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Abstract— This paper addresses the problem of estimating
the position of a drifting source relative to an agent, in 3-D,
based on discrete-time range measurements from the agent to
the source, in addition to the position of the agent itself. An
augmented nonlinear system is derived, in discrete-time, that
can be regarded as linear for observability and observer design
purposes. The analysis of the observability follows and sufficient
conditions are derived, based directly on the trajectory of the
agent. A Kalman filter with globally exponentially stable error
dynamics is proposed and simulation results are presented
that illustrate the achievable performance with the proposed
solution.

I. INTRODUCTION

A recurring problem that agents face in robotics is that of

estimating the position of an external object (which may be

another agent), either in absolute or relative coordinates. This

problem is often denominated as that of source localization,

when there is a device in the objects that emits signals

(hence the designation as source), although sometimes it is

also referred to as target localization, more often in warfare

applications. In mobile robotics this can be the case of an

unmanned ground vehicle attempting to estimate the position

of a beacon, while in aerial robotics it can be an unmanned

aerial vehicle trying to estimate the position of another

unmanned aerial vehicle.

While a variety of sensors have been considered to solve

this problem, such as direct positioning systems or the use

of bearing measurements, see e.g. [1], [2], and [3], a lot of

interest has sprouted recently in the use of range measure-

ments from the agent to the source. In [4] a continuous-

time localization algorithm for a fixed source is proposed,

which achieves globally exponentially stable error dynamics

under a persistent excitation condition. The analysis is further

extended to the case of a non-stationary source, where it

is shown that it is possible to achieve tracking up to some

bounded error. In [5] the same problem is addressed consid-

ering a fixed source and discrete-time range measurements.

A recursive least squares approach is proposed and the

dependence of the covariance of the source position on the

velocity profile of the vehicle is discussed. In [6] the problem

of simultaneous estimation of the position of an autonomous
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underwater vehicle and the position of stationary range-only

beacons was addressed, including an outlier rejection method

that can identify groups of range measurements that are

consistent with each other, and a method for initializing

beacon positions in an extended Kalman filter (EKF).

In previous work by the authors, [7], the problem of

source localization based on single range measurements and

relative velocity readings was addressed for a fixed source,

in a continuous-time framework. This paper builds on those

results considering instead a drifting source, discrete-time

range measurements, and that the agent has access to its

position instead of relative velocity readings. A discrete-time

nonlinear augmented system is derived and its observability

analyzed, in a constructive manner, such that the design

of an observer (or filter) follows naturally using estimation

tools for linear systems, even though the system is linear. A

Kalman filter is proposed with globally exponentially stable

error dynamics.

The paper is organized as follows. The problem statement

and the nominal system dynamics are introduced in Section

II, while the filter design is detailed in Section III. Simulation

results are presented in Section IV and Section V summarizes

the main results of the paper.

A. Notation

Throughout the paper the symbol 0 denotes a matrix of ze-

ros and I an identity matrix, both of appropriate dimensions.

A block diagonal matrix is written as blkdiag(A1, . . . ,An).
For x ∈ R

3 and y ∈ R
3, x · y represents the inner product.

II. PROBLEM STATEMENT

Consider an agent, whose inertial position at time t = tk,

tk = t0+kT , k = 1, 2, . . ., T > 0, is denoted as p (k) ∈ R
3,

seeking to determine the position of a source, whose inertial

position at time t = tk is denoted as s (k) ∈ R
3. Assume

that the source is drifting with constant velocity v (k) ∈ R
3.

Finally, suppose that the agent has access to its own position,

p (k), and measures its distance to the source, given by

r (k) = ‖s (k)− p (k)‖ ∈ R.

The problem considered in this paper is that of estimating the

position of the source, s (k), as well as its drifting velocity,

v (k), based on the agent position measurements, p (k), and

the range measurements, r (k).
The evolution of the position of the source is simply

given by s (k + 1) = s (k) + Tv (k), where T > 0 denotes

the sampling period. On the other hand, as the source
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drifting velocity is assumed constant, its evolution is simply

described by v (k + 1) = v (k). Hence, the discrete-time

system dynamics are given by







s (k + 1) = s (k) + Tv (k)
v (k + 1) = v (k)
r (k + 1) = ‖s (k + 1)− p (k + 1)‖

. (1)

In other words, the problem considered herein is the design

of an estimator for (1) with globally exponentially stable

error dynamics.

