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A Received Signal Strength Indication-based Localization System
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Abstract— Localization using the received signal strength
indication (RSSI) of wireless local area networks with a priori
knowledge of the coordinates of the routers/access points is
addressed in this paper. The proposed algorithm employs a
path loss model that allows for the inclusion of the logarithmic
measurements of the signal strength directly in the state of the
nonlinear system that is designed. The nonlinear system is aug-
mented in such a way that the resulting system structure may
be regarded as linear time-varying for observability purposes,
from which a Kalman filter follows naturally. Simulation results
are included that illustrate the performance of the proposed
solution.

I. INTRODUCTION

The increasing use of mobile devices, such as smart-
phones, and the expansion of Wireless Local Area Network
(WLAN) coverage have lead to an effort by the scientific
community to develop localization algorithms using informa-
tion provided by the Wi-Fi (WLAN using the IEEE 802.11
standard) signal. In indoor environments, where global posi-
tioning systems are not available, the cheap and lightweight
nature of the Wi-Fi devices makes these kind of solutions
more interesting. A good example of the use of wireless-
based localization algorithms is the guidance of people inside
sizeable buildings, such as museums or airports, using their
own smartphones or other Wi-Fi capable devices.

Indoor environments pose a great challenge in this type of
localization algorithms, as the connection between the router
and the mobile antenna may not be line-of-sight, which leads
to extra attenuation due to walls, floors, and people. In line-
of-sight situations, there may occur multipath which impairs
the localization, whichever the process employed may be.
Several different approaches have been employed in the goal
of developing Wi-Fi-based localization, namely the use of
the angle-of-arrival, the time-of-arrival, and the signal power
(see [1] for a survey of approaches). When using the signal
power, different solutions have arisen, from the establishment
of a signal finger print of the operating area, see [2] or, more
recently, [3], to the use of path loss models, [4] and [5]. The
solution proposed in this paper fits in the last category.

This paper addresses the design, analysis and validation
through simulation of an algorithm for localization using the
received signal strength from known routers. A propagation
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model is employed to convert the received signal strength
indication (RSSI) into ranges. Given that the information
provided by the Wi-Fi devices regarding the signal power
(RSSI) is expressed in dBm, the logarithm of the ranges
is directly fed to the filter without further computation,
thus avoiding the introduction of multiplicative noise. This
is suggested by the Gaussian behaviour of the logarithmic
measurements confirmed by the experimental survey in [6].
The algorithm proposed in this paper builds on the work
exposed in [7] in the sense that a nonlinear system is
derived and augmented in such a way that the resulting
system may be considered as linear time-varying, without
any linearization or approximation whatsoever, as it resorts
to exact linear and angular motion kinematics. The sensor
suite used encompasses a Wi-Fi device for the power mea-
surements and an IMU for obtaining the angular rates. The
main contribution of this work is the use of the logarithm
of the ranges both as a state and output of the system that
defines the proposed filter.

The paper is organized as follows. Section II presents
a short description of the problem, while introducing the
motivation for the use of the logarithm of the ranges as a
measurement. The system dynamics are derived in Section
IIT and the observability analysis is performed in Section I'V.
The filter design is addressed in Section V and simulation
results are presented in Section VI. Finally, some conclusions
and future work directions are detailed in Section VIIL

A. Notation

The superscript ! indicates a vector or matrix expressed
in the inertial frame {I}. For the sake of clarity, when no
superscript is present, the vector is expressed in the body-
fixed frame {B}. I,, is the identity matrix of dimension n,
and 0,,x,, is a n by m matrix filled with zeros. When the
dimensions are omitted the matrices are assumed of appro-
priate dimensions. S[a] is a special skew-symmetric matrix,
henceforth called the cross-product matrix, as S[a]b = axb
with a, b € R3. The operators log and In represent the base
10 logarithm and the natural one, respectively.

