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Abstract— In previous work by the authors a novel estimator
was introduced, with asymptotic stability guarantees, for the
problems of source localization and navigation based on single
range measurements. The aim of this paper is to further
study these problems in terms of the performance of the
proposed estimators and the trajectories that yield best results.
To that purpose, the achievable performance with the proposed
estimator is compared with the Bayesian Cramér-Rao Bound
(BCRB) for different trajectories of the agent and, in addition,
the estimates provided by the Extended Kalman Filter are also
computed. It is revealed that the performance of the estimator is
close to the BCRB theoretical lower bound and some insight is
provided on the effect of the agent trajectory on the estimation
performance.

I. INTRODUCTION

The use of range measurements to a single source has

been a hot topic of research in the recent past. In [1] a novel

algorithm, so-called Synthetic Long Baseline navigation,

was proposed for underwater vehicles. In short, a linearized

model of the system is obtained and range measurements to

a single transponder are employed in order to correct the

system estimates, while a high performance dead-reckoning

system is used to propagate the motion of the vehicle

between range measurements. The problem of underwater

navigation based on range measurements to a single beacon

is also addressed in [2] considering, in addition, the existence

of constant unknown ocean currents. First, the nonlinear

system is linearized and the analysis of the observability

follows for the linearized system, yielding local results. The

proposed estimation solution is the Extended Kalman filter

(EKF), with no guarantees of global asymptotic stability. The

EKF is, again, the workhorse of the solutions presented in [3]

and [4], which address the same problem. The observability

of single transponder underwater navigation was studied in

[5] resorting to an algebraic approach and algebraic observers

were also proposed. The addition of depth measurements to

single range readings is considered in [6], where a linearized

model is obtained and the EKF is the selected estimation

solution. In [7] preliminary experimental results with single

beacon acoustic navigation were presented, where the EKF

is again employed as the state estimator.
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Parallel to the topic of navigation based on range mea-

surements to a single landmark is the problem of source

localization also based on single range measurements. In

fact, the problems are equivalent from a theoretical point of

view, as detailed in [8]. A novel solution to this problem is

proposed in [9], where a localization algorithm based on the

square of the range to the source and the inertial position

of the agent is detailed, with global exponential stability

(GES) guarantees under a persistent excitation condition.

The problem of relative pose observability based on range

measurements only was addressed in [10] for some specific

cases.

In the recent past the authors have proposed a novel

solution for the problems of navigation and source local-

ization based on range measurements that achieves globally

asymptotically stable error dynamics [8]. In short, the state

of the system is first augmented in such a way that the

augmented system can be regarded, for observability analysis

and observer design purposes, as linear time-varying (LTV).

The analysis of observability of the augmented system is

then performed and conclusions are afterwards extrapolated

to the original nonlinear system. The final result states that an

observer for the augmented system is also an observer for

the original nonlinear system, and the design follows with

a standard Kalman filter. As a result, and in contrast with

all the solutions that can be found in the literature that rely

on the EKF, this solution guarantees globally asymptotically

stable error dynamics provided that the system is uniformly

completely observable. Conditions on uniform complete ob-

servability are also derived.

While the source localization (and navigation) solution

based on single range measurements proposed in [8] of-

fers global asymptotic stability guarantees, the analysis of

performance is yet to be performed, which is the main

contribution of this paper. To this end, the Bayesian Cramér-

Rao Bound (BCRB) is computed for several trajectories and

Monte Carlo simulations are performed, with the proposed

solution, in order to compare the achieved performance

with the BCRB theoretical bound. In addition, Monte Carlo

simulations are also carried out, in identical conditions, for

the Extended Kalman Filter, which does not offer global

asymptotic stability guarantees.

A. Notation

The symbol 0 denotes a matrix (or vector) of zeros, I the

identity matrix, and blkdiag(A1, . . . ,An) a block diagonal

matrix, all assumed of appropriate dimensions. For x,y ∈
R

3, the cross and inner products are represented by x × y
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and x ·y, respectively. The Dirac delta function is written as

δ(t).

II. PREVIOUS WORK

Consider an agent evolving in a scenario where there is

a fixed source. In order to set the problem framework, let

{I} denote an inertial coordinate reference frame and {B}
denote the so-called body-fixed reference coordinate frame,

which is attached to the agent. In this setting, the kinematics

of the agent is given by
{

ṗ(t) = R(t)vr(t) +R(t)vc(t)

Ṙ(t) = R(t)S (ω(t))
,

where p(t) denotes the inertial position of the agent, R(t) is

the rotation matrix from {B} to {I}, vr(t) is the velocity

of the agent relative to the fluid and expressed in body-

fixed coordinates, vc(t) is the velocity of the fluid relative

to {I}, expressed in body-fixed coordinates, and ω(t) is the

angular velocity of the agent, also expressed in body-fixed

coordinates, and S (ω) is the skew-symmetric matrix such

that S (ω)x is the cross product ω × x, for ω,x ∈ R
3 or,

for the problem in 2-D,

S (ω) =

[

0 −ω
ω 0

]

.