III. FILTER DESIGN

In previous work by the authors [7] the problem of

source localization based on single range measurements

was addressed considering a continuous framework and, in

addition to the distance, relative velocity measurements. In

the proposed approach, the range measurement was consid-

ered as a system state and additional states were defined

identifying the resulting nonlinear terms of the dynamics of

the range measurement. The present paper follows up on

previous work considering: i) discrete-time measurements, as

opposed to continuous signals; ii) a drifting source, instead

of a fixed one; and iii) that the agent has access to its

own position instead of relative velocity readings. Naturally,

instead of localizing the source relative to the agent, the

solution proposed herein provides the absolute position of

the source.

A. System augmentation

Define as discrete-time states
{

x1(k) := s (k)
x2(k) := v (k)

and consider the range measurement as an additional system

state, i.e., define

x3(k) := r(k).

In order to describe the evolution of x3 (k), consider the

square of the distance and expand

r2 (k + 1) = ‖x1 (k + 1)− p (k + 1)‖
2

using (1), which gives

r2 (k + 1) = −2 [p (k + 1)− p (k)] · x1 (k)

−2Tp (k + 1) · x2 (k)

+r2 (k) + 2Tx1 (k) · x2 (k) + T 2 ‖x2 (k)‖
2

+ ‖p (k + 1)‖
2
− ‖p (k)‖

2
. (2)

Identifying the nonlinear terms x1 (k) ·x2 (k) and ‖x2 (k)‖
2

in (2) with new system states, i.e.,

{

x4 (k) := x1 (k) · x2 (k)

x5 (k) := ‖x2 (k)‖
2 , (3)

and noticing that r2 (k) = x3(k)r (k) allows to rewrite (2)

x3 (k + 1) = −2
[p (k + 1)− p (k)] · x1 (k)

r (k + 1)

−2T
p (k + 1) · x2 (k)

r (k + 1)

+
r (k)x3 (k)

r (k + 1)
+

2Tx4 (k)

r (k + 1)

+
T 2x5 (k)

r (k + 1)
+

‖p (k + 1)‖
2
− ‖p (k)‖

2

r (k + 1)
.(4)

The evolution of the new states can be simply written, using

(1), as
{

x4 (k + 1) = x4 (k) + Tx5 (k)
x5 (k + 1) = x5 (k)

.

Define the augmented state vector as

x (k) :=













x1 (k)
x2 (k)
x3 (k)
x4 (k)
x5 (k)













∈ R
3+3+3.

Then, the discrete-time system dynamics can be written as

x (k + 1) = A (k)x (k) +Bu (k) ,

where

A (k) =













I T I 0 0 0
0 I 0 0 0

A3 (k)
0 0 0 1 T
0 0 0 0 1













∈ R
9×9,

with

A3 (k) =

















−2p(k+1)−p(k)
r(k+1)

−2T p(k+1)
r(k+1)

r(k)
r(k+1)

2T
r(k+1)

T 2

r(k+1)

















T

,

B =













0

0

1
0
0













∈ R
9×1,

and

u (k) =
‖p (k + 1)‖

2
− ‖p (k)‖

2

r (k + 1)
.

Discarding the original nonlinear system output, one may

consider as a new system output y (k + 1) = x3 (k + 1). The

discrete-time augmented system can then be written as
{

x (k + 1) = A (k)x (k) +Bu (k)
y (k + 1) = Cx (k + 1)

, (5)

where C :=
[

0 0 1 0 0
]

.

Remark 1: By definition, the distance is nonnegative. In

addition, it is impossible to have a null distance as that would
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imply that the agent was on top of the source, which is

physically impossible. In fact, there is always a minimum

distance to the transponders. Hence, (5) is well defined.