II. DESCRIPTION OF THE PROBLEM

This section addresses the problem of designing a local-
ization algorithm for an agent operating in an environment
where several Wi-Fi routers or access points are present.
The algorithm uses the received signal power, or, more
accurately, the received signal strength indication (RSSI)
levels, as ranges to the previously known routers. Hence, the
filter must use a propagation model for the received signals to
relate the power of the received signal to the actual distance
from the receiver to the router. The free space propagation
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model for electromagnetic waves is given by

_ PrxGrxGrx N’

N (47)2r2 ’

where the RX and T'X subscripts represent the receiver and
router, P is the power in Watt, G is the antenna gain, A is
the wavelength, and r is the distance between the router and
the receiver. Although this is a theoretical situation, it hints
at the logarithmic relation between the received power in dB
and the distance that is confirmed by the empirical models
arose to better express the path loss, ie., the ratio gT—);. One
example is the logarithmic path loss model [6]

Prx

Prx "

Prx (dB) o r™,
where n is the path loss exponent (dependent of the environ-
ment). A similar version of this model is the Hata-Okumura
model (see [1] and [8])
L (Prx — Prx + Grx + Grx
10n

—Xopx +20log A — 201log(4m)),

where all the powers are expressed in dBm and the gains
in dBi. The random variable X, is a normal distributed
zero mean quantity with a standard deviation of oryx that
represents the noise in the measurement, and r,, is the noisy
range.

Both models were designed to account for outdoor prop-
agation, but [1] proposes a variation of this model which
accommodates the influence of partitions, doors and walls,
thus producing a model for indoor propagation. The referred
influence is hidden in the parameter n and in ogx. If the
average received power is known at a predefined distance r,
then the model (1) becomes

Tm 1
IOgE = 7@ (PRX — PRXO +X17RX — XURXO) ;

logry, =

(D

which may be rearranged to obtain the distance through

X X

T = T0 10*ﬁ(PRX*PRxU) 10‘%( TRX T URXO). (2)

The work in [1] includes a Wi-Fi survey that leads to the
conclusion that the RSSI readings are normal distributed.
Hence, computing the measured ranges r,, from the mea-
sured logarithmic power will introduce noise that depends
on the distance, as the expansion of (2) shows

0 n
T =1 10% =7 +TZ 7@1?1!10) ,
n=1
where u is the Gaussian noise that disturbs the logarithmic
measurements. Knowing this, it makes sense to use the loga-
rithmic power measurements directly in a filtered trilateration
technique, instead of computing r,.

A. Model Validation

To evaluate the validity of this hypothesis, a sample of
3600 RSSI readings was collected with both antennas static.
Given that the RSSI readings are integers, this sample was
compared with a normal-distributed random sequence with
the same variance and mean rounded to the nearest integer.
The results of this survey are shown in Fig. 1, which depicts
the normality plots of both the acquired sample (in Fig. 1(a))
and the random sample (in Fig. 1(b)). It can be seen that in
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Fig. 1. Normality plots.

both samples there is a deviation from the normal red line
when the values move away from the mean, although the
deviation is more noticeable in higher power values in the
acquired sample.

Aside from the validation of the Gaussian hypothesis, an
experiment was conducted with the purpose of validating
the logarithmic model. The experiment consisted in moving
a Wi-Fi antenna in a room equipped with a 5GHz router and
ground truth, and then comparing the distance between the
router and the antenna with the ranges calculated through
the calibrated model (2). The result depicted in Fig. 2 shows
that the computed ranges follow the tendency of the ground
truth, although there are significant mismatches, possibly due
to reflections.

T T T
5 Computed range B
= = = Ground truth

Fig. 2.

Range computed using model (2) against ground truth data.

B. Problem Statement

The problem addressed in this paper is the design of a
localization filter using the coordinates of the router positions
and the received signal strength in logarithmic units.

III. SYSTEM DYNAMICS

The model presented in the previous section suggests that
the observations to be used in this localization filter are
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indeed the logarithm of the distance and not the distance
itself. Thus, these will be the output of the system in design.