It is assumed that the drift velocity, in inertial coordinates,

is constant.

Let s denote the inertial position of the source and define

r(t) := RT (t) [s− p(t)] , which corresponds to the position

of the source relative to the agent, expressed in body-

fixed coordinates, the quantity that is to be estimated in

the problem of source localization. The range measurements

are simply given by r(t) = ‖r(t)‖ . As such, the system

dynamics for the problem of source localization are given

by






ṙ(t) = −S (ω(t)) r(t)− vc(t)− vr(t)
v̇c(t) = −S (ω(t))vc(t)
y(t) = ‖r(t)‖

,

where r(t) and vc(t) are the system states, y(t) is the system

output, and vr(t) and ω(t) are system inputs.

The estimator proposed in previous work by the authors

[8] resorts to the augmentation of the system state, defining

the system state as

x(t) :=
[

rT (t) vT
c (t) ‖r(t)‖ r(t) · vc(t) ‖vc(t)‖2

]T
.

In this paper a simpler problem is considered for the sake

of easiness of interpretation of results, which consists in

assuming that the agent also has access to the velocity

relative to the inertial frame. This case also finds many

applications in practice, e.g. in ground vehicles with no

lateral drift, where a speedometer provides this quantity. In

this scenario the augmented state is simply chosen as

xr(t) :=
[

r(t)T y(t)
]T

and the nonlinear system is given by
{

ṙ(t) = −S (ω(t)) r(t)− v(t)
y(t) = ‖r(t)‖ . (1)

Likewise, the corresponding augmented system is given by
{

ẋr(t) = Ar(t)xr(t) +Brv(t)
y(t) = Crx(t)

, (2)

where

Ar(t) =

[ −S (ω(t)) 0

− 1
y(t)v

T (t) 0

]

,

Br = [−I 0]
T

, and Cr = [0 1]. In spite of the fact that

this is still a nonlinear system, as the system matrix A(t)
actually depends on the system input and output, it can

be regarded as linear time-varying, along trajectories of the

system, for observability and observer design purposes, and

an estimation solution is readily given by the corresponding

Kalman filter, see [8] for further details. This yields an

estimation solution with globally asymptotically stable er-

ror dynamics, provided that the corresponding observability

(and controllability, from system disturbances) conditions are

satisfied. In the remainder of the paper this solution is simply

called the Kalman filter, in contrast with the EKF.

III. ESTIMATION PERFORMANCE

A. Bayesian Cramér-Rao Bound

The design of estimators for linear systems that minimize

appropriate cost functions is well established and prime ex-

amples are the Kalman and the H∞ filters, see [11] and [12].

For nonlinear systems that is still an open field of research

and most results in the design of estimation solutions for

nonlinear systems concern the asymptotic stability of the

error dynamics. Although definite results on the optimal

design of nonlinear estimators are yet to be found, theoretical

bounds on the achievable performance have already been

derived for some cases.

For time invariant statistical models, the Cramér-Rao

Bound (CRB) gives a lower bound on the variance of the esti-

mation error of an unknown constant parameter. For random

parameters of nonlinear, non-stationary systems models, an

equivalent bound, the Bayesian Cramér-Rao Bound (BCRB),

was first derived in [13] and further examined in [14] and

[15].

Consider the general system with linear dynamics and

nonlinear observations
{

ẋ(t) = F(t)x(t) +B(t)u(t) +G(t)nx(t)
y(t) = h (x(t)) + ny(t)

(3)

where x(t) is the state vector, u(t) is a deterministic system

input, y(t) is the measurement vector, which depends on

the state vector through the nonlinear function h (x(t)),
and nx(t) and ny(t) represent the state and measurements

stochastic perturbations, respectively. The Bayesian bound

derived in [16] shows that the covariance matrix of any given

causal (realizable) unbiased estimate of (3), i.e.

