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Abstract— This paper addresses the problem of state esti-
mation in formations of autonomous vehicles. The approach
considered here consists in the implementation of a local
state observer in each vehicle relying only on locally available
measurements and data communicated by neighboring agents,
resulting in a decentralized state observer which features lower
computational and communication loads than comparable cen-
tralized solutions. A method for computing observer gains
which yield globally asymptotically stable error dynamics is
presented for fixed topology formations, as well as an iterative
algorithm for improving the decentralized estimator’s perfor-
mance when the measurements are corrupted by noise. The
proposed framework is particularized to the practical case of a
formation of Autonomous Underwater Vehicles (AUVs), and a
continuous-discrete formulation is achieved for the local state
observers, to take into account the difference in sampling rates
between on-board instrumentation and positioning systems. To
assess the performance of the solution, simulation results are
presented and discussed for different formation topologies.

I. INTRODUCTION

Motivated by the wealth of potential applications for
formations composed by multiple agents working cooper-
atively, see e.g. [5], [9], and [12], the subjects of estimation
and control in formations of vehicles have been researched
extensively in the past few years, yielding many compelling
contributions. Centralized solutions consider the formation of
vehicles as a whole, usually relying on a central processing
node to execute most, if not all, computations. This approach
is attractive from a design point of view as most classical,
single-agent solutions can still be applied. On the flip side,
implementation is almost guaranteed to be cumbersome, as
heavy computational and communication loads are to be ex-
pected due to the necessity of conveying all the information
in the formation to a central processing node, which must
then relay the results of its computations to the vehicles.
To avoid those pitfalls, the aim of decentralized solutions
is to break down the problem in several parts, leaving each
agent in the formation with the responsibility of performing
a subset of the computations, relying on limited information
and communication with other vehicles in the formation.
However, there is a trade-off: while implementation is sim-
pler and more efficient, design and analysis become much
more intricate, see e.g. [6] and [21].
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001 Lisboa, Portugal. C. Silvestre is with the Institute for Systems and
Robotics and the Department of Electrical and Computer Engineering,
Faculty of Science and Technology, University of Macau, Taipa, Macau.
{dviegas,pbatista,pjcro,cjs}@isr.ist.utl.pt

On the subject of decentralized state estimation, interesting
approaches can be found in [17], [22], and [2]. The closely
related area of decentralized control has also seen a wealth
of relevant solutions, such as in [10] and [18]. Most notably,
recent work on the subject of quadratic invariance, see e.g.
[13] and [15], has offered optimal solutions for certain
classes of formations. In contrast, the work presented here
focuses on methods which can be applied to any formation
topology, trading off optimality for generality.

This paper addresses the problem of decentralized state
estimation of linear motion quantities in formations of
vehicles. In the envisioned scenario, each agent in the
formation aims to estimate its own position and velocity
based on some awareness of its own movement and local
measurements and communication. Each agent is assumed
to have access to either measurements of its own state, or
measurements of its state relative to one or more vehicles
in the vicinity, as well as the states estimates of those
agents, received through communication. A method for local
state observer design is presented for acyclic formations,
featuring globally asymptotically stable (GAS) estimation
error dynamics. Building on this, an iterative algorithm is
presented for improving the performance of the decentralized
state estimator in noisy environments. The algorithm aims to
minimize the H2 norm of the estimation error dynamics, and
is applicable to any fixed formation topology. The proposed
framework is then particularized to the practical case of
a formation of Autonomous Underwater Vehicles (AUVs),
and an equivalent continuous-discrete formulation for local
observer design is introduced to take advantage of the much
faster sampling rate of on-board sensors in comparison with
the positioning system. Previous work by the authors on this
topic can be found in [19]. This paper extends those results
to the discrete-time framework and explores the application
to AUVs in greater depth.

The rest of the paper is organized as follows: Section II
introduces the dynamics of the vehicles and also of the local
observers, while Section III reports the stability and perfor-
mance analysis of the decentralized state estimator. Section
IV details the aforementioned application to a formation
of AUVs, and Section V shows simulation results. Finally,
Section VI summarizes the main conclusions of the paper.

