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Abstract— This paper shows that one can relax an important
assumption usually formulated to employ the magneto-inertial
navigation (MINAV) technique. This technique, which allows to
reconstruct the velocity of a rigid body moving in a magnetically
disturbed area, usually assumes that the (unknown) Jacobian
of the magnetic field is everywhere non-singular. As it is here
demonstrated, this assumption can be significantly alleviated
thanks to further investigations on the observability of the
dynamics at stake. Corresponding relaxed assumptions require
rotations to sufficiently come into play during the motion
one wishes to estimate the velocity of. This result opens
new perspectives on the range of applicability of the MINAV
technique.

I. INTRODUCTION

Recently, a new method to estimate the motion of a rigid

body moving in a magnetically disturbed environment has

been proposed under the name “magneto-inertial navigation”

(MINAV) [1], [2], [3]. As its name calls to mind, it relies

on the combined usage of magnetic and inertial sensors.

Briefly, this methods relates the variations of the sensed field

to the translational and rotational velocities of the rigid body.

Eventually, the velocities are integrated over time to estimate

the trajectory of the body under consideration.

In short, this technique exploits the main equation gov-

erning the dynamics of the magnetic field, expressed in the

frame of the sensors, and that depends on the linear and

angular velocity, the magnetic field itself, and the Jacobian of

the magnetic field, all expressed in body-fixed coordinates.

All quantities but the linear velocity are readily available:

the angular velocity is measured by a set of rate gyros or

an Attitude and Heading Reference System (AHRS); the

magnetic field is given by a magnetometer; and the Jacobian

matrix is given by a custom-built magnetic gradiometer

consisting of a set of spatially distributed magnetometers.

The only unknown term is the linear velocity, which can

thus be estimated based on the knowledge of the other terms

and the governing system dynamics. In order to estimate

the linear velocity, state observers are employed and several

versions, relying on various modeling assumptions for the

unknown linear velocity, have been proposed in [4] and [5].

Their analysis are usually performed by a point-wise analysis

of observability [5] or a Lyapunov analysis [3], calling for
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careful application of the invariance principle in linear time-

varying cases.

In all aforementioned works, a central assumption has

been formulated, which amounts to the requirement that the

Jacobian of the magnetic field should be non-singular over

the whole region of navigation interest. Practically, this as-

sumption is usually guaranteed, at least to a certain practical

extent, as a very large number of magnetic disturbances

are commonly present in the areas of interest. Successful

experimentations have been reported and stress that MINAV

is a practically embeddable technology, being capable of

e.g. reconstructing the motion of a pedestrian walking inside

a building (where GPS signal are not available) with an

accuracy below 5% of error over tens of minutes of walking.

Yet, it is of great interest to alleviate the assumption that

the Jacobian should be at all times non-singular. As it has

been studied in less favorable cases [3], singularities can

occur and it remains relatively unclear what their impact on

observers convergence is. As it will be shown in this article,

the fundamental assumption can be relaxed by imposing very

mild conditions on the trajectory of the rigid body itself. This

result, which is the main contribution of the article, is related

to recent results on observability of linear time-varying

(LTV) systems [6] for navigation systems. Interestingly, these

results find here a relatively direct case of application, which,

in turn, reveals some valuable perspective on the usage and

generalizations of MINAV systems.

The paper is organized as follows. The problem under

consideration is stated in Section II, where the fundamental

equations of the MINAV technique are recalled and two cases

of particular interest are introduced: i) constant velocity in

the body-fixed frame of reference; and ii) constant velocity

in the inertial frame. In addition, a reduced sensor suite

setting is also described, yielding a total of 4 different

models in the end. In Section III, the tools of observability

analysis for LTV systems are introduced and used to establish

two properties assessing the observability of the MINAV

dynamics for all cases previously introduced. In Section IV a

simple illustrative example is treated which gives a pictorial

view of the relaxed assumption. Finally, some concluding

remarks are presented in Section V.