E
{

(x(t)− x̂(t)) (x(τ)− x̂(τ))
T
}

= P(t)δ (t− τ) ,

satisfies the lower bound

P(t) � J−1
g (t), (4)

where J−1
g (t) is the so-called Fisher Information Matrix,

which satisfies the matrix differential equation

J̇g(t) = −Jg(t)F(t)− FT (t)Jg(t)

−Jg(t)G(t)Ξ(t)GT (t)Jg(t) +Pm (x(t), t) ,
where Ξ(t) is the covariance matrix of the state noise nx(t)
and Pm (x(t), t) accounts for the covariance reduction due

to the observations, given by

Pm (x(t), t) = Ex

{

H̃ (x(t))Θ−1H̃T (x(t))
}

(5)
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where H̃(t) is the Jacobian of the nonlinear observation

function evaluated at x(t) and Θ(t) is the covariance matrix

of the measurement noise ny(t). The subscript g denotes that

the underlying process model is a linear Gaussian model and

the subscript m stands for measurement.

The expectation in (5) is computed with respect to the

state vector x(t) and as such it usually has to be evaluated

resorting to Monte Carlo simulations. In nonlinear tracking

problems, as in the framework presented herein, it is often

of interest to evaluate the performance along specific or

nominal tracks x(t). In this case, the term Pm (x(t), t) can

be simplified to

Pm (x(t), t) = H̃ (x(t))Θ−1H̃T (x(t)) , (6)

which allows the assessment of the achievable performance

for any tracker or estimator given this specific underlying

problem structure. The resulting equations are analogous

to the Information filter version of the Extended Kalman

Filter, whereas the Jacobians are computed at the nominal

trajectories x(t) instead of the estimated trajectories, as

convincingly argued in [15].

Notice that, if noise is considered in the angular velocity

measurements, the model (3) cannot be applied as there

would exist not only additive noise but also multiplicative

noise. As (3) does not capture multiplicative noise in the

state disturbances, angular velocity noise is not considered in

this paper. Future work will include Monte Carlo simulations

with angular velocity noise. For the moment, notice that the

sole role of this quantity is to explain the rotation of the

source, expressed in body-fixed coordinates, when the agent

rotates. Hence, it is not directly related to the observability

of the system (provided it is available). However, it does

influence the estimation performance, in the noisy case, as

it influences the confidence in the system dynamics.

Finally, it is important to stress that the BCRB is computed

for the original nonlinear system (1), not the augmented

state system (2), which are only employed in the estimation

solutions.

In this paper, the bound (4) is fundamental to assess the

estimation performance of the proposed filters for source

localization based on single range measurements. This ap-

proach has already been successfully pursued by the authors,

in [17], to assess the estimation performance of a navigation

system based on an Ultra-Short Baseline acoustic positioning

system, whose design corresponds, to a large extent, to the

generalization of the design from single to multiple range

measurements.

B. Monte Carlo simulations

In order to assess the performance of the proposed Kalman

filters, Monte Carlo simulations are carried out and the

Root-Mean-Square (RMS) estimation error of the Kalman

filter is compared against the BCRB, which is computed

for each nominal trajectory that the agent performs. In

addition, the performance of the Extended Kalman Filter

is also evaluated using the same approach. For the sake of

clarity of presentation, only a 2-D case is considered, which

is readily obtained by considered an agent moving in the

horizontal plane, with all vectors belonging to R
2, scalar

angular velocities, and R(t) ∈ SO(1). Notice, nevertheless,

that the original filtering solution that was proposed solves

the problem in 3-D. Moreover, the conclusions drawn for the

2-D case should also yield insight to the 3-D case.

For each scenario, starting at different initial conditions,

the filters are evaluated through 1000 Monte Carlo runs and

sets of independent random noise. The initial state of the

filters is drawn from a normal Gaussian distribution, with

mean equal to the true initial state and standard deviation of

10 m and 1 m for the position and the state corresponding to

the range, respectively. When the drift velocity is also con-

sidered, the standard deviation for the initial ocean current

estimate was set to 1 m/s and the standard deviation of the

initial estimates of the augmented state estimates r̂(t) · v̂c(t)
and ‖v̂c(t)‖2 was set to 10 m2/s and 1 m2/s2, respectively.

The reasoning for setting the initial estimates around the

true value is that the purpose of the paper is to assess the

performance and convergence in terms of error covariance,

not the convergence in nominal terms, which has already

been successfully established for the proposed application

of the Kalman filter, see [8], and that is still absent, to the

best of the authors’ knowledge, for the EKF. Common to

all the simulations is the inclusion of additive, zero-mean

white Gaussian noise, with standard deviation of 1 m for the

range measurements and 0.01 m/s for the relative velocity

measurements.