A. Notation

Throughout the paper the symbol 0 denotes a matrix (or
vector) of zeros and I an identity matrix, both of appropriate
dimensions. Whenever relevant, the dimensions of an n× n
identity matrix are indicated as In. A block diagonal matrix
is represented as diag (A1, . . . ,An), and the Kronecker
product of two matrices A and B is denoted by A ⊗ B.
For x,y ∈ R

3, x× y represents the cross product.
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II. SINGE VEHICLE KINEMATICS AND

LOCAL STATE OBSERVER DESIGN

Consider a formation composed by N autonomous vehi-
cles moving in a scenario, where each vehicle is identified
by a distinct positive integer i ∈ {1, 2, . . . , N}. It is assumed
that the topology of the formation is fixed, in the sense that
the measurements and communication links available to each
agent do not change over the course of the mission. The state
xi(t) ∈ R

nL of vehicle i, to be estimated, follows

ẋi(t) = ALxi(t) +BLui(t),

where ui(t) ∈ R
mL is the input of the system, and AL ∈

R
nL×nL and BL ∈ R

nL×mL are given constant matrices.
Regarding the available measurements, suppose that one

or more vehicles have access to measurements of their own
state, denoted as “absolute” measurements for convenience,
yielding the Linear Time-Invariant (LTI) system

{

ẋi(t) = ALxi(t) +BLui(t)
yi(t) = CLxi(t)

, (1)

where yi(t) ∈ R
oL is the output of the system, and

CL ∈ R
oL×nL . However, many commonly used positioning

systems such as Ultra-short Baseline (USBL), Long Baseline
(LBL), and the GPS provide samples at a relatively slow
rate, and as such the continuous-time framework is not the
most suitable for observer design. Suppose that the output
yi(t) is sampled with constant sampling period T . Then, the
system (1) can be described by the following discrete-time
representation for observer design purposes:

{

xi(k + 1) = ADxi(k) + uD
i (t)

yi(k) = CDxi(k)
, (2)

where AD = eALT , CD = CL, and

uD
i (t) =

∫ T

0

eAL(T−τ)BLui(tk + τ)dτ ,

in which tk denotes the sampling instant of sample k. It is
assumed that the pair (AD,CD) is observable.

For the other vehicles, suppose that each one has access
to measurements of its state relative to Ni other vehicles in
the vicinity, yielding the dynamic system

{

ẋi(t) = ALxi(t) +BLui(t)
yi(t) = Ci∆xi(t)

, (3)

in which yi(t) ∈ R
oLNi , Ci = INi

⊗CL, and

∆xi(t) :=











xi(t)− xθi,1(t)
xi(t)− xθi,2(t)

...
xi(t)− xθi,Ni

(t)











∈ R
nLNi , θi,j ∈ Θi,

where

Θi :={θi,1, θi,2, . . . , θi,Ni
| θi,j ∈ {1, . . . , N}, j=1, . . . , Ni}

is the set of other vehicles corresponding to the relative
measurements available to vehicle i. Furthermore, assume
that those vehicles send updated state estimates to vehicle i
through communication. Supposing that the output is sam-
pled with constant sampling period T , as in the previous case,
the following discrete-time representation can be achieved:

{

xi(k + 1) = ADxi(k) + uD
i (k)

yi(k) = CD
i ∆xi(k)

, (4)

with CD
i = Ci.

A. Local state observer design

For the vehicles which have access to absolute mea-
surements, since the pair (AD,CD) is observable, it is
straightforward to design a local state observer with GAS
error dynamics for the LTI system (2), see [1]. For vehicle
i, its dynamics follow
{

x̂i(k + 1) = ADx̂i(k) + uD
i (t) + Li(yi(k)− ŷi(k))

ŷi(k) = CDx̂i(k)
,

where x̂i(k) ∈ R
nL is the state estimate, and Li ∈ R

nL×oL

is a constant matrix of observer gains, to be computed.
Regarding the vehicles which have access to relative mea-

surements, the design process is slightly different. First, build
an estimate of ∆xi(k) using the state estimates received
through communication,

∆x̂i(k) :=











x̂i(k)− x̂θi,1(k)
x̂i(k)− x̂θi,2(k)

...
x̂i(k)− x̂θi,Ni

(k)











∈ R
nLNi , θi,j ∈ Θi.