Notations

The symbol 0 denotes a matrix (or vector) of zeros, and

I the identity matrix. For x,y ∈ R
3, the cross product is

represented by x× y.
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II. PROBLEM STATEMENT

A. System dynamics

In order to set the problem framework, let {I} denote

an inertial reference frame and consider a mobile platform

which has attached to it the so-called body-fixed reference

frame, denoted as {B}. The mobile platform is assumed to

be equipped with a triad of orthogonally mounted rate gyros,

which measure the angular velocity of the mobile platform

with respect to the inertial frame, expressed in body-fixed

coordinates, denoted as ω(t) ∈ R
3. In addition, a set of

magnetometers is also installed on-board, which allow to

measure the magnetic field, also expressed in body-fixed

coordinates, denoted as h(t) ∈ R
3.

In the absence of magnetic disturbances, the magnetic field

can be assumed locally constant in inertial coordinates and

as such the derivative of the body-fixed measurements is

simply given by ḣ(t) = −S (ω(t))h(t), where S (.) is the

skew-symmetric matrix that encodes the cross product, i.e.,

S (x)y , x×y, with x,y ∈ R
3. When there exist magnetic

disturbances or artificially generated magnetic fields, the

dynamic equation governing the evolution of the inertial

magnetic field can be written, using the chain rule, as
Iḣ(t) = Ji (t,p(t))

Iv(t),

where Ih(t) ∈ R
3 is the inertial magnetic field, Iv(t) ∈

R
3 is the inertial linear velocity of the mobile platform,

and Ji (t,p(t)) ∈ R
3×3 is the Jacobian of the inertial

magnetic field, which depends on the inertial position of the

mobile platform, denoted as p(t) ∈ R
3. The magnetic field,

expressed in body-fixed coordinates, is simply given by

h(t) = RT (t)Ih(t), (1)

where R(t) ∈ SO(3) stands for the rotation matrix from

{B} to {I}. Taking the derivative of (1) gives

ḣ(t) = −S (ω(t))h(t) + J (t)v(t),

where v(t) ∈ R
3 is the linear velocity of the mobile platform,

expressed in body-fixed coordinates, and J(t) ∈ R
3×3 is

the Jacobian of the magnetic field, expressed in body-fixed

coordinates. It is related to the Jacobian of the inertial

magnetic field as [7]

J(t) = RT (t)Ji (t,p(t))R(t).

The problem considered here is the estimation of the

linear velocity of the mobile platform. Without additional

sensors, two nominal models can be assumed: i) constant

velocity expressed in body-fixed coordinates; and ii) constant

velocity in inertial coordinates. From the practical point of

view, and considering a stochastic filtering formalism, it is

possible to consider, e.g., that the velocity models are driven

by zero-mean white Gaussian processes. This allows to

capture slowly time-varying linear velocities. In the ensuing,

a deterministic setting is first considered for observability

analysis.

While the choice of the models for the linear velocity may

seem harmless at first glance, this choice yields differences

in terms of the observability of the system1. In this paper,

1the models also correspond to distinct practical situations.

even though both models are studied in careful detail, the

model of constant linear velocity in body-fixed coordinates

is developed first. This choice is justified from practical

considerations, and the application to pedestrian indoor nav-

igation [3]: indeed, while a mobile platform may change

its attitude a lot (e.g. an in-door mobile platform or a car

can easily change its orientation), its velocity may remains

relatively constant for rather long periods of time (several

seconds).

Considering a constant body-fixed velocity model, the

system dynamics are given by
{

ḣ(t) = −S (ω(t))h(t) + J (t)v(t)
v̇(t) = 0

. (2)

On the other hand, considering a constant inertial velocity

model, the system dynamics are given by
{

ḣ(t) = −S (ω(t))h(t) + J (t)v(t)
v̇(t) = −S (ω(t))v(t)

. (3)

B. Possible reduction of the sensor suite

In order to employ the models (2) or (3) for linear

velocity estimation, the full Jacobian J is required, which

means that a set of four triaxial magnetometers is needed

for implementation. However, it is possible to estimate the

linear velocity resorting only to the governing dynamics of

one component of the magnetic field. In turn, this means

that only one row of the Jacobian is needed, and hence less

magnetometers are required.