Let ‘p(t) € R® be the position of the agent in a local
inertial frame denoted by {I}, ands; € R3,i € {1,..., N},
be the position in the same frame of the i-th hot-spot,
henceforth denominated landmark. The linear motion of the
agent is then given by

{ Tp(t) ="v(t)

Iy(t) ="Ta(t)’

where Tv(t) € R3 is the linear velocity and Ta(t) € R? is
the linear acceleration of the agent. The motion is considered
to be slowly time-varying, and therefore, in a deterministic
setting, ‘a(t) = 0.

Consider that the landmarks are static and that the land-
mark positions are known. Then, each output of the system
is given by

logr;(t) = log ||s; — Ip(t)H

for all 4 € {1,..., N}. The resulting system is given by
"B(t) ="v(t)

Iy(t) = Ta(t)

Ta(t)y=0

log () = log |s1 — 'p(t)] )

logrn(t) = log sy — "p(t)]

where all quantities are expressed in the inertial frame.
Due to the nature of the outputs of the system, it is clear

that it is nonlinear. In order for a linear, or, in fact, linear

time-varying, Kalman filter to be designed, a new system

that mimics the dynamics of (3) must be derived, following

a similar approach to that successfully proposed in [7].

A. State augmentation

In order to derive a system that can be seen as linear and
that mimics the dynamics of the nonlinear system (3), new
quantities must be added to the original system, in the form
of the following N + 4 additional scalar states:

z4(t) = logry(t)

Tn+3(t) =logrn(t)

ryya(t) = x1(8) T xa(t) ; “4)
ens(t) = x1(8) x3(t) + [[x2(8)]?

wn16(t) = x3(t) x2(t)

antr(t) = [xs()]?

where x1(t) := Ip(t), x2(t) := Iv(t) and x3(t) =
Ta(t), leading to the new system state x(t) =
[x{ (1) x3 (1) wa(t) $N+7(t)]T

The inclusion of the logarithm of the ranges in the system
state makes the relation between the system output and state
linear, and the four remaining quantities will enable the
system dynamics to be considered as linear time-varying.

B. Output augmentation

For the completion of the proposed framework, a further
step is needed. Consider the expansion of the square of the
range to a landmark, given by

ri(t) = [Isill* + | "p()[1* — 257 "p(2).

The subtraction of the square of the ranges to two different
landmarks ¢ and j leads to the following expression

(si=s) 5 _ s> =lsil® 0,

4 = — : (ri(t) = r;(t)),

ri(t) +7;(t) ri(t) +75(t)

i,7 € 1,...,N,i # j, where the agent position was substi-
tuted by the corresponding state vector. Note that the right-
hand side is known, as it is a function of the system output,
with the ranges being calculated through the propagation
model (2). Furthermore, the term that multiplies x;(t) is
also known. The various combinations of this expression are
added as system outputs, thus allowing to write the final aug-
mented system output as y(t) = [y1(t) YNtCy (t)],

with
yilt) = w314(1)
(Sl — 8 X1 (t) 9
rE(t) +ri(t)
where i, k,l=1,...,N,j=1,...,CN and [ > j.
With the state and output augmentation completed, it

is now possible to write the augmented system dynamics,
resulting in

ey (t) =235

x(t) = A(t)x(¢ 5)
y(t) = C(t)x(t)’
where
A(t) =
[0 I 0 0 0 0 0 0 0]
0 0 I 0 0 0 0 0 O
0 0 0 0 0 0 0 0 O
sT 1
0 —35 00 0 = 0 00
: Lo S ©
0 —3X 0 0 0 - 0 0 of
X (1) X (1)
0 0 0 0 0 0 1 0 0
0 0 0 O 0 0 0 3 0
0 0 0 0 0 0 0 0 1
0o 0 0 0 0 0 0 0 0
and
C(t) =
[ Onxs  Onxs  Onxs In Onxsa | (D
|Caug(t) Ocpus Ocyus Ocyun Ocyxal’
with
Caug(t) =
T
2[eh,(t) el () el 0 el 0]

where ¢, (t) = (s; —s;)" (ri(t) +r;(t) "

As referred, although system (5) is nonlinear, it may be
regarded as a linear time varying system for observability
purposes, provided that the system output is known.