The local observer structure for the system (4) follows
{

x̂i(k + 1) = ALx̂i(k) + ui
D(k) + Li(yi(k)− ŷi(k))

ŷi(k) = CD
i ∆x̂i(k)

,

(5)
with Li ∈ R

nL×oLNi .

III. STABILITY AND PERFORMANCE OF THE

DECENTRALIZED STATE OBSERVER

As formations such as the ones considered in this paper
can be conveniently described by a directed graph, it is
convenient to introduce a few concepts of graph theory
before proceeding. A graph G := (V, E) consists in a set V
of vertices along with a set E of edges. In a directed graph, or
digraph, an edge is composed by an ordered pair of vertices
e = (a, b). In this paper, this notation means that edge e is
incident on a and b, and directed towards b. A directed path
in G is a sequence (v0, e1, v1, e2, v2, . . . , en, vn) of vertices
and edges of G such that ei = (vi−1, vi), in which all
vertices except the first and the last must be different, and
a directed cycle is a directed path with the added restriction
that the first and last vertices are the same. A directed graph
is acyclic if there are no directed cycles in it. The kind of
formation that was detailed in the previous section can be
represented by a directed graph G = (V, E), in which each
vertex represents a distinct vehicle, and an edge (a, b) means
that vehicle b has access to a measurement relative to vehicle
a, and also to its state estimate. Examples of such formation
graphs are depicted in Fig. 1. In order to incorporate the
absolute measurements available to some of the vehicles, it
is convenient introduce an additional set of edges of the form
(0, i), connected to only one vertex. For a graph G with nv

vertices and ne edges, the entries of its incidence matrix
SG ∈ R

nv×ne follow

[SG ]jk=







1, edge k incident on j, directed towards it,
−1, edge k incident on j, directed away from it,
0, edge k not incident on j.

For a more in-depth treatment of the concepts summarized
above, see e.g. [20]. The following result establishes a
sufficient condition for global asymptotic stability of the
estimation error for the distributed state observer.
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Theorem 1: Consider a formation composed of N agents,
whose dynamics are described either by (2) or (4), depending
on the type of measurements available to them, and assume
that the digraph associated with the formation is acyclic.
Suppose that each agent i described by (2) implements a
local state observer with GAS error dynamics, with gain
Li ∈ R

nL×oL , and that each agent j described by (4)
implements the local state observer (5), with the gain Lj

chosen so that the matrix (AD − LjC
D
i ) is discrete-time

stable. Let x̃i(k) := xi(k) − x̂i(k) ∈ R
nL denote the

estimation error of the local observer at vehicle i. Then, the
estimation error of the distributed state observer, x̃(k) :=
[

x̃T
1 (k) x̃T

2 (k) . . . x̃T
N (k)

]T
∈ R

nLN , composed by the
concatenation of the estimation error of each local observer,
converges globally asymptotically to zero, and its dynamics
satisfy x̃(k+1) = Λx̃(k) for some Λ ∈ R

nLN×nLN , whose
eigenvalues are those of each local state observer.

The proof is analogous to its continuous-time counterpart,
as described in [19], and is omitted due to space constraints.
This result allows the design of a distributed estimator in the
terms described in Section II. Note that the state observer
of each agent can be designed locally and results from the
solution of simple stable pole placement problems.

A. Formation-wide dynamics

To study and improve the performance of the decentralized
state observer, it is necessary to consider the global dynamics
of the formation, which can be represented in the LTI form

{

x(k + 1) = Agx(k) + u(k) +w(k)
y(k) = Cgx(k) + v(k)

, (6)

where x(k) :=
[

xT
1 (k) . . . xT

N (k)
]T

∈ R
nLN is the state

of the whole formation, y(k) :=
[

yT
1 (k) . . . yT

N (k)
]T

∈
R

oLM the output of the system, M being the total number
of absolute and relative position measurements in the whole

formation, and u(k) :=
[

(uD
1 )T (k) . . . (uD

N )T (k)
]T

∈
R

mLN is the input of the system. The variables w(k) ∈
R

nLN and v(k) ∈ R
oLM represent, respectively, process

and observation noise, which are assumed to be zero-mean
uncorrelated white Gaussian processes, with associated co-
variance matrices Ξ ∈ R

nLN×nLN and Θ ∈ R
oLM×oLM .

