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Abstract A cylindrical section is characterized by a 7 dimensygp state vec-

tor as an array of the cylinder parameters centre pos;ir,i&\h orientation
This paper addressesSamultaneous Mapping and Localization SLAM  opy, and radius logpn,) expressed in a logarithm form
methodology for a system capable of performing visual inspections in
an unknown gnwronment domain assumed to be a tubular shaped struc- Yok = [pn\;ﬁv O ; |09(Pnk)} . ©)
ture (TSS), using a monocular camera. Under S assumption, a geo-
metrical model was developed, which directly maps visual features o A kaiman Filter estimates optimal states over time, given observa-
planar images onto a 3D representation, through a backprojection g i the presence of noise of a dynamic system driven by noise inputs.
cedure, thus enabling a scenario reconstruction composed of cyihdRgyis estimation is computed recursively as a Markov chain model, i.e. it
segments. The EKF framework allows reconstructing the path descrifgd requires the previous estimate 1 of a given state at instankeAn
by the camera and its visualized structure, based in visual landmarks,d€ymption required by this framework is to use linear systems and obser

scribed by feature detectors. vations models with zero-mean multivariate Gaussian distributed noise.
The Extended Kalman Filter (EKF) allows handling non-linear systems
1 Introduction functions and measurement models

Estimating the motion of a camera moving insidRiaular Shaped Struc- X'Z‘ :jr(lx')‘(*l’ Uie) t{k

ture (TSS) involves considering various aspects. Two important aspects = N (X, Ui +

g;etrfgeez\ljm)?]er;gasggr?srg f{ﬁfﬁizm;fé?ewgn?zf &f'gt?;nﬁtugﬁds@vﬁere & and &, denote system and measurement noise. Propagating

curved sections aIIowliJn ufrée moveraeelt éﬂ the ca;Jnera Mogt]ion car;dée uncertainties and updating the system vector are handled through lin-
. » afowing . T e ﬁzation, with a first order Taylor series expansion, of the state tramsitio

estimated by registering the texture, retrieving distinctive visual featurens .

S : .,_and measurement functions.

and dewarping into a mosaic. Hence we start from the standard idea of

reconstructing points of the scene and then focus on fitting a simple 3D .

cylindrical model to the various tube sections, which makes simple $hé System Dynamics

dewarping step [4].

4

The non-linear state transition model functforis defined as the stacking
of two independent state transition proces$gsndfy, for both camera

2 Estimation of Tubular Structure and Camera and cylinder state vector andy, which are influenced by an additive
Motion zero-mean Gaussian transition nagge- A\ (0, Q):
Assuming the world as &SS domain navigated by a forward hand-held f=[fx:fy]. ®)

like monocular camera (see Fig 3), smoothly moving with a constant The constant velocity model allows smooth velocity variations with
speed inside a tube without revisiting previous positions, one can detgfo-mean Gaussian distributed acceleration nujse A/(0,Nyy). The
mine the features 3D locations, which are strapped to a cylindrical sg&eleration noise has linear and angular compomgnts[a”; 9¢]. Un-
tion wall with radiusp. By thoroughly defining a state vectecomposed der this model assumption, and defin¥y = aVAt and Q€ = 9CAt as
of both cameras and tHESS geometrical parameters estimates, and fiwe linear and angular velocities impulse between a transitionsteme

corporating a geometrical observation model reliable enough to peodiin express the camera state transitigng = fx(Xi, nwic) [1, 2]:
relevant estimations of the cylindrical section geometrical parameters, th

simultaneous camera localization and mapping can be achieved. r\liVCl r\liVC + (V\liv + VW) At
Gd | = | ok al(el+o%)a 6
A - W ( )
0 Vi1 v +V
Y (;.)g+l af + QC

2.3 Observation Model

In this work, we use the pin-hole model to describe geometrically the 2-D
imaging of a 3-D point:

; ¥
Figure 3: TSS Model (left) and tube parameters (right). & o PRI @
whereM = [X Y Z 1]T denotes a 3D pointh = [uv 1]T is the respective
21 Extended Kalman Filter image, andP is the projection matrix [3]. Conversely, to describe the 3-D
location of pointsM in space, imaged as in the image plane, one can