Note that, as long as the agent is not at the same position
of a landmark, i.e 7;(t) >0 Vi e {1,..., N}, (6) is always
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well-defined. Another important fact to take into account
when analysing this system is that its dynamics do not
impose any of the algebraic restrictions stated by (4).

IV. OBSERVABILITY ANALYSIS

The work exposed in this section aims at analysing the
observability of the dynamical system derived in the previous
section. It is important to notice that, although system (5)
is inherently nonlinear due to the presence of the ranges
in the dynamics and output matrices, the relation between
the ranges and part of the output of the system makes
it possible to consider these matrices as functions of the
system output, which is known, thus allowing to consider the
whole system as linear time-varying. Linear systems theory
may thus be employed to establish sufficient conditions
for the observability of the LTV system with a physical
interpretation. These results are then extended to the original
nonlinear system, allowing the design of a state observer for
the original nonlinear system.

Classic linear system results relate the invertibility of the
observability Gramian associated with a linear time-varying
system with the observability of the same system. [9, Lemma
1] states that, if the observability Gramian associated with the
pair (A(t), C(t)), possibly dependent on the system output
and input, is invertible, then the system is observable. This
result will be used in the following theorem that addresses
the observability of system (5).

Theorem 1: Let T := [to,t¢] and consider system (5).
Given the system output {y(¢),t € 7T}, the system is
observable in the sense that the initial condition x(to) is
uniquely defined, provided that

i. there exist at least 4 non-coplanar landmarks, and

i. 3 Y Ry <ri(t) < Rap.icl..... N,
Ry Rm>0 >t m S 1i(t) < R, i

Proof: The proof consists in showing that the observ-
ability Gramian is invertible in the conditions expressed.
The computation of the observability Gramian requires the
knowledge of the transition matrix ¢(¢,to) for the system
(5), which may, in this case, be simply computed by solving

Mw:¢wmnﬁ@:xm»+lzumwmwwMa

Recall that if the observability Gramian W(to,ts) is
invertible, the system (5) is observable, in the sense that
given the system input and output, the initial condition x(¢¢)
is uniquely defined. The proof follows by contradiction, i.e.,

by supposing that W(to,ts) is singular. Then, there exists

. T
a unit vector ¢ = [¢] ¢ ¢f ¢ ¢ 6 o7 s

with ¢y, cg, c3 € R3*!, ¢y € RV*! and the remaining c;s
being scalars, such that

i

ty
T Wito, ty)e = / 1£(r, to) || dr = 0. ®)
to

The proof follows by showing that there is no such unit
vector c, if the conditions of the theorem apply, that satisfies
(8). In order for this to be true, both f(7,ty) and w
must be zero V7 € T. Using the transition matrix and (7) in

(8) yields
[ fi(7, o)

I (r o)
fr2(7,to)

fi3(7, to)

; (€))

fiv—2)n (7, to)
Lf(v—1)~n (7, t0) ]

where

filrito) = —sTrl(m)ey — sTrl (r)es + e,

3 1
+ i (r)es + i (1)es + 57“1[»2] (r)er + ir?] (1)es,
and

fjk‘ (Tv tO) =
(sj — sk
() ()
with rl[n] (r) = ftz r2(0) (o —to)" do.
Setting 7 = t( in (9) while computing f(¢g,tg) = 0 yields

£(7,to) = {Cau:éo)cj =0,

which in turn yields ¢4 = 0 and, if condition (ii) ap-
plies, ¢y = 0. Note that condition (ii) is equivalent to
rank (Caug(t)) = 3.