The matrices Ag ∈ R
nLN×nLN and Cg ∈ R

oLM×nLN are
built from the dynamics of the individual agents, following

{

Ag = IN ⊗AD

Cg = ST
G ⊗CD

.

The local state observers can also be grouped, yielding
{

x̂(k + 1) := Agx̂(k) + u(k) + L(y(k)− ŷ(k))
ŷ(k) := Cgx̂(k)

, (7)

where x̂(k) :=
[

x̂
T
1 (k) x̂

T
2 (k) . . . x̂

T
N (k)

]T
∈ R

nLN is
the global state estimate of the decentralized state observer,
and L ∈ R

nLN×oLM is the matrix of observer gains. To
account for the fact that each local observer only has access
to some measurements, L must follow a special structure, or
sparsity constraint. More specifically, define an augmented
incidence matrix, S′

G=SG⊗1n,3 ∈ R
nLN×oLM , where 1n,m

is a n×m matrix whose entries are all equal to 1. Then, the
individual entries of L follow
{

[S′
G ]ij = 1 ⇒ Lij can be set to an arbitrary value,

[S′
G ]ij 6= 1 ⇒ Lij = 0.

This can be expressed as a linear constraint for optimization:

[L]ij = 0 if [S′
G ]ij 6= 1,

∀i ∈ {1, 2, . . . , nN}, j ∈ {1, 2, . . . , 3M}. (8)
This constraint prevents the use of classical filter design
techniques such as the Kalman filter, and as such a different
strategy must be pursued to find suitable observer gains.

B. H2 Nominal Performance

Consider the discrete-time system
{

x(k + 1) = Ax(k) +Bu(k)
z(k) = Cx(k) +Du(k)

, (9)

where x(t) ∈ R
m is the state of the system, u(t) ∈ R

o the
input, and z(t) ∈ R

p is the output. The matrices A, B, C,
and D are constant real matrices of appropriate dimensions.
The H2 norm of the system can be used as a performance
metric for state observers. In fact, when the components of
the input u(k) are independent zero-mean, white Gaussian
noise processes, the H2 norm of the system is also the
asymptotic output variance of the system [16]. Using (6)
and (7) the global error of the decentralized state observer
(7), x̃(k), can be shown to follow

x̃(k + 1) = (Ag − LCg)x̃(k) +w(k)− Lv(k). (10)
Define a zero-mean, uncorrelated, white Gaussian noise
process q(k) ∈ R

nLN+oLM whose covariance is the identity
matrix. The error dynamics (10) can then be rewritten as

x̃(k + 1) = (Ag − LCg)x̃(k) +
[

Ξ
1
2 −LΘ

1
2

]

q(k).

By making the substitution






























A = Ag − LCg

B =
[

Ξ
1
2 −LΘ

1
2

]

C = I

D = 0

x(k) = x̃(k)
u(k) = q(k)

, (11)

the system (9) describes the error dynamics of the decen-
tralized state observer, and its H2 norm is also the asymp-
totic variance of the estimation error. Thus, the problem of
optimizing the performance of the state observer in noisy
environments can be restated as minimizing the H2 norm of
(9), where the system variables are given by (11). Define

X(P,L) :=








P (Ag − LCg)P
[

Ξ
1
2 −LΘ

1
2

]

P(Ag − LCg)
T P 0

[

Ξ
1
2 −LΘ

1
2

]T

0 I









.