One such configuration will be studied. In this paper, and

without loss of generality, it is assumed for the reduced

sensor suite setting that only the governing equation of the

magnetic field along the x-axis is employed. In this case,

only one triaxial and three single-axis magnetometers are

required, which allow to measure the magnetic field along

the x-axis and to estimate the first row of J(t) with a custom-

built magnetic gradiometer, consisting of the three single-

axis magnetometers and the x component of the triaxial

magnetometer.

The system dynamics for the reduced sensor suite setting,

considering a constant body-fixed velocity model, are given

by
{

ḣx(t) = Jx(t)v(t)− ωz(t)hy(t) + ωy(t)hz(t)
v̇(t) = 0

, (4)

where

h(t) =





hx(t)
hy(t)
hz(t)



 ∈ R
3, hx(t), hy(t), hz(t) ∈ R,

ω(t) =





ωx(t)
ωy(t)
ωz(t)



 ∈ R
3, ωx(t), ωy(t), ωz(t) ∈ R,

and

J(t) =





Jx(t)
Jy(t)
Jz(t)



 ,
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with Jx(t),Jy(t),Jz(t) ∈ R
1×3. On the other hand, if

a constant inertial velocity model is considered with the

reduced sensor suite, the system dynamics read
{

ḣx(t) = Jx(t)v(t)− ωz(t)hy(t) + ωy(t)hz(t)
v̇(t) = −S (ω(t))v(t)

. (5)

All quantities are assumed bounded, which is a mild

assumption that is always verified in practice.

III. OBSERVABILITY ANALYSIS

This section details the observability analysis, at large, of

the system dynamics introduced in Section II. The following

real-analysis result [Proposition 4.2, [6]] is useful in the

sequel.

Lemma 1: Let f(t) : [t0, tf ] ⊂ R → R
n be a continuous

and i-times continuously differentiable function on I :=
[t0, tf ], and such that

f (t0) = ḟ (t0) = . . . = f (i−1) (t0) = 0.

Further assume that
∥

∥f (i+1)(.)
∥

∥ is bounded on I. If

∃
α>0
t1∈I

:
∥

∥

∥
f (i) (t1)

∥

∥

∥
≥ α,

then

∃
0<δ≤tf−t0

β>0

: ‖f (t0 + δ)‖ ≥ β.

A. Constant body-fixed velocity model

In compact form, it is possible to rewrite (2) as
{

ẋ1(t) = A1(t)x1(t)
y1(t) = C1x1(t)

, (6)

where x1(t) =
[

hT (t) vT (t)
]T

∈ R
6 is the system state,

A1(t) =

[

−S (ω(t)) J (t)
0 0

]

∈ R
6×6,

and C1 =
[

I 0
]

∈ R
3×6, which is a linear time-varying

system. The following proposition establishes a necessary

and sufficient condition on the observability (in the sense of

non-singularity of the observability Grammian) of (6).

Proposition 1: The LTV system (6) is observable on I if

and only if, for all unit vectors d ∈ R
3, it is possible to

choose ti ∈ I, I := [t0, tf ], such that J (ti)d 6= 0.

Proof: First, as observability is preserved under output

feedback, observability of the pair (A1(t),C1) is equivalent

to observability of the pair (AAA1(t),C1), where

AAA1(t) =

[

0 J (t)
0 0

]

∈ R
6×6.

The transition matrix associated with AAA1(t) is simply given

by

φ1 (t, t0) =

[

I
∫ t

t0
J (σ) dσ

0 I

]

∈ R
6×6.

Let c =
[

cT1 cT2
]T

∈ R
6 be any unit vector and

W1 (t0, tf ) the observability Grammian associated with the

pair (AAA1(t),C1). Then,

cTW1 (t0, tf ) c =

∫ tf

t0

‖C1(t)φ1 (t, t0) c‖
2
dt

=

∫ tf

t0

‖f1 (t, t0)‖
2
dt,

where

f1 (t, t0) = c1 +

(
∫ t

t0

J (σ) dσ

)

c2.