Taking the first time derivative of f;(7,%p) = 0 yields

)T
(2C1 +2(r —tg)ca + (7 — t0)203) )

— T;2(T)S,LTC2 —(r— to)rjz(T)S?C3 + 7“;2(7')05

F (7~ to)r 2 (r)eo + o (7 — o)y A (r)en

1
+ (7 — to)?’iT;Q(T)Cg =0.
If condition (i) applies, this expression can be rewritten as

— SZTCQ — (T — t())S;-FC:j + Cs

3 1
+ (1 —to)es + = (T —to)%cr 4+ (T — to)>=cg = 0,

? (10)
and, if evaluated at 7 = ¢, expression (10) becomes
slco = cs. (11)
The evaluation at 7 = ¢ of the derivative of (10) yields
stcs = cg. (12)

Again, assuming that (ii) applies, (11) and (12) yield co =
c3 = 0 and c5 = cg = 0. Using this result in (10) and noting
that (T —t9)? and (7—t()? are all linearly independent finally
yields ¢7 = cg = 0. This, in turn, means that ¢ = 0, hence,
c is not a unit vector, W(to, t¢) is invertible, and system (5)
is observable. [ ]
This result shows that, given the conditions established,
the initial state of the augmented system is uniquely defined.
Nevertheless, at first sight, given that there is nothing im-
posing the algebraic restrictions that lead to the augmented
states in the first place, the observability of the augmented
system does not imply that the original nonlinear system is
observable. The following theorem addresses this issue.
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Theorem 2: Consider that the conditions of Theorem 1
hold. Then, the initial state of the nonlinear system (3) is
uniquely determined, and is the same of the nonlinear system
(5), meaning that system (3) is observable. Furthermore, the
algebraic restrictions (4) become naturally imposed by the
system dynamics.

Proof: The proof is made by comparison of the output
of the two systems in analysis to show the correspondence of
their initial conditions. The explicit evolution of the squared
ranges with the initial states is computed and used to obtain
the correspondence of the augmented states. The proof is
omitted due to lack of space, although the reader is referred
to [10] for a similar proof. |

V. FILTER DESIGN AND IMPLEMENTATION

This section addresses the design of a filter for the
nonlinear system proposed in this paper, by means of the
augmented system previously designed. Although a filter
could be designed directly for this system, the acquisition
of the logarithmic ranges may be a low-bandwidth process,
and therefore it is of interest to include information from
higher bandwidth sensors so that better estimates may be
provided at higher rates. For that purpose, the augmented
system (5) is transformed using a Lyapunov transformation
(see [11] for details).

Let R(t) € SO(3) be the rotation matrix that, along with
the agent position /p(t), transforms a vector from the body-
fixed frame { B} to the local inertial frame {I}. This rotation
matrix respects the relation R(t) = R(t)S[w(t)] where
w(t) € R? is the angular velocity expressed in the body-
fixed frame.

Consider now the Lyapunov transformation

T(t) = ding (I, R (), R" (1), I, 1L, 1,1, 1), (13)

and the new system state x(t) = T(¢)x(¢). Note that, in this
new state, the linear velocity and acceleration are rotated
to the body-fixed frame. The resulting system dynamics are

given by
{ x(t) = A(t)x(t)
y(t) = Ct)x(t)’

where the dynamics matrix, depending on the angular veloc-
ity and the rotation matrix, is

A(t,w(t),R(t),y(t)) = T()TT(t) + T(t)A#)TT (t).

This new system dynamics is guided by the angular
velocity measurements provided by a triad of orthogonally
mounted rate-gyros, which usually have a high sampling rate
as required. It is important to notice that, given that system
(14) is related to system (5) through a Lyapunov transfor-
mation, the observability results of the previous section also
apply to the new system.