B. Observability analysis

The system (5) can be regarded as a discrete linear time-

varying system for observer design purposes, even though

the system matrix A(k) depends explicitly on the range

measurement, which is both a state and an output. This is

possible because for observer (or filter) design purposes the

range is available and hence it can be simply considered as a

function of time. This idea was first pursued by the authors

in [7, Lemma 1] for a similar continuous system, whose

application is equivalent for the discrete-time case, as shown

in the following theorem.
Lemma 1: Consider the nonlinear discrete-time system

{

x(k + 1) =AAA
(

k,UUUk+1

k0
,YYYk+1

k0

)

x(k) +BBB
(

k,UUUk+1

k0
,YYYk+1

k0

)

u(k)

y (k + 1) = CCC
(

k,UUUk+1

k0
,YYYk+1

k0

)

x (k + 1)
,

(6)

where UUU
kf

k0
:= {u (k0) ,u (k0 + 1) , . . . ,u (kf − 1)} and

YYY
kf

k0
:= {y (k0) ,y (k0 + 1) , . . . ,y (kf − 1)} are the in-

put and output signals, respectively, on the time interval

[k0, kf [, and x(k) ∈ R
n. If rank (O (k0, kf)) = n, where

O (k0, kf ) is the observability matrix associated with the pair
(

AAA
(

k,UUU
kf

k0
,YYY

kf

k0

)

,CCC
(

k,UUU
kf

k0
,YYY

kf

k0

))

on I := [k0, kf ], then

the nonlinear system (6) is observable on I in the sense that,

given the system input and output signals UUU
kf

k0
and YYY

kf

k0
, the

initial condition x (k0) is uniquely defined.

Proof: For the sake of ease of notation, and as both

the system input and output signals UUU
kf

k0
and YYY

kf

k0
are

assumed available, consider the simplified notation AAA (k) =
AAA
(

k,UUUk+1
k0

,YYYk+1
k0

)

, BBB (k) = BBB
(

k,UUUk+1
k0

,YYYk+1
k0

)

, and CCC (k) =

CCC
(

k,UUUk+1
k0

,YYYk+1
k0

)

. Given UUU
kf

k0
and YYY

kf

k0
, it is possible to com-

pute the transition matrix associated with the system matrix

AAA (k), given by φ (k, k0) = AAA (k − 1)AAA (k − 2) . . .AAA (k0)
for k0 < k ≤ kf , with φ (k0, k0) = I. Hence, it is possible

to compute the observability matrix

O (k0, kf ) =











CCC (k0)
CCC (k0 + 1)φ (k0 + 1, k0)

...

CCC (kf − 1)φ (kf − 1, k0)











.

Now, notice that it is possible to write the evolution of the

state, given the system input and output (which allow to

compute the transition matrix), as

x (k) = φ (k, k0)x0 +

k−1
∑

j=k0

φ (k, j + 1)BBB (j)u (j) (7)

for k0 < k < kf , where x0 = x (k0) is the initial condition.

This is easily verified by substitution into the state equation.

The remainder of the proof follows as in classic theory. The

output of the system can be written, from (7), as

y (k) = CCC (k)φ (k, k0)x0 + CCC (k)

k−1
∑

j=k0

φ (k, j + 1)BBB (j)u (j)

for k0 < k < kf , with y (k0) = CCC (k0)x0. Considering the

output for all available time instants gives














y (k0)
y (k0 + 1)
y (k0 + 2)

...

y (kf − 1)















= O (k0, kf )x0

+

















0

CCC (k0 + 1)BBB (k0)u (k0)

CCC (k0 + 2)
∑k0+1

j=k0
φ (k0 + 2, j + 1)BBB (j)u (j)

...

CCC (kf − 1)
∑kf−2

j=k0
φ (kf − 1, j + 1)BBB (j)u (j)

















. (8)

Multiplying (8) on both sides by O
T (k0, kf ) and rearranging

the terms yields

W (k0, kf )x0 = O
T (k0, kf )













y (k0)
y (k0 + 1)
y (k0 + 2)

...
y (kf − 1)













−O
T(k0, kf )















0

CCC (k0 + 1)BBB (k0)u (k0)

CCC (k0+2)
∑k0+1

j=k0
φ (k0 + 2, j + 1)BBB (j)u (j)

...