In order to show necessity, suppose that there exists a unit

vector d ∈ R
3 such that, for all t ∈ I, J (t)d = 0. Let c =

[

0 dT
]T

. Then, it is trivial to conclude that f1 (t, t0) = 0

for all t ∈ I and hence cTW1 (t0, tf ) c = 0, which means

that the observability Grammian W1 (t0, tf ) is not invertible

which contradicts the observability assumption. Thus, if the

LTV system is observable on I, it must be true that, for all

unit vectors d ∈ R
3, it is possible to choose ti ∈ I such that

J (ti)d 6= 0.

In order to show sufficiency, we need to consider every

possible unit vector c =
[

cT1 cT2
]T

. First, assume that

c1 6= 0. In that case, ‖f1 (t0, t0)‖ = ‖c1‖ > 0 and

hence, using Lemma 1, there exists t1 ∈ ]t0, tf ] such that

cTW1 (t0, t1) c > 0. Suppose now that c1 = 0. As c is a

unit vector, it follows that in that case c2 is also a unit vector

and f1 (t0, t0) = 0. But now

∂

∂t
f1 (t, t0) = J(t)c2.

Under the conditions of the proposition, for all unit vectors

c2, it is possible to choose a time instant ti ∈ I such that
∥

∥

∥

∥

∥

∂

∂t
f1 (t, t0)

∣

∣

∣

∣

t=ti

∥

∥

∥

∥

∥

> 0.

Then, using Lemma 1 again, it follows that, for all unit

vectors c with c1 = 0, it is possible to choose tj ∈ ]t0, tf ]
such that cTW1 (t0, tj) c > 0. Thus it is shown that, for

all unit vectors c there exists tk ∈ ]t0, tj ] ⊂]t0, tf ] such

that cTW1 (t0, tk) c > 0, which implies that, for all unit

vectors c, cTW1 (t0, tf ) c > 0. This concludes the proof as

it is shown that, under the conditions of the proposition, the

observability Grammian W1 (t0, tf ) is invertible.

To design state observers with globally asymptotically sta-

ble error dynamics, stronger conditions are required. Namely,

Uniform Complete Observability (UCO) is sufficient to guar-

antee exponential convergence of the Kalman filter as can

be established from the classic results of [8], [9], [10]. More

discussions can be found in [11]. Using similar arguments

of proofs, one can establish that the LTV system (6) is UCO

if and only if there exist positive constants α > 0 and δ > 0
such that, for all t ≥ t0 and all unit vectors d ∈ R

3, it is

possible to choose ti ∈ [t, t+ δ] such that ‖J (ti)d‖ ≥ α.

One needs to consider uniform bounds and use the fact

uniform complete observability is preserved under bounded

continuous output feedback, see [12, Lemma 4.8.1].

B. Constant inertial velocity model

In compact form, it is possible to rewrite (3) as
{

ẋ2(t) = A2(t)x2(t)
y2(t) = C2x2(t)

, (7)

where x2(t) =
[

hT (t) vT (t)
]T

∈ R
6 is the system state,

A2(t) =

[

−S (ω(t)) J (t)
0 −S (ω(t))

]

∈ R
6×6,
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and C2 =
[

I 0
]

∈ R
3×6, which is a linear time-varying

system. The following proposition establishes a necessary

and sufficient condition on the observability of (7).

Proposition 2: The LTV system (7) is observable on

I if and only if, for all unit vectors d ∈ R
3, it is

possible to choose ti ∈ I, I := [t0, tf ], such that

J (ti)RT (ti)R (t0)d 6= 0.

Proof: Again, one can use the fact that observ-

ability is preserved under output feedback. Instead of

the pair (A2(t),C2), one can equivalently study the pair

(AAA2(t),C2), where

AAA2(t) =

[

0 J (t)
0 −S (ω(t))

]

∈ R
6×6.