First, the case without drift (1) is considered. To tune the

Kalman filter for (2), the state disturbance intensity matrix is

chosen as Ξr = blkdiag
(

0.012I, 0.0012
)

which reflects the

noise of the velocity sensor, while the output noise intensity

matrix is chosen as Θ = I, which reflects the noise of the

range sensor. For the EKF the state disturbance intensity

matrix is simply 0.012I and the output noise intensity matrix

is the same of the Kalman filter.

The first trajectory that is considered is depicted in Fig.

1, where the use of color is employed in order to reflect the

time evolution: the agent position is initially depicted in dark

blue and progressively changes to dark red, passing through

shades of cyan, green, yellow, and orange, in this order. In

this trajectory the x-axis of the agent is always tangent to the

path, which means that the angular velocity is non-null. This

first case study will henceforth be denoted as case A. The

trajectory is quite rich, ensuring observability, and the agent

is operating in the vicinity of the source, which is marked

with a red cross in the figure. The evolution of the statistical

variables that were computed with Monte Carlo simulations,

as well as the Bayesian Cramér-Rao Bound, are depicted in

Fig. 2. In particular, for each time instant, the average of

the error of both the Kalman filter and the Extended Kalman

filter is computed and shown in Fig. 2(a). In Fig. 2(b) the

information regarding the second order statistical moments

is depicted: i) the Bayesian Cramér-Rao Bound, in green; ii)

the Root-Mean-Square (RMS) of the errors of the Kalman

filter, computed for each instant, in blue; iii) the square root

of the first two diagonal elements of the covariance matrix

of the Kalman filter, in red; iv) the RMS of the errors of

the EKF, computed for each instant, in magenta; and v) the

square root of the diagonal elements of the covariance matrix
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Fig. 1. Evolution of the trajectory of the agent - case study A

of the EKF, in yellow. From these first plots it is possible to
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Fig. 2. Evolution of statistical variables - case study A

observe that: i) the mean error stays close to zero for both

filters; ii) the covariance of the EKF filter agrees with the

BCRB and the RMS of the EKF follows this very closely;

and iii) the RMS error of the Kalman filter follows closely

the square root of the corresponding Kalman filter covariance

matrix elements; and iv) the performance of the Kalman filter

is close to the BCRB. In Fig. 3 the norm of the statistical

variables is depicted considering each as a 2-D vector, e.g. if

BCRBx(t) corresponds to the BCRB for the error of rx(t)
and BCRBy(t) corresponds to the BCRB for the error of

ry(t), the norm would be

√

BCRB2
x(t) + BCRB2

y(t). It is
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Fig. 3. Evolution of the norm of the statistical variables - case study A

possible to observe that all the signals are close to the BCRB.

Next, simulations were carried out with a similar trajectory

but obtained with no angular velocity, which was achieved

by changing the input linear velocity. This scenario will

be henceforth denoted as case study B. In this case, no

significant changes are noticeable and the performance of the

Kalman filter is, again, close to the BCRB. The evolution of

the statistical variables is roughly the same and as such it is

omitted.

Next, the same trajectory is considered but the source is

positioned farther away from the agent, with s = [0 2000]
m. In the first set of simulations for this case the agent has,

once again, angular velocity, so that the x-axis of the agent is

always tangent to the path. This case study will be henceforth

denoted as case study C. The statistical information, as

well as the BCRB, are depicted in Fig. 4 and relevant

changes are visible. First, the RMS error of the EKF, which

follows closely the square root of the diagonal elements of

its covariance matrix, which agree with the BCRB, exhibits

oscillations in both axes. Next, these quantities are below,

for most of the time, the RMS of the Kalman filter, which

follows closely the square root of the diagonal elements of

the Kalman filter covariance matrix. In Fig. 5 the norm of

the statistical variables is depicted. In spite of the frequent

oscillations in each component, it is now possible to observe

that the norm fluctuates little. Moreover, it is more evident

that the Kalman filter does not achieve the same level of

performance. In fact, the norm of the statistical variables for

the Kalman filter, in steady-state, corresponds roughly to that

for the EKF (or the BCRB) times
√
2. More on this will be

discussed shortly. Also, from the comparison of Figs. 5 and

3 it is possible to conclude that the increase of the distance

from the agent to the source led to a decrease in terms of

performance.

The case study C was modified, in such a way that, again,

the agent has no angular velocity but the trajectory remains

the same. This case is henceforth denoted as case study

D and the corresponding statistical variables are depicted

in Fig. 6. In comparison with Fig. 4, it is readily clear

that the oscillations vanish almost completely. Moreover,

the evolution of the norm is roughly the same as of Fig.