Using the substitution (11), the minimization of the H2 norm
of (9) considering the constraints (8) imposed by the graph
topology can be done solving the optimization problem [16]

min
P ∈ R

nLN×nLN

L ∈ R
nLN×oLM

W ∈ R
oLM×oLM

µ ∈ R
+

µ

subject to: X(P,L) ≻ 0,
[

W P

P P

]

≻ 0,

trace(W) < µ,
and [L]ij = 0 if [S′

G ]ij 6= 1,
∀i ∈ {1, 2, . . . , nN}, j ∈ {1, 2, . . . , 3M}.

(12)
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TABLE I

ALGORITHM FOR H2 NORM MINIMIZATION

1) Initialization: set n = 1; find L
(0) such that (Ag − L

(0)
Cg) is

discrete time stable (this can be done following, e.g., Theorem 1);
choose a stopping criterion for the algorithm (e.g. a fixed number
of steps, or a minimum improvement on µ at each iteration).

2) Solve the optimization problem (12) with L fixed as L
(n−1) and

store the resulting P
∗ as P

(n).

3) Solve the optimization problem (12) with P fixed as P
(n) and

store the resulting L
∗ as L

(n).

4) If the stopping criterion is met, stop and take L
(n) as the gain.

Otherwise, set n = n+ 1 and go to step 2.

The resulting set of constraints contains a bilinear matrix
inequality (BMI), which is inherently difficult to treat and
is usually associated with nonconvex problems. However,
if the value of L is fixed, the constraints take a Linear
Matrix Inequality (LMI) form, and there exist very fast and
efficient methods to solve optimization problems with LMI
constraints. Following this, Table I details an algorithm for
improvement of the performance of the decentralized state
observer, similar to the P −K iterations used in some cases
for controller design via BMIs, see e.g. [8] and [11].

IV. APPLICATION TO A FORMATION OF AUVS

Consider a formation composed by N AUVs, and suppose
that each has sensors mounted on-board which give access
to either measurements of its own position in an inertial
reference coordinate frame {I}, or measurements of its
position relative to one or more AUVs in the vicinity. Fur-
thermore, each of those vehicles transmits an estimate of its
own inertial position to AUV i. In underwater applications,
the relative measurements can be provided by an USBL
positioning system in an inverted configuration. The USBL
is composed of a small calibrated array of acoustic receivers
and measures the distance between a transponder and the
receivers, from which the relative position can be recovered
[14]. The inertial measurements can be provided, e.g., by a
LBL, or by an USBL positioning system. Let {Bi} denote
a coordinate frame attached to AUV i, denominated in the
sequel as the body-fixed coordinate frame associated with
the i-th AUV. The linear motion of AUV i can be written as

ṗi(t) = Ri(t)vi(t), (13)

where pi(t) ∈ R
3 is the inertial position of the vehicle,

vi(t) ∈ R
3 denotes its velocity relative to {I}, expressed in

body-fixed coordinates of the i-th AUV, and Ri(t) ∈ SO(3)
is the rotation matrix from {Bi} to {I}, which satisfies

Ṙi(t) = Ri(t)S(ωi(t)), where ωi(t) ∈ R
3 is the angular

velocity of {Bi}, expressed in body-fixed coordinates of the
i-th AUV, and S(ω) is the skew-symmetric matrix such that
S(ω)x is the cross product ω × x. It is assumed that an
Attitude and Heading Reference System (AHRS) installed
on-board each AUV provides measurements of both Ri(t)
and ωi(t). Additionally, suppose that each AUV has access to
a linear acceleration measurement ai(t) ∈ R

3, which follows

ai(t) = v̇i(t) + S(ωi(t))vi(t)− gi(t), (14)

where gi(t) ∈ R
3 is the acceleration of gravity, expressed in

body-fixed coordinates of the i-th AUV. Even though gi(t)
is usually well-known, it is treated as an unknown variable
with practical applications in mind, where small errors in

the estimation of the attitude of the vehicle may lead to
significant errors in the acceleration compensation, see [4]
for further details. Its time derivative is given by

ġi(t) = −S(ωi(t))gi(t). (15)

For the first case, i.e., with inertial position readings,
grouping equations (13), (14), and (15), and measuring the
inertial position, yields the system











ṗi(t) = Ri(t)vi(t)
v̇i(t) = −S(ωi(t))vi(t) + gi(t) + ai(t)
ġi(t) = −S(ωi(t))gi(t)
yi(t) = pi(t)

.

