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Abstract

This paper addresses aSimultaneous Mapping and Localization SLAM
methodology for a system capable of performing visual inspections in
an unknown environment domain assumed to be a tubular shaped struc-
ture (TSS), using a monocular camera. Under theTSS assumption, a geo-
metrical model was developed, which directly maps visual features from
planar images onto a 3D representation, through a backprojection pro-
cedure, thus enabling a scenario reconstruction composed of cylindrical
segments. The EKF framework allows reconstructing the path described
by the camera and its visualized structure, based in visual landmarks de-
scribed by feature detectors.

1 Introduction

Estimating the motion of a camera moving inside aTubular Shaped Struc-
ture (TSS) involves considering various aspects. Two important aspects
are the number of degrees of freedom of the camera motion and the shape
of the environment structure. In this paper, theTSS includes straight and
curved sections, allowing free movement of the camera. Motion can be
estimated by registering the texture, retrieving distinctive visual features,
and dewarping into a mosaic. Hence we start from the standard idea of
reconstructing points of the scene and then focus on fitting a simple 3D
cylindrical model to the various tube sections, which makes simple the
dewarping step [4].

2 Estimation of Tubular Structure and Camera
Motion

Assuming the world as aTSS domain navigated by a forward hand-held
like monocular camera (see Fig 3), smoothly moving with a constant
speed inside a tube without revisiting previous positions, one can deter-
mine the features 3D locations, which are strapped to a cylindrical sec-
tion wall with radiusρ . By thoroughly defining a state vectorscomposed
of both cameras and theTSS geometrical parameters estimates, and in-
corporating a geometrical observation model reliable enough to produce
relevant estimations of the cylindrical section geometrical parameters, the
simultaneous camera localization and mapping can be achieved.

Figure 3: TSS Model (left) and tube parameters (right).

2.1 Extended Kalman Filter

In this section we define a filtering methodology that allows estimating
both the TSS shape and the camera motion. The first step consists of
defining the state vector of the filter,s, as a joint composition of camera
posex and cylinders geometrical parametersy :

sk = [xk ; yk] (1)

where the semicolon denotes vertical stacking of vectors.
Camera motion behavior is modeled with a constant velocity dynamic

model. The state vectorxk provides the positionrWC
k , orientationqWC

k and
both linearvW

k and angularωC
k velocities at every instant, i.e.

xk =
[
rWC

k ; qWC
k ; vW

k ; ωC
k

]
. (2)

A cylindrical section is characterized by a 7 dimensionynk state vec-
tor as an array of the cylinder parameters centre positionpn

W
k , orientation

onk, and radius log(ρnk) expressed in a logarithm form

ynk =
[
pn

W
k ; onk ; log(ρnk)

]
. (3)

A Kalman Filter estimates optimal states over time, given observa-
tions in the presence of noise of a dynamic system driven by noise inputs.
This estimation is computed recursively as a Markov chain model, i.e. it
only requires the previous estimatek−1 of a given state at instancek. An
assumption required by this framework is to use linear systems and obser-
vations models with zero-mean multivariate Gaussian distributed noise.
The Extended Kalman Filter (EKF) allows handling non-linear systems
functions and measurement models

xk = f (xk−1,uk)+ εk
zk = h(xk,uk)+δk

(4)

whereεk and δk, denote system and measurement noise. Propagating
the uncertainties and updating the system vector are handled through lin-
earization, with a first order Taylor series expansion, of the state transition
and measurement functions.

2.2 System Dynamics

The non-linear state transition model functionf , is defined as the stacking
of two independent state transition processes,fx andfy, for both camera
and cylinder state vectorx and y, which are influenced by an additive
zero-mean Gaussian transition noiseεk ∼N (0,Qk):

f =
[
fx ; fy

]
. (5)

The constant velocity model allows smooth velocity variations with
zero-mean Gaussian distributed acceleration noisenx ∼N (0,Nxk). The
acceleration noise has linear and angular componentsnx = [aW ;ϑC]. Un-
der this model assumption, and definingVW = aW ∆t andΩC = ϑC∆t as
the linear and angular velocities impulse between a transition step∆t, one
can express the camera state transition,xk+1 = fx(xk,nxk) [1, 2]:




rWC
k+1

qWC
k+1

vW
k+1

ωC
ω+1


=




rWC
k +

(
vW

k +VW
)

