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Abstract

In this paper we propose an automatic system for the visual-tracking of
buses in a parking lot, by using a set of Pan-Tilt-Zoom (PTZ) cameras.
It is assumed that the parking lot has specific entry points, so that the
places from where the buses come in are known beforehand. To detect the
buses a background subtraction method is used, being then made an initial
estimation of the bus position through backprojection. This estimate is
then refined by an algorithm that also provides the bus orientation. The
final estimate is then used in a EKF (Extended Kalman Filter) filter to
provide a estimation of the bus next position, which allows to decide the
camera movement. To test the system a simple simulator was developed
using Matlab and Virtual Reality Modelling Language (VRML).

1 Introduction

Task automation has been increasing in a variety of industries and ser-
vices, due to its capability of improving either efficiency and effective-
ness. In this context the work presented in this paper is proposed as a
method to automatically track buses moving in a parking lot. The system
consists of a set of multiple PTZ cameras placed at certain locations of
the parking lot, that begin to track and detect the buses from the moment
they enter it.

In [7] a number of motion modalities for one pan-tilt camera are as-
sessed with respect to omni-awareness or, more precisely, maximizing the
percentage of events found. Starzyk and Qureshi [6] consider multiple
PTZ cameras to track pedestrians (moving events). They design a behav-
ior based architecture which handover tracking inter-cameras and maxi-
mize the zoom of each camera while not loosing tracking of all pedestri-
ans. In our work the events to find and track are moving buses. Contrarily
to the motion of people, the motion of buses can be predicted. In this
work we take the predictions of the motion into account in the design of
PTZ control.

2 Camera Model and Bus Detection

The pin-hole camera model [4, 5] is used in this work to represent the
relationship between world, M, and image, m, coordinates:
m~PM=K[R|t|M (1)
where P is called the projection matrix, K and R the intrinsic and extrinsic
parameters matrices respectively and # is the translation vector.

It is assumed that when a bus enters the parking lot a signal is sent to
notify the system, which then moves the field of view of an available cam-
era to the adequate entry point. From this time onwards the bus detection
is made through a background subtraction algorithm, and a measure of the
bus position is generated by using backprojection. Then an optimization
algorithm uses a bus 3D model to improve this estimation and to calculate
the bus orientation.

2.1 Background Subtraction and Bus Pose Estimation

In order to detect a bus, we start by building a model of the background for
each of the PTZ cameras [3]. This background model allows acquiring a
background image at any pan-tilt-zoom configuration. The current (real)
image is then subtracted to the background image, resulting a logical mask
whose pixels indicate the bus pixels.

The center of mass of the detected bus pixels allows estimating coarsely
the bus location. Backprojection [4] is applied to the mass center (pixel
location) subject to setting the Z coordinate to be in the ground plane.
In practice this corresponds to solving a matrix equation, M = C + oD,
where M is a point in world coordinates (as in equation 1), C the projec-
tion center, D a point in infinity and « is a scaling factor.

2.2 Fine Tuning the Pose Estimation

To fine tune the (coarsely) estimated pose it is used a minimization algo-
rithm that finds the local minimum of a cost function of several variables:
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where A and B are both binary masks (see figure 1 for an example). In
the case of A it is obtained from the background subtraction algorithm of
section 2.1. Relatively to B it is a synthetic mask, generated by placing
a 3D model of the bus in an image of the background and then using it
in the background subtraction algorithm mentioned in 2.1. Initially the
3D model is placed at the position X,Y of the world referential frame,
computed from the backprojection mentioned in 2.1 and with the orien-
tation O obtained from the EKF (see section 3.2) prediction step. With
each iteration of the minimization algorithm, a Levenberg-Marquardt like
algorithm, the X,Y and 6 values are updated so that the value of the cost
function F(X,Y,0) approaches zero. When the search ends, the masks A
and B will ideally be overlapping perfectly.
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Figure 1: (a) Camera view (b) Mask A (c) Mask B (d) Intersection of A
and B

3 Bus Tracking Algorithm

For each bus being tracked there is an associated EKF which is used to
predict the bus position in the next sampling time. The measurements
correspond to the estimation obtained from the bus detection algorithm
mentioned in section 2. The camera pan and tilt angles are then adjusted in
order to position the center of view at the EKF estimation. This guarantees
that in the next sampling time the bus will be kept visible and close to the
image center.