Using in each vehicle the Lyapunov state transformation
introduced in [3],





x1
i (t)

x2
i (t)

x3
i (t)



 := Ti(t)





pi(t)
vi(t)
gi(t)



 , (16)

with

Ti(t) =





I 0 0

0 Ri(t) 0

0 0 Ri(t)



 ,

which preserves stability and observability properties [7], and
making ui(t) := Ri(t)ai(t), the system dynamics can be
written as the LTI system (1), with nL = 9, mL = 3, oL = 3,

AL =





0 I 0

0 0 I

0 0 0



 ∈ R
nL×nL , BL =





0

I

0



 ∈ R
nL×mL ,

and CL =
[

I 0 0
]

∈ R
oL×nL . Regarding the second

case, i.e., when the AUV has access to relative position
measurements and receives position estimates from the cor-
responding vehicles, a similar procedure can be carried out,
yielding the system (3) instead, where AL and BL are
defined as in the previous case, and Ci = INi

⊗CL.

A. Filter Design

The use of noisy attitude and angular velocity measure-
ments will inject multiplicative noise into the computations,
so it is advantageous to implement the local observers in
the body-fixed frame of their respective AUV to minimize
its effect. To do so, consider for the first case (absolute
measurements) the following continuous-discrete representa-
tion: denoting the state estimate by x̂i(t) ∈ R

nL , its update
between samples of the output follows

˙̂xi(t) = ALx̂i(t) +BLui(t).

Then, when the output sample k is obtained at time tk, update
the state following

x̂i(t
+
k ) = x̂i(tk) + Li(yi(tk)−CLx̂i(tk)).

Finally, reverse the Lyapunov state transformation (16) by

defining new state estimates ẑi(t) = TT
i (t)x̂i(t). The update

between samples of the output becomes

˙̂zi(t) = Ai(t)ẑi(t) +BLai(t), (17)

with

Ai(t) =





0 Ri(t) 0

0 −S(ωi(t)) I

0 0 −S(ωi(t))



 ∈ R
n×n.
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Fig. 1. Two formation graphs used in the simulations

When an output sample is available, update following

ẑi(t
+
k ) = ẑi(tk) +TT

i (tk)Li(yi(tk)−CLẑi(tk)).

The same thing can be done for the AUVs with relative
measurements: between output samples, update the state
estimates following (17), and when position measurements
are obtained, update following

ẑi(t
+
k ) = ẑi(tk) +TT

i (tk)Li(yi(tk)−Ci∆ẑi(tk)).

This allows for filter implementation in the body-fixed co-
ordinate frame of each AUV and takes into account the
different sampling rates between on-board instrumentation
(accelerometer, AHRS) and the positioning system.

V. SIMULATION RESULTS

In the simulations that were carried out, two similar
formation structures were considered, with associated graphs
depicted in Fig. 1. Note that, while graph (a) is acyclic, (b)
has two additional edges which create cycles in the graph.
All sensor data was corrupted by additive, uncorrelated, zero-
mean white Gaussian noise, with appropriate standard devi-
ations given the equipment that would usually provide those
measurements. Regarding the positioning data, the standard
deviation was set to 1 (m) for the relative measurements,
and 0.1 (m) for the absolute measurements. Furthermore,
some cross-correlation was added to the noise on the absolute
measurements to account for possible similarities in the
source of the data (such as both AUVs using GPS at the
surface, or using a LBL positioning system and sharing the
same set of landmarks), resulting in the covariance matrix:

Θ0 = 0.01×

[

1 0.1
0.1 1

]

⊗ I3.

For the other measurements, the standard deviation of the
white noise was set as follows:

• Linear acceleration - 0.01 (m/s2);
• Angular velocity - 0.05 (°/s);
• Attitude, parametrized by Euler angles - 0.03 (°) for the

roll and pitch, 0.3 (°) for the yaw.