Due to the discrete nature of the sensors employed, a
discrete time Kalman filter was designed. Hence, the system
to be estimated has to be redefined. Denoting the fundamen-
tal sampling period as Ty, the discrete time steps can be
expressed as tp, = kT + to, k € Ny and ¢y denotes the
initial time. Thus, the discretized system is characterized by
the state x; := x(¢x), the dynamics matrix Ay := A(tx)
and the output matrix Cj := C(t;). Finally, the Euler

(14)

discretization of the system dynamics (14) including system
disturbance and measurement noise yields
{ Xp+1 = Frxp + &,
Vi1 = Hep1Xpr1 + Opyn

where ¥y = I, + TsA, and Hyyy = Cgpq. The
disturbance vector &, and the measurement noise vector
0, are both zero-mean discrete white Gaussian noise, with
(€,£1) = 2y and (0,07 = Oy, respectively. This system
is filtered through a standard LTV Kalman filter.

Note that the system fully designed in the inertial frame
could be implemented directly, without resorting to the
Lyapunov transformation (13). In fact, the inertial frame
solution is simpler to implement, as its only inputs are
the RSSI measurements. Therefore, it is possible to use it
with less sensors, and cheaper equipment. The sensor-based
filter demands more inputs, needing to be fed by an attitude
estimator and rate-gyros for the angular rate measurements,
aside from the compulsory RSSI measurements.

VI. SIMULATION RESULTS

This section presents the results of a simulation assuming
that the RSSI readings are logarithmic with a standard
deviation of 1.5 dBm. The attitude is noisy, with the additive
Gaussian noise having a standard deviation of 0.03° for
the roll and pitch and 0.3° for yaw. The angular speeds
are corrupted by additive, uncorrelated, zero-mean white
Gaussian noise with standard deviations of 0.05°/s. The
simulated environment consists of 4 non-coplanar landmarks
with the following coordinates

si=[0 8 —1"m,  s=[8 0 3"m,
ss=[16 8 —1]"m, s;=[8 16 3]"m,

in a 16mx16mx4m map, including a closed 2m wide
corridor in the outer borders of the map. The trajectory is
simply a loop through the corridors at half-height, with the
agent starting on the floor. The simulated map and trajectory
can be found in Fig. 3 along with the estimated path.

The tunable parameters of the Kalman filter are the
model disturbance noise covariance and the measure-
ment noise covariance given by, respectively, = =
diag (10~1°I3,1071°T5, 107615, 10*214,Eau9) and ® =
diag (107214, 2.25L), where & = diag(9 x 1072%,9 x
10716,9 x 10716, 9 x 10712).

Firstly, the localization performance can be evaluated
through Fig. 3 and Fig. 5. The former depicts the estimated
path (in green) against the true path (in red). The latter
presents the estimation error of the position estimate (Fig.
5(a)), the velocity estimate (Fig. 5(b)), the acceleration (Fig.
5(c)). It is important to note that estimation error of the verti-
cal coordinates is greater than that of the horizontal ones, due
to smaller vertical distance when compared to the horizontal.
In fact, being this a long baseline-like filter, the distances
between landmarks should be greater or comparable to the
distance between the agent and the landmarks.

The evolution of the uncertainty of the filter estimates
can be found in Fig. 4, depicting the position, velocity and
acceleration standard deviations. Note the convergence of
the uncertainty in the first 50 seconds when the agent was
stopped, confirming the theoretical results of Section IV.
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Fig. 4. Standard deviation of the main state variables.

This simulation enabled the confirmation of the theoret-
ical results obtained, as well as the demonstration of the
coherence of the uncertainty of the estimation with the actual
estimation error.

VII. CONCLUSIONS

This paper presented the design, analysis and simulation
of a received signal strength indication based localization
algorithm that uses a path loss model to translate the power
measurements to logarithmic ranges that are in turn used
directly in the filtering process. The work builds on the
approach proposed in [7], while introducing the novelty
of the direct inclusion of the signal strength measurements
without conversion to distances.

The performance and consistency of the algorithm were
validated in a simulated environment with realistic noise
showing the convergence of the uncertainty in every variable,
as well as the consistency of the said uncertainty with the
estimation error.

Future work may include the addition of extra sensors,
such as odometry, to improve the estimation due to the vari-
ability of the wireless measurements with antenna orienta-
tion and other environmental factors. Furthermore, obtaining
experimental results of the proposed algorithm in action is
important for scientific validation.
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