In this section we define a filtering methodology that allows estimatirggate the 3-D ray leaving the camera optical cerand piercing the
both the TSS shape and the camera motion. The first step consisigiage plane ain as a line which intersects the plane whates lying.
defining the state vector of the filtes, as a joint composition of cameraC andD define a line in 3-D space, where every point in the line is thus

posex and cylinders geometrical parametgrs given by the following equatioM = C + aD, with a scaling factoo €
[—o0, 4-00]. The full expression for representing a paimback-projection
Sk = [Xk ; Yk (1) intoMis
M = —p23 'Pa+apizg 'm (8)

where the semicolon denotes vertical stacking of vectors. . . . )
. L . . wherep1o3 is @ 3x 3 matrix representing the first three columns of the
Camera motion behavior is modeled with a constant velocity dynamic.

. L . . réjection matrixP, andpy is the fourth column.
model. The state vectay provides the position/'®, orientationg}© and pro)  andpa : o
. W C Uelocifi . ) The observation model describes the process of implicitly represent-
both linearv,’ and angulaty; velocities at every instant, i.e.

ing observed featured in a 3-D parameterization as a function of the
systems stats parameters by inferring constraints to the environment
Xy = [r}ﬁvc ; q}ﬁvc ; V\(V ; af] . (2) structure and consequently to the features 3-D locations. At an irlstant
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(a) (b) (©) (d)
Figure 1: VRML setup (a). View of the camera inside the tube (b). Desgrpf the tube for a single step (c). Result of dewarping several stips (

(@) (b) (c)
Figure 2: Real setup (a). Inside view of the tube (b). Dewarping of tlagérior one step (¢). Result of dewarping several steps (d).

the state transition functiohis applied tosy, retrievingsc;1 = f(sc,nk). (e.g. SIFT or SURF) detection and matching, enhanced by the RANSAC
A\ is the input set of features in pixel coordinates acquired at the instaethodology for outliers removal. Figure 1 shows various steps and re-
k, whereas\y, 1 is the set of features in following instakt+- 1 and the sults of the process. The filtered nature of the estimated tubular structure
observation model output. The observation model can thus be writtearas camera motion implies a dewarping which has small variations, ex-
a functionh: pansion or compression, along the tube length. In Figure 1(d) the small
variations along tube length are compensated vertically (the small black
/A\k+1 = hyr1(Skr1:) (9) regions in the mosaic indicate this compensation).

The second experiment consists of evaluating the developed algo-

' rithm with a set of images retrieved from a real camera navigation inside
1o : : " atexturedTSS The setup and the results can be seen in Figure 2. The
der wall, piercing the 2-D image plane where all features lie. With they,,iing mosaic, Figure 2(d), shows some horizontal oscillation denoting
information present in the state vectr i.e. camera posg and cylin- nqer_ or over-estimation of camera rotation. This is due to biased-obser

ders section parameteyg, one can estimate the 3-D location of everyyisns such as the ones associated to an unbalanced number ofsfeature
feature in set\y through a back-projection methodology, and COMPULE, ind the camera

the re-projection of this 3-D coordinates with the next instantl state
vectorse, 1 to a 2-D image plane, thus acquirifg. ; features.

Consider that the set of featurdg, 3-D locations on th@SSsurface
are the intersections of rays leaving the camera ce}jﬁ:e/vith the cylin-

5 Conclusion

3 Dewarping This paper aimed at presenting a robust model to solv&theltaneous

) o ) ~ Localization and Mapping problem with a priori structural environment
The process of dewarping the interior of the tube is done by finding R}P\%wledge, assumed to b&d8S. The cameras pose estimate and the cam-
transformation between the pixels in the "open" images and the pixe'ér%i‘trajectory can be recovered, up to a scale factor, assuming tteigon

the "closed” scenes viewed by the camera insid& 8% Figure 4 shows gpeed dynamic model, allowing a posterior description of the environment
that relation. Knowing that relation, each pixel in the "open" image ha§,cture and its reconstruction.

a corresponding 3D position in reference to the camera’s centre. The
projection of that 3D point in the "closed" image is the respective pi?gelC
in the "open" image. A final mosaic is stitched showing the full insi knowledgments
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