The transition matrix associated with AAA2(t) is simply given

by

φ2 (t, t0) =

[

I
∫ t

t0
J (σ)RT (σ)R (t0) dσ

0 RT (t)R (t0)

]

∈ R
6×6.

Let c =
[

cT1 cT2
]T

∈ R
6 be any unit vector and

W2 (t0, tf ) the observability Grammian associated with the

pair (AAA2(t),C2). Then,

cTW2 (t0, tf ) c =

∫ tf

t0

‖C2(t)φ2 (t, t0) c‖
2
dt

=

∫ tf

t0

‖f2 (t, t0)‖
2
dt,

where

f2 (t, t0) = c1 +

(
∫ t

t0

J (σ)RT (σ)R (t0) dσ

)

c2.

To show necessity, suppose that there exists a unit vector

d ∈ R
3 such that, for all t ∈ I, J (t)RT (t)R (t0)d =

0. Let c =
[

0 dT
]T

. Then, one directly concludes that

f2 (t, t0) = 0 for all t ∈ I and hence cTW2 (t0, tf ) c = 0,

which implies that the observability Grammian W2 (t0, tf )
is not invertible. This proves necessity.

In turn, to show sufficiency, again, one needs to consider

every possible unit vector c =
[

cT1 cT2
]T

. Consider first

the case c1 6= 0. In that case, ‖f2 (t0, t0)‖ = ‖c1‖ > 0 and

hence, using Lemma 1, there exists t1 ∈ ]t0, tf ] such that

cTW2 (t0, t1) c > 0 Suppose now that c1 = 0. As c is a

unit vector, it follows that in that case c2 is also a unit vector

and f2 (t0, t0) = 0. But now

∂

∂t
f2 (t, t0) = J(t)RT (t)R (t0) c2.

Under the conditions of the proposition, for all unit vectors

c2, it is possible to choose a time instant ti ∈ I such that
∥

∥

∥

∥

∥

∂

∂t
f2 (t, t0)

∣

∣

∣

∣

t=ti

∥

∥

∥

∥

∥

> 0.

Then, using Lemma 1 again, it follows that, for all unit

vectors c with c1 = 0, it is possible to choose tj ∈ ]t0, ti] ⊂
]t0, tf ] such that cTW2 (t0, tj) c > 0. Thus it is shown that,

for all unit vectors c there exists tk ∈ ]t0, tf ] such that

cTW2 (t0, tk) c > 0, which implies that, for all unit vectors

c, cTW2 (t0, tf ) c > 0. This concludes the proof.

Interestingly, uniform complete observability can be es-

tablished as before. Uniform bounds must be invoked to

show that the LTV system (7) is UCO if and only if there

exist positive constants α > 0 and δ > 0 such that, for all

t ≥ t0 and all unit vectors d ∈ R
3, it is possible to choose

ti ∈ [t, t+ δ] such that
∥

∥J (ti)RT (ti)R (t)d
∥

∥ ≥ α.

C. Constant body-fixed velocity model with reduced sensor

suite

In compact form, it is possible to rewrite (4) as
{

ẋ3(t) = A3(t)x3(t) +B3u3(t)
y3(t) = C3x3(t)

, (8)

where x3(t) =
[

hT
x (t) v

T (t)
]T

∈ R
4 is the system state,

u3(t) = −ωz(t)hy(t) + ωy(t)hz(t) ∈ R

is the system input,

A3(t) =

[

0 Jx (t)
0 0

]

∈ R
4×4, B3 =

[

1
0

]

∈ R
4,

and C3 =
[

1 0
]

∈ R
1×4, which is a linear time-varying

system. The following proposition establishes a necessary

and sufficient condition on the observability of (8).

Proposition 3: Suppose that, for all unit vectors d ∈ R
3,

it is possible to choose ti ∈ I, I := [t0, tf ], such that

Jx (ti)d 6= 0. Then, the LTV system (6) is observable on I.

