [170, 170, 200]T m and the target is
placed at the origin of the inertial coordinate frame. For
the next optimal measurement algorithm the simulation
is run until the optimal trajectory is reached. The algo-
rithm optimal trajectory is recursively executed 30 times,
therefore 120 points are computed. This algorithm needs
less iterations to compute the optimal trajectory, and the
latter is reached with less measurement points; however,
the computation of the solution is more complex. For each
iteration of the latter algorithm, the first point in the new
trajectory is the last in the old one.

Example 1: In this example, V = 3 m/s and ∆t = 3 s. In
Figure 2(a) the trajectory followed by the sensor is shown
for the next optimal measurement algorithm. The sensor
describes a spiral while it approaches the target position.
In the lower right corner of Figure 2(a) the last 100
points of the simulation that correspond to a limit optimal
trajectory are shown, i.e., the trajectory that the sensor
will keep repeating if the simulation continues, because
this trajectory provides the largest accuracy possible for
the approach adopted. The values of V and ∆t determine
the number of points (or equivalently, time) needed to
reach the optimal trajectory, as will be seen in the next
example. The optimal trajectory is a circumference around
the target projection in the horizontal plane, whose radius
depends directly on the sensor speed V , the sampling time
∆t, and the number of points n used for the computation
of the FIM. In fact, although this is not shown in this
work due to space limitations, the radius of the optimal
trajectory grows with the number of measurements used
for the computation of the FIM. The FIM determinant
computed at each iteration of the algorithm grows from
an initial value around 20m−6 until the final constant
value 220m−6, because the sensor describes trajectories
closer to the optimal one. After 7000 iterations the FIM
determinant has a constant value meaning that the sensor
has converged to the optimal trajectory.
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Fig. 2. Limit optimal trajectories for V = 3m/s and
∆t = 3s; (a) next best measurement algorithm, (b)
optimal trajectory algorithm.

In Figure 2(b) the trajectory followed by the sensor is
shown for the optimal trajectory algorithm. In this case
the final trajectory is reached faster compared with the
previous case. Notice how the optimal trajectory is not
exactly a circumference, the optimal measurement points
are concentrated in two concentric circumferences around
the target projection, and the sensor moves between them
in the optimal trajectory. However, the size of them is
very close to the size of the circumference of Figure
2(a). In the left upper corner of Figure 2(b) the optimal
trajectory is shown for the last 80 measurement points.
The FIM determinant computed for the 30 iterations of the
algorithm grows from 20m−6 until 220m−6. It can be seen
that the maximum FIM determinant obtained is the same,
but it is obtained with less iterations, and in a practical
situation, the optimal trajectory will be reached faster.

Example 2: In this example, V = 5 m/s and ∆t = 5 s.
The values of V and ∆t are larger, and therefore, the
optimal trajectories are reached in less iterations than in
the previous example. Figure 3(a) shows the trajectory
followed by the sensor for the next optimal measurement
algorithm. In this case, the optimal trajectory is reached
in less iterations than in the case shown in Fig. 2(a), that
is, in approximately 1000 iterations. Again, notice how
this final trajectory is a circumference around the target
projection in the horizontal plane, but the circumference
has now a radius of approximately 35 meters, in contrast
to 15 meters in the previous example. Thus, with larger
values of V and ∆t the final trajectory follows a larger
circumference and is computed with less iterations of the
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Fig. 3. Limit optimal trajectories for V = 5m/s and
∆t = 5s; (a) next best measurement algorithm, (b)
optimal trajectory algorithm.

algorithm. The FIM determinant computed during the
simulation grows because the sensor describes trajectories
closer to the optimal one. In this example, the FIM deter-
minant obtained is 10, 000m−6, that is, approximately 50
times larger than in the previous example, thus showing
that it is adequate that V and ∆t be large enough so that
the optimal trajectory can be reached with a lower number
of iterations (for the algorithm considered) while yielding
better positioning accuracy. Of course, the selection of V ,
∆t and n will be mission dependent.

Figure 3(b) shows the trajectory followed by the sensor
for the optimal trajectory algorithm. Notice that the final
trajectory is not a circumference, and the sensor moves
between 2 circumferences. This optimal trajectory is com-
puted in less iterations than in the example of Figure 3(a),
so in a practical scenario the maximum accuracy would be
obtained faster and with less iterations of the optimization
algorithm. Compared to the case shown in Fig. 2(b), the
final trajectory defines arcs of circumferences of larger
radius, similarly to what happened with the Fig. 3(a) case
and its dual case in Fig. 2(a). The optimal FIM determi-
nant is also larger, 10, 500m−6, therefore for larger values
of V and ∆t the determinant of the FIM grows as well.
Moreover, the maximum FIM determinant is obtained in
less iterations of the algorithm. Again the accuracy is
similar to that obtained in the case of Figure 3(a), but
the optimal trajectory is computed with a very significant
less number of iterations and measurement points.

Therefore, for a static target, although both approaches
provide the same maximum FIM determinant and, thus,



the same positioning accuracy for similar mission con-
straints, the latter approach allows for the computation
of the optimal trajectory in less iterations. As a conse-
quence, the optimal trajectory is reached with few sen-
sor movements. Still, this algorithm is more complex to
implement and the computation of the optimal solution
may take more time than in the first approach, whose
implementation is quite easier and faster.

4. CONCLUSIONS

The paper addressed the problem of a single static under-
water target positioning using a single acoustic range mea-
suring device at the surface. The analysis of optimal sensor
trajectories exploited the spatial and temporal diversity
of the measurements taken by the surface sensor. Two
different approaches for the computation of the optimal
trajectories were studied considering a fixed number n
of range measurements. The first approach involves the
computation of the next measurement point that maxi-
mizes the current FIM determinant. The second approach
optimizes the complete trajectory for the number of range
measurements considered. Thus, in contrast with the pre-
vious approach, the sensor trajectory is computed each
time n measurements have been accumulated, instead of
recomputing it after a new range measurement has been
acquired. The examples showed that for a static target
both approaches provide similar accuracies and optimal
trajectories. Future work will address the challenging prob-
lem of positioning single and multiple moving underwater
targets, as well as implementing and testing the efficacy of
the algorithms with real vehicles at sea.
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