∆t
qWC

k ×q
((

ωC
k +ΩC

)
∆t
)

vW
k +VW

ωC
k +ΩC


 . (6)

2.3 Observation Model

In this work, we use the pin-hole model to describe geometrically the 2-D
imaging of a 3-D point:

m̃ ∼ PM̃ (7)

whereM̃ = [X Y Z 1]T denotes a 3D point,̃m = [u v 1]T is the respective
image, andP is the projection matrix [3]. Conversely, to describe the 3-D
location of pointsM in space, imaged asm in the image plane, one can
relate the 3-D ray leaving the camera optical centreC and piercing the
image plane atm as a line which intersects the plane whereM is lying.
C andD define a line in 3-D space, where every point in the line is thus
given by the following equationM = C+αD, with a scaling factorα ∈

[−∞,+∞]. The full expression for representing a pointm back-projection
into M is

M =−p(123)
−1p4+αp(123)

−1m (8)

wherep(123) is a 3×3 matrix representing the first three columns of the
projection matrixP, andp4 is the fourth column.

The observation model describes the process of implicitly represent-
ing observed featuresΛ in a 3-D parameterization as a function of the
systems states parameters by inferring constraints to the environment
structure and consequently to the features 3-D locations. At an instantk
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(a) (b) (c) (d)
Figure 1: VRML setup (a). View of the camera inside the tube (b). Dewarping of the tube for a single step (c). Result of dewarping several steps (d).

(a) (b) (c) (d)
Figure 2: Real setup (a). Inside view of the tube (b). Dewarping of the image for one step (c). Result of dewarping several steps (d).

the state transition functionf is applied tosk, retrievingsk+1 = f (sk,nk).
Λk is the input set of features in pixel coordinates acquired at the instant
k, whereasΛ̂k+1 is the set of features in following instantk+1 and the
observation model output. The observation model can thus be written as
a functionh:

Λ̂k+1 = hk+1(sk+1,Λk) (9)

Consider that the set of featuresΛk, 3-D locations on theTSS surface,
are the intersections of rays leaving the camera centrerWC

k with the cylin-
der wall, piercing the 2-D image plane where all features lie. With the
information present in the state vectorsk, i.e. camera posexk and cylin-
ders section parametersyk, one can estimate the 3-D location of every
feature in setΛk through a back-projection methodology, and compute
the re-projection of this 3-D coordinates with the next instantk+1 state
vectorsk+1 to a 2-D image plane, thus acquirinĝΛk+1 features.

3 Dewarping

The process of dewarping the interior of the tube is done by finding the
transformation between the pixels in the "open" images and the pixels in
the "closed" scenes viewed by the camera inside theTSS. Figure 4 shows
that relation. Knowing that relation, each pixel in the "open" image has
a corresponding 3D position in reference to the camera’s centre. The
projection of that 3D point in the "closed" image is the respective pixel
in the "open" image. A final mosaic is stitched showing the full inside
texture of the tube.

(a) (b) (c)
Figure 4: (a) Coordinates of the points in the closed image (b) Relation
between the angle of the coordinate in the closed image and the vertical
pixel in the open image (c) Pixels in the open image

4 Experimental Results

Two experiments have been conducted to test the proposed methodol-
ogy. In the first experiment the tubular shape is simulated in VRML.
The VRML based system imply using image processing, namely features

(e.g. SIFT or SURF) detection and matching, enhanced by the RANSAC
methodology for outliers removal. Figure 1 shows various steps and re-
sults of the process. The filtered nature of the estimated tubular structure
and camera motion implies a dewarping which has small variations, ex-
pansion or compression, along the tube length. In Figure 1(d) the small
variations along tube length are compensated vertically (the small black
regions in the mosaic indicate this compensation).

The second experiment consists of evaluating the developed algo-
rithm with a set of images retrieved from a real camera navigation inside
a texturedTSS. The setup and the results can be seen in Figure 2. The
resulting mosaic, Figure 2(d), shows some horizontal oscillation denoting
under- or over-estimation of camera rotation. This is due to biased obser-
vations such as the ones associated to an unbalanced number of features
around the camera.

5 Conclusion

This paper aimed at presenting a robust model to solve theSimultaneous
Localization and Mapping problem with a priori structural environment
knowledge, assumed to be aTSS. The cameras pose estimate and the cam-
era trajectory can be recovered, up to a scale factor, assuming the constant
speed dynamic model, allowing a posterior description of the environment
structure and its reconstruction.
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