Proof: The proof follows similar similar steps to that

of Proposition 1 and hence it is omitted.

Similarly, uniform complete observability for the LTV

system (8) can be established. The LTV system (8) is

uniformly completely observable if and only if there exist

positive constants α > 0 and δ > 0 such that, for all

t ≥ t0 and all unit vectors d ∈ R
3, it is possible to choose

ti ∈ [t, t+ δ] such that |Jx (ti)d| ≥ α.

D. Constant inertial velocity model with reduced sensor

suite

In compact form, it is possible to rewrite (5) as
{

ẋ4(t) = A4(t)x4(t) +B4u4(t)
y4(t) = C4x4(t)

, (9)

where x4(t) =
[

hT
x (t) v

T (t)
]T

∈ R
4 is the system state,

u4(t) = −ωz(t)hy(t) + ωy(t)hz(t) ∈ R

is the system input,

A4(t) =

[

0 Jx (t)
0 −S (ω(t))

]

∈ R
4×4, B4 =

[

1
0

]

∈ R
4,

and C4 =
[

1 0
]

∈ R
1×4, which is a linear time-varying

system. The following proposition establishes a necessary

and sufficient condition on the observability of (9).

Proposition 4: Suppose that, for all unit vectors d ∈ R
3,

it is possible to choose ti ∈ I, I := [t0, tf ], such that

Jx (ti)RT (ti)R (t0)d 6= 0. Then, the LTV system (9) is

observable on I.

Proof: The proof follows similar similar steps to that

of Proposition 2 and hence it is omitted.

Again, one can show that the LTV system (8) is UCO if and

only if there exist positive constants α > 0 and δ > 0 such

that, for all t ≥ t0 and all unit vectors d ∈ R
3, it is possible

to choose ti ∈ [t, t+ δ] such that
∣

∣Jx (ti)RT (ti)R(t)d
∣

∣ ≥
α.
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IV. A SIMPLE CASE STUDY

The previous results allows one to relax the initial as-

sumption of all times non-singularity of the Jacobian J(t).
Instead, a low-rank Jacobian can be considered provided

that the non-null space maps the whole space over a finite

time interval. This is a simple rephrasing of the previous

statements. This opens new perspectives of both practical

and theoretical nature. To illustrate this, we now use some

very simple examples.

a) Full turns: Consider the following simple system,

in a 2-dimensional space, in which a rigid body equipped

with a magneto-inertial system is traveling in an area where

the magnetic field has a uniform (constant) Jacobian. In the

{I} inertial frame of reference, the particular motion that is

considered is

h (p(t)) =

[

λx(t)
0

]

, λ 6= 0,

where

p(t) =

[

x(t)
y(t)

]

denotes the position of the device at time t. In this particular

case, the x direction of {I} is chosen aligned with the

direction of non-zero variation of the magnetic field h. A

constant field could be added for increased generality (see

last paragraph of this section) but does not bring anything to

nor harms the observability properties, as it leaves unchanged

the equations governing the variations of the sensed field

coupled to the motion of the device. Further, it is assumed

that the trajectory is described by the following pseudo-

periodic equations

p(t) =

[

γ1t+ γ2 sin(ωt)
−γ2 cos(ωt)

]

and that the angle between the body frame of reference {B}
and {I} is simply ωt, w > 0 such that the rotation matrix

between these two frames is

R(t) =

[

cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]

.

Note that the body frame is not aligned with the trajectory

at all times. The Jacobian of the magnetic field h, in inertial

coordinates, is simply

Ji =

[

λ 0
0 0

]

. (10)

Once it is projected onto the body-fixed reference frame, it

gives

J(t) = R(t)TJiR(t)

=

[

λ cos(ωt)2 −λ cos(ωt) sin(ωt)
−λ sin(ωt) cos(ωt) λ sin(ωt)2

]

,

which is obviously of rank 1, as Ji is.

Let d0 = [1 0]T . It is a unit vector such that Jid0 6= 0.