5 and as such it is omitted. These observations suggest,

as expected, that the angular velocity of the agent, in the

absence of angular velocity noise, plays no role in the

estimation performance. In fact, in these conditions, a simple

rotation of the agent, without displacement, simply moves

the uncertainty of the estimate of the position of the source

from one axis to the other. Another distinct feature of Fig. 6

422



0 200 400 600 800 1000 1200 1400 1600 1800
−2

0

2

4

t (s)

m
e

a
n

 r
x
 (

m
)

 

 

KF

EKF

0 200 400 600 800 1000 1200 1400 1600 1800
−4

−2

0

2

t (s)

m
e

a
n

 r
y
 (

m
)

 

 

KF

EKF

(a) Mean error

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

t (s)

st
d

. d
e

v
. r

x
 (

m
)

 

 

BCRB

KF

KF−P

EKF

EKF−P

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

t (s)

st
d

. d
e

v
. r

y
 (

m
)

 

 

BCRB

KF

KF−P

EKF

EKF−P

(b) Standard deviation

Fig. 4. Evolution of statistical variables - case study C
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Fig. 5. Evolution of the norm of the statistical variables - case study C

is that, while on the x-axis the performance of the Kalman

filter is equivalent to that of the EKF (and is tight to the

BCRB), the same does not happen for the y-axis. In fact,

the Kalman filter has about the same performance on both

axes, and hence the norm of this quantity is roughly that of

the EKF times
√
2. This also happens in Fig. 3. Notice also

that the Kalman filter suffers a little bit more in terms of

the mean error, in both case studies C and D, in which the

distance from the agent to the source is larger.

In case studied E the agent follows a substantially different

trajectory, as depicted in Fig. 7. This trajectory is less rich

and a lot closer to a straight line, which would render the

system unobservable, leading to the divergence of the filters

and the BCRB. In this case the trajectory was achieved

without angular velocity in order to better analyze the

estimation results. The statistical information obtained with

Monte Carlo simulations, as well as the BCRB, are depicted
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Fig. 6. Evolution of statistical variables - case study D

Fig. 7. Evolution of the trajectory of the agent - case study E

in Fig. 8. Along the y-axis all the statistical variables are

tight to the BCRB and the mean error of both filters is

very close to zero, with slightly higher transients for the

EKF. While the performance of the EKF is also tight to

the BCRB along the x-axis, with mean close to zero, the

Kalman filter suffers along this axis: in short, it achieves

roughly the same performance as along the y-axis, adding

the mean to the RMS error. Another noticeable feature is

that the performance increases as the agent approaches the

source and decreases as it moves away from it. All these

conclusions are in line with previous observations.

Finally, circular trajectories around the source were con-

sidered and some of the conclusions drawn before were

again observed. For instance, even with a non-null angular
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Fig. 8. Evolution of statistical variables - case study E

velocity, there are no oscillations as long as the direction

of the source is constant in body-fixed coordinates, hence

leading to no shift in uncertainty between axes. However, the

direction of the source is not constant in inertial coordinates,

which renders the system observable in this case. Another

interesting observation was that the speed at which the same

path was followed impacts the performance. In particular,

faster velocities lead to an improvement of the estimation

performance. This is in line with the observation term (6),

which in this case is given by

Pm (x(t), t) = d(t)TΘd(t),

where d(t) = r(t)/ ‖r(t)‖ is the nominal direction of the

source relative to the agent.

IV. CONCLUSIONS

This paper presented the analysis of the estimation per-

formance of a filtering solution with globally asymptotically

stable error dynamics for the problem of source localization

based on single range measurements. Several trajectories

were considered, the performance of the Extended Kalman

filter was also assessed, and both solutions were matched

against the Bayesian Cramér-Rao Bound. In short, the per-

formance of the EKF is tight to the BCRB, though GAS

error dynamics are yet to be established. In contrast, the

performance of the proposed solution is tight to the BCRB

in one direction but lags in the orthogonal one - it achieves

only the same performance as in the other direction, while the

BCRB is lower. This seems to be the price of the state aug-

mentation technique, in this case, that yields, nevertheless,

globally asymptotically stable error dynamics. The estima-

tion performance is related to the evolution of the direction of

the source, expressed in inertial coordinates, while changes

of this vector expressed in body-fixed coordinates simply

redistribute the uncertainty of the estimates among the axes

of the agent. Finally, the distance from the source to the agent

does not seem to affect, per se, the estimation performance,

which is related to the evolution of the direction of the source

to the agent, as hinted by the Jacobian of the observations.
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