CCC (kf−1)
∑kf−2

j=k0
φ (kf − 1, j + 1)BBB (j)u (j)















,

(9)

where W (k0, kf ) := O
T (k0, kf )O(k0, kf ) is the observ-

ability Gramian associated with the pair (AAA(k),CCC(k)) on I.

All quantities in (9) but x0 are known given the system input

and output and as such (9) is a linear algebraic equation

on x0. Hence, if rank (O (k0, kf)) = n, the observabil-

ity Gramian W (k0, kf ) is invertible and therefore x0 is

uniquely defined, concluding the proof.

Remark 2: It is important to remark that, even though (7)

resembles, at first glance, the response of a linear system, that

is not the case and it does not correspond to the superposition

of the free response (due to the initial condition) and the

forced response (due to system input). This is so because the

transition matrix in (7) depends explicitly on the system input

and output. However, that is not a problem for observability

and observer design purposes as both the input and output

signals are assumed available.

The following result addresses the observability of the

nonlinear discrete-time system (5).

Theorem 1: If rank (MN−1) = 8, where

Mi :=

















[p (k0 + 1)− p (k0)]
T

pT (k0 + 1) 1 12

[p (k0 + 2)− p (k0)]
T

2pT (k0 + 2) 2 22

[p (k0 + 3)− p (k0)]
T

3pT (k0 + 3) 3 32

...
...

...
...

[p (k0 + i)− p (k0)]
T

ipT (k0 + i) i i2

















,

then (5) is observable on the interval [k0, k0 +N ], in the

sense that the initial state x (k0) is uniquely determined by
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the input {u (k) , k = k0, k0 + 1, . . . , k0 +N − 1} and the

output {y (k) , k = k0, k0 + 1, . . . , k0 +N − 1}.

Proof: The proof amounts to show that the observability

matrix O (k0, k0 +N) associated with the pair (A (k) ,C)
on [k0, k0 +N ] has rank equal to the number of states of

the system, i.e. rank 9, which immediately gives the desired

result by application of Lemma 1. Suppose that the rank of

the observability matrix is less than 9. Then, there exists a

unit vector d ∈ R
9, d =

[

dT
1 dT

2 d3 d4 d5
]T

, with

d1,d2 ∈ R
3, d3, d4, d5 ∈ R, such that O (k0, k0 +N)d =

0 or, equivalently,



























Cd = 0
CA (k0)d = 0
CA (k0 + 1)A (k0)d = 0
...

CA (k0 +N − 2) . . .A (k0 + 1)A (k0)d = 0

. (10)

Expanding the first equation of (10) implies that it must be

d3 = 0. Substituting that in the i-th equation of (10), i > 1,

gives

−2 [p (k0 + i− 1)− p (k0)]·d1 − 2Tp (k0 + i− 1)·d2

+2 (i− 1)Td4 + (i− 1)
2
T 2d5 = 0. (11)

Now, let d′ =
[

− 1
2d

T
1 − 1

2T d
T
2

1
2T d4

1
T 2 d5

]T
. Us-

ing (11) it is a simple matter of computation to show

that MN−1d
′ = 0, which means that rank (MN−1) < 8,

thus contradicting the hypothesis of the theorem. Hence,

if rank (MN−1) = 8, there cannot exist a unit vector d

such that O (k0, k0 +N)d = 0, which implies that the

observability matrix must have rank equal to the number

of states of the system, which concludes the proof invoking

Lemma 1.

Notice that r(k) = ‖s(k)− x1(k)‖ was discarded in (5).

Furthermore, there is nothing in (5) imposing the nonlinear

constraints (3). While it is true that these restrictions could

be easily imposed including artificial outputs, e.g., x4(k) −
x1 (k) · x2 (k) = 0, this form was preferred as it allows

to apply Lemma 1. However, care must be taken when

extrapolating conclusions from the observability of (5) to the

observability of (1). The following theorem addresses this

issue and provides the means for design of a state observer

or filter for (1).