A. H2 norm minimization

To tune the optimization algorithm Ξ and Θ were set to
{

Ξ = diag
(

ΞL, ΞL, . . . , ΞL

)

Θ = diag
(

Θ0, I, I, . . . , I
) ,

where ΞL = diag
(

0.001× I3, 0.0001× I6
)

. The algo-
rithm was executed for both formation graphs, using in each
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Fig. 2. Evolution of the algorithm for the acyclic graph
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Fig. 3. Evolution of the algorithm for the cyclic graph

several different sets of initial values for L computed through
application of Theorem 1. The evolution of the objective
function (µ) is depicted in Fig. 2 for the acyclic graph, and
in Fig. 3 for the cyclic graph. In both images, the straight red
line depicts the value achieved by the corresponding central-
ized Kalman filter. Table II details the value computed for µ
for both graphs after 1000 iterations of the algorithm, as well
as the value achieved by their centralized counterparts. The
results show that the algorithm improved the performance of
the decentralized estimator very significantly in both cases,
and for all the initial conditions that were tested. Further-
more, the lower value achieved for the cyclic graph suggests
that the additional edges were incorporated constructively by
the algorithm (the corresponding gains were set to zero in the
initial L). In both cases, the achieved performance index is
significantly worse for the decentralized state estimator than
for the centralized Kalman filter, which is to be expected
given the vastly superior amount of information available to
the latter.

B. Performance assessment and comparison

The simulations were carried out for four different state
estimators:

1) A decentralized state estimator based on the acyclic
formation graph (Fig. 1, graph a), with the best gains
found through the application of the proposed H2 norm
minimization algorithm.

2) A decentralized state estimator based on the cyclic
formation graph (Fig. 1, graph b), with the best gains
found through the application of the proposed H2 norm
minimization algorithm.

TABLE II

LOWEST VALUE ACHIEVED FOR µ

Acy./Decent. Cyc./Decent. Acy./Cent. Cyc./Cent.
µmin 27.42 26.88 14.93 13.72
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Fig. 4. Evolution of the norm of the total estimation error in the formation
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Fig. 5. Detailed view of the norm of the total estimation error in the
formation, once the initial transients have vanished

3) A centralized Kalman filter based on the cyclic forma-
tion graph, to provide a lower bound for the attainable
performance.

4) A decentralized estimator using gains obtained by
straightforward application of Theorem 1. In this case,
one of the gains computed to provide initial values for
the H2 minimization algorithm was used.

The evolution of the norm of the vector composed by all
estimation error variables in the formation is depicted in Fig.
4, while its steady-state behavior is detailed in Fig. 5. The
performance of the non-optimized filter is markedly worse
than that of the other solutions, while the centralized Kalman
filter achieves, as expected, the best performance. The signals
depicted in Fig. 5 exhibit a characteristic sawtooth shape
which results from the continuous-discrete filter implemen-
tation. Between samples of the output the state estimate is
continuously updated in open loop, which naturally increases
the error. When an output sample is obtained, it is used to
correct the state estimate resulting in a sudden, sharp decay
of the estimation error. Closer inspection of the graph of
Fig. 5 also shows that the overall performance is better for
the decentralized state observer based on the cyclic graph
than for the one based on the acyclic graph, confirming
that the additional edges present in the cyclic graph were
incorporated constructively by the algorithm.

VI. CONCLUSIONS

This paper addressed the problem of state estimation in
formations of autonomous vehicles. The approach considered
here consists in the implementation of a local state observer
in each vehicle relying only on locally available measure-
ments and data communicated by neighboring agents, result-
ing in a decentralized state observer which features lower

computational and communication loads than comparable
centralized solutions. A method for computing observer gains
which yield globally asymptotically stable error dynamics
was presented for fixed topology formations, as well as an
iterative algorithm for improving the decentralized estima-
tor’s performance when the measurements are corrupted by
noise. The proposed framework was particularized to the
practical case of a formation of Autonomous Underwater
Vehicles (AUVs), and a continuous-discrete formulation was
achieved for the local state observers, to take into account the
difference in sampling rates between on-board instrumenta-
tion and positioning systems. To assess the performance of
the solution, simulation results were presented and discussed
for different formation topologies.
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