Under the assumption ω > 0, the set of matrices {t ∈
[0, 2π/ω],R(t)} can be used to map any unit vector of R

2

onto d0. For any unit vector d, choose ti such that d0 =
R (ti)d. Then, if follows that R (ti)

T
JiR (ti)d 6= 0, which

permits to conclude on the observability of the dynamics

thanks to Proposition 1. This shows that observability has

been attained in this singular case thanks to the rotating

nature of the trajectory.

R
b

R
b

Magnetic field having a constant singular Jacobian

R
b

R
b

Trajectory

Magnetic Field

Fig. 1. A spinning trajectory is used to recover obervability in an area
where the magnetic field has a constant Jacobian.

b) Partial turns: Interestingly, it is not necessary that

the body reference of the device makes full turns. This

possibility is pictured in Figure 1. Consider now that the

motion of the rigid body is generated by

ṗ(t) = γ1

[

cosα(t)
sinα(t)

]

, α(t) = γ2 sin(γ3t),

with γ1, γ2, γ3 non-zero constant parameters. One such tra-

jectory for γ2 = 1 is pictured in Fig. 1. One has then

R(t) =

[

cosα(t) − sinα(t)
sinα(t) cosα(t)

]

.

Let d1 = [0 1]T denote one unit vector that spans the

null-space of Ji. Consider again the assumption of Proposi-

tion 1. For any unit vector d either JiR (t0)d 6= 0, which

means that d satisfies the assumption of the Proposition

with ti = t0, or JiR (t0)d = 0, which equivalently means

(R (t0)d)×d1 = 0. Consider that g (t0) := JiR (t0)d = 0.

Differentiating this expression with respect to time t0 gives

ġ (t0) = Jiα̇ (t0)

[

0 −1
1 0

]

R (t0)d.

If α̇(t0) = 0, then t0 = π/2 mod π, then Ji (t0)R (t0)d 6=
0, which is a contradiction. Therefore, α̇(t0) 6= 0, and thus

ġ (t0) = (α̇(t0)

[

0 −1
1 0

]

R (t0)d)× d1 6= 0.

Therefore, there exists t1 > t0 such that

R (t1)
T
JiR (t1)d 6= 0. This gives the conclusion.

The systems is observable.

c) Reconstruction with a Kalman filter: To illustrate the

practical importance of the relaxation of the assumptions on

MINAV, we now consider a test-case of velocity reconstruc-

tion with a Kalman filter. Without loss of generality 2, the

magnetic field that can be measured is now

h (p(t)) =

[

1 + λx(t)
2

]

, λ 6= 0,

where p satisfies the equation of motion

ṗ(t) = R(t)

(

γ1
0

)

2constant values have been added to the sensed magnetic field, as
previously announced
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Fig. 2. Two trajectories going though an area where the magnetic field
has a constant Jacobian.

and

α(t) = γ2 sin(γ3t).

as before. The Jacobian of the magnetic field is given by

(10) and is singular. According to the previous discussion,

we know that the system is observable for γ3 6= 0. In

Figure 2 two trajectories are pictured, for γ3 = 1
2 (curly

path) and γ3 = 0 (straight line), respectively. Uniform

Complete Observability which can be established here for

γ3 > 0, guarantees convergence of the Kalman filter. This

point is illustrated in Figure 3. As the rigid body travels into

the magnetically perturbed area, the Kalman filter manages

to reconstruct the unknown velocity in the case γ3 6= 0.

Otherwise, the Kalman filter asymptotically reaches biased

values.

V. CONCLUSIONS

In this paper, we have proven that the classic assumption

formulated for the application of MINAV technique was

unnecessarily restrictive. A careful study of observability in

the non-stationary case reveals that mild assumptions on the

nature of the trajectory followed by the sensing system are

sufficient to obtain convergence of state observers. This is

certainly an important and enlightening point to interpret

experimental results. Further studies could be focused on

more advanced case studies (in 3-dimensional spaces) among

other possibilities.
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