Theorem 2: Under the conditions of Theorem 1, the non-

linear system (1) is observable on interval [k0, k0 +N ] in

the sense that the initial state x (k0) is uniquely determined

by the input {u (k) , k = k0, k0 + 1, . . . , k0 +N − 1} and

the output {y (k) , k = k0, k0 + 1, . . . , k0 +N − 1}. Fur-

thermore, the initial condition of the augmented nonlinear

system (5) matches that of (1) and an observer with glob-

ally exponentially stable error dynamics for (5) is also an

observer for (1) with globally exponentially stable error

dynamics.

Proof: Let

x (k0) :=













x1 (k0)
x2 (k0)
x3 (k0)
x4 (k0)
x5 (k0)













∈ R
9

be the initial condition of (5), which, from Theorem 1, is

uniquely determined, and let s (k0) and v (k0) be the initial

condition of (1). From the output of both systems for k = k0
one immediately concludes that it must be

x3 (k0) = ‖s (k0)− p (k0)‖ = r (k0) . (12)

Considering the output of the nonlinear system (1) for k =
k0 + i as a function of its initial state allows to write, after

some trivial computations,

r2(k0+ i) = −2 [p (k0 + i)− p (k0)] · s (k0)

−2iTp (k0 + i) · v (k0)

+r2 (k0) +2iT s (k0) · v(k0) + i2T 2 ‖v(k0)‖
2

‖p (k0 + i)‖
2
− ‖p (k0)‖

2
(13)

for all 1 ≤ i ≤ N − 1. On the other hand, evaluating the

output of (5) as a function of x (k0) and using the fact that,

by contruction, x3 (k) = r (k), k = k0, k0 +1, . . ., allows to

write, after some computations,

r2(k0+ i) = −2 [p (k0 + i)− p (k0)] · x1 (k0)

−2iTp (k0 + i) · x2 (k0)

+r2 (k0) +2iTx4 (k0) + i2T 2x5 (k0)

‖p (k0 + i)‖
2
− ‖p (k0)‖

2
(14)

for all 1 ≤ i ≤ N − 1. Comparison between (13) and (14)

gives

−2 [p (k0 + i)− p (k0)] · [s (k0)− x1 (k0)]

−2iTp (k0 + i) · [v (k0)− x2 (k0)]

+2iT [s (k0) · v(k0)− x4 (k0)]

+i2T 2
[

‖v(k0)‖
2
− x5 (k0)

]

= 0

for all 1 ≤ i ≤ N − 1 or, equivalently,

MN−1











−2 [s (k0)− x1 (k0)]
−2T [v (k0)− x2 (k0)]

2T [s (k0) · v(k0)− x4 (k0)]

T 2
[

‖v(k0)‖
2
− x5 (k0)

]











= 0. (15)

Now, under the hypothesis that rank (MN−1) = 8, the only

solution of (15) is














x1 (k0) = s (k0)
x2 (k0) = v (k0)
x4 (k0) = s (k0) · v(k0)

x5 (k0) = ‖v(k0)‖
2

.

This concludes the proof: i) it has been shown that the

initial condition of (1) matches that of (5), which is uniquely

determined as shown in Theorem 1, hence concluding the

proof of the first part of the theorem; and ii) the second part
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of the theorem follows from the first: the estimation error of

an observer for (5) with globally exponentially stable error

dynamics converges to zero exponentially fast, which means

that its estimate approaches the true state exponentially fast.

But as the true state of (5) matches that of the nonlinear

system (1), that means that an observer (filter) for (5) is also

an observer (filter) for the original nonlinear system, with

globally exponentially stable error dynamics.

C. Kalman filter and further discussion

The design of an observer solution for (5) can be done

using a variety of tools for linear systems. Indeed, while (5)

is in fact a nonlinear system, it has been shown that it can

be regarded, for observability and observer design purposes,

a linear in the state, as both the input and output signals

are available. One option would be to design a Luenberger

observer as detailed in [8, Theorem 29.2], which would allow

to choose the convergence rate. In this paper, the celebrated

Kalman filter is employed instead.