3.1 Bus kinematics model

The bus kinematics model used assumes that: (i) the front wheels can spin
around their axis but have no traction, (ii) the back wheels have traction
but do not spin or slide, (iii) the bus body and wheels are assumed to be
rigid bodies [1, 2]. From these assumptions and the geometric relations
shown in figure 2(a) it was then generated the following discrete kinemat-
ics model, that is used by the Extended Kalman filter in the prediction
step:

Xip1 =X +T vy COS(@k + P+ % . L[]j sinCDk)

Vi+1 =yw+T- vksin(9k+d>k+ % . vfk sin<I>k)

Okt :9k+T'%Sin¢‘k 3)
Vi1 = Vk
Dpt1 =Py

The state variables are the position x, y of the bus front axel shaft center(x,
and yy coordinates of figure 3) and the bus body orientation angle 6. The
model inputs are the bus linear velocity v and the front wheels angle ®
relatively to 0, both assumed to be constant. In what concerns the con-
stants 7 and L they are the sampling interval and the front wheel distance
respectively.

3.2 Extended Kalman Filter

The Kalman filter is a linear quadratic estimation method to compute es-
timates of unknown variables, from measurements corrupted with zero
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Figure 2: (a) Bus model (b) Global view(for buses). (c) North camera view(C}) (d) South camera view(C3)
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Figure 3: Trajectories estimated for each bus and associated uncertainty ellipses: (a) By,(b) Ba,(c) B3,(d) By

mean Gaussian noise. As the original Kalman filter could only be used on
linear systems the Extended Kalman filter was used instead. It assumes a
system of the form:

{Xk-H = f(Xx, &) @)

2% = (X1, M)

The variables X, z; are the state variables and the measurements respec-
tively. In what concerns & and 7, they are zero mean multivariate system
and observation Gaussian noises. The functions f and & correspond to
non-linear functions which are linearized. Then the Extended Kalman
filter equations are applied to obtain the a priori and the a posteriori esti-
mations.

4 Complete System

The complete system takes into account three main components: buses,
cameras, and the 3D world. Buses have autonomous motions (are driven
by on board drivers). The PTZ cameras are mounted at known positions
and orientations of the 3D world. PTZ cameras are controlled automati-
cally to detect and track the buses. The 3D world, the parking-lot floor, is
described as a plane.

At every second of time elapsed, the following tasks are run: (i) Pre-
dict the buses position and orientation with the EKF and compute corre-
sponding uncertainty ellipses. (ii) Assign a bus to a camera taking into
consideration a FIFO multitasking algorithm which takes into account
the uncertainty ellipses’ areas and distances of the cameras to the buses in
pan, tilt and zoom units. (iii) Move each camera to image the coordinate
predicted for its assigned bus (X,Y). (iv) For every image acquired by
the cameras, observe the buses position using the algorithm described in
section 2. (vi) Update the EKF filers using the observations of the buses.

5 Experimental Results

In order to test the complete system a 3D simulator built was developed
in MATLAB using VRML. The buses have predefined trajectories. The
PTZ cameras are controlled automatically.

The simulated system encompasses two cameras (C1 and Cy) and four
buses (B1, By, B3 and By ). Figure 2(b) shows an aerial view of the parking
lot at a simulation iteration where the four buses were all in the scene. The
center of the world referential frame is at the center of the floor plane of
figure 2(b). The cameras were positioned at the red dots location and
oriented in the direction of the "red triangles" base associated to each red
dot. Typical images acquired by the camera are shown in figures 2(c) and
2(d).

At the end of the experiment the plots presented in figure 3 were ob-
tained. In these graphs the rectangles position and orientation represent
the estimates obtained from the EKF update step for each bus, at a given
simulation moment. The elliptical lines are the limits of the uncertainty
area associated with the EKF estimation. As can be noted in these graphs
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the program was able to keep track of the positions of the buses during
all the simulation. There were however certain positions where the esti-
mation was not accurate. However the system was always able to recover
from the errors and continue tracking the buses.

6 Conclusion and Future Work

In this paper an algorithm to detect and track multiple buses was devel-
oped as well as a simulator to test it. The approach used showed encour-
aging simulation results.

There are however some improvements that need to be applied to
make this project feasible in reality. For example the background sub-
traction algorithm has to be improved so that it can handle the lighting
changes that would occur in the real world. Another example, a camera
controller needs to be developed to deal with the dynamics of the motors
moving the camera.

The simulator itself also has much space for improvement. As an ex-
ample, a number of light changes that occur in real world can be simulated
by an artificial sun moving according to the time of the day.
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