While for linear time invariant systems observability suf-

fices to establish a Kalman filter with globally exponen-

tially stable error dynamics, for linear time-varying systems

stronger forms are required, in particular, uniform complete

observability. Conditions for uniform complete observability

of the pair (A (k) ,C) will be derived in future work,

ensuring that the Kalman filter has globally exponentially

stable error dynamics [9].

It is important to stress that, in spite of the fact that,

in nominal terms, the velocity of the source was assumed

constant, it is possible to consider, during the design of the

Kalman filter, that this state is driven by a white Gaussian

process, with zero mean. By appropriate adjustment of

the magnitude of the corresponding filter parameter (state

disturbance variance), it is possible to allow the filter to

estimate slowly time-varying source velocities.

Finally, notice that there exists multiplicative noise, as the

system matrices are noisy. Hence, no optimal claims are

made in the paper. The design of the Kalman filter that is

presented in the next section does not take this aspect into

account.

IV. SIMULATION RESULTS

This section presents simulation results in order to give

an idea of the attainable performance with the proposed

solution. Nevertheless, these are only preliminary results and

extensive Monte Carlo simulations should be carried out in

the future, prior to experimental validation, to further validate

the solution, as well as comparison with the Extended

Kalman filter. The example that is presented here is inspired

by that offered in [5], with the necessary adaptations as in

the present approach the source is allowed to drift.

The initial position of the source is s(0) = [30 0 0]
T
m,

while its drift velocity was set to v(t) = [1 0 0]
T
m/s. The

trajectory of the agent is given by

p (t) =





t+ 10 sin
(

1
1002πt

)

10 sin
(

2
1002πt

)

10 sin
(

3
1002πt

)



 m/s,

which provides sufficient excitation such that the system is

uniformly completely observable. The resulting trajectory of

the source relative to the agent is as depicted in Fig. 1.
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Fig. 1. Trajectory of the source relative to the agent, s(t)− p(t)

A sampling period of T = 1 s was employed in the sim-

ulations and sensor noise was considered for all sensors. In

particular, the range measurements and agent position read-

ings were assumed to be corrupted by additive uncorrelated

zero-mean white Gaussian noise, with standard deviations of

0.3m and 1m, respectively. To tune the Kalman filter, the

state disturbance covariance matrix was chosen as

blkdiag
(

10−10I, 10−10I, 10−8, 10−10, 10−10
)

and the output noise variance was set to 0.32 m/s2. The ini-

tial condition is zero for all states except for the range, which

was initialized according to the first range measurement.

The initial convergence of the position and velocity errors

is depicted in Fig. 2, whereas the initial evolution of the range

errors is shown in Fig. 3. The convergence of the remaining

state errors is shown in Fig. 4. As it can be seen from the

various plots, the convergence rate of the filter is quite high.

The detailed evolutions of the position and velocity errors are

depicted in Figs. 5 and 6, respectively. The most noticeable

feature is that the position and velocity errors remain, in

steady-state, below 0.4m and 0.002m/s, respectively.

V. CONCLUSIONS

This paper addressed the problem of source localization

based on single range measurements, considering a discrete-

time framework and a drifting source, with unknown constant

velocity. Based on previous work by the authors, a discrete-

time augmented nonlinear system was derived that can be

regarded, for the purpose of state estimation, as linear. Its

observability was studied and a Kalman filter provides the

estimation solution, with globally exponentially stable error

dynamics. Simulation results evidence fast convergence and

good performance in the presence of sensor noise. Future

work will cover the comparison with existing techniques,

in particular with the Extended Kalman Filter (EKF), which

does not offer GAS guarantees, and experimental evaluation.
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Fig. 2. Initial convergence of error
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Fig. 3. Initial convergence of the range error
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Fig. 4. Evolution of the error of the augmented states x4(k) and x5(k),
in red and green, respectively
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Fig. 5. Steady-state evolution of the position error
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Fig. 6. Steady-state evolution of the ocean current velocity error
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