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Abstract— Typical attitude estimation solutions for underwa-
ter vehicles rely on magnetometers, which are prone to magnetic
field distortions. This can preclude its use in intervention sce-
narios, in the vicinity of objects with strong magnetic signatures,
severely endangering not only the intervention mission but also
the operation of the underwater vehicle. This paper presents
a novel attitude estimation solution, based on a combined
Long Baseline / Ultra Short Baseline (LBL/USBL) acoustic
positioning system, with application to underwater vehicles.
The range and range differences of arrival obtained with the
LBL/USBL are directly embedded in the estimator dynamics,
without any linearization whatsoever, and globally exponentially
stable (GES) error dynamics are achieved. Simulation results
evidence good performance of the proposed solution.

I. INTRODUCTION

The topic of attitude estimation is still very active, as

evidenced by numerous recent publications, see e.g. [1],

[2], [3], [4]. The Extended Kalman Filter (EKF) has been

instrumental to many stochastic solutions, see e.g. [5], while

nonlinear alternatives, aiming for stability and convergence

properties, in deterministic settings, have been proposed in

[6], [7], [8], [9], [10], [11], and [12], to mention just a few,

see [13] for a thorough survey on attitude estimation. Re-

cently, the authors have proposed two alternative solutions in

[14] and [15]. In the first, the Kalman filter is the workhorse,

where no linearizations are carried out whatsoever, resulting

in a design which guarantees globally asymptotically stable

(GAS) error dynamics. In the later, a cascade observer is

proposed that achieves globally exponentially stable (GES)

error dynamics and that requires less computational power

than the Kalman filter, at the expense of the filtering per-

formance. Common to both solutions is the fact that the

topological restrictions of the Special Orthogonal Group

SO(3) are not explicitly imposed, though they are verified

asymptotically in the absence of noise. In the presence of

sensor noise, the distance of the estimates provided by the

cascade observer or the Kalman filter to SO(3) remains close

to zero and methods are proposed that give estimates of

the attitude arbitrarily close to SO(3). In [16] an alternative

additional result gives attitude estimates explicitly on SO(3),
at the possible expense of continuity of the solution during

the initial transients, hence not violating the topological

limitations that are thoroughly discussed in [17].
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For underwater vehicles, the usual sensing devices em-

ployed for attitude determination are two triads of orthogo-

nally mounted accelerometers and magnetometers, coupled

with a triad of orthogonally mounted rate gyros, employed

for filtering purposes. Essentially, the magnetometers and the

accelerometers provide direct measurements, in body-fixed

coordinates, of known vectors in inertial coordinates. Hence,

an attitude estimate can be readily obtained from the solution

of the Wahba’s problem. With additional angular velocity

measurements, it is then possible to design an attitude filter,

possibly including the estimation of rate gyro bias. The

disadvantage of the use of magnetometers is that they are

subject to magnetic field anomalies, such as the ones that

can be encountered nearby objects with strong magnetic sig-

natures, rendering the magnetic field measurements useless.

This can be particularly dangerous in underwater intervention

scenarios and as such alternatives need to be devised.

In previous work by the authors, see [18], a novel com-

plete navigation system was proposed based on a combined

Long Baseline / Ultra-short Baseline (LBL/USBL) acoustic

positing system. In short, with a LBL/USBL it is not only

possible to determine the inertial position of the vehicle but

also the positions of the external LBL landmarks with respect

to the vehicle, expressed in body-fixed coordinates. In [18],

and for attitude estimation purposes, the later were employed

to obtain body-fixed vector measurements of known constant

inertial vectors, hence allowing for attitude estimation.

The actual measurements of a LBL/USBL acoustic posi-

tioning system are acoustic signals, which when processed

yield ranges and range differences of arrival between the

acoustic receivers of the USBL. With some computations,

it is possible to obtain the measurements required for the

attitude estimation solution proposed in [18]. However, it

would be beneficial if the actual range and range differences

of arrival could be directly employed in the attitude estima-

tion solution, avoiding intermediate nonlinear computations

that can distort noise and allowing for better tuning of the

estimator parameters. The main contribution of this paper is

the design of a tightly coupled attitude estimation solution

based on a LBL/USBL acoustic positioning system. The

range and range differences of arrival are used directly in the

observer feedback loop, hence avoiding intermediate compu-

tations, and no linearizations are carried out whatsoever. The

proposed observer achieves globally exponentially stable er-

ror dynamics and it is computationally efficient. Topological

limitations are avoided by relaxation of the constraints of the

Special Orthogonal Group, which are nevertheless verified

asymptotically.
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A. Notation

The symbol 0 denotes a matrix (or vector) of zeros, I the

identity matrix, and blkdiag(A1, . . . ,An) a block diagonal

matrix, all assumed of appropriate dimensions. For x,y ∈
R

3, the cross and inner products are represented by x × y

and x · y, respectively.

II. PROBLEM STATEMENT

Consider an underwater vehicle moving in a scenario

where there is a set of fixed landmarks installed in a

Long Baseline configuration and suppose that the vehicle is

equipped with an Ultra Short Baseline acoustic positioning

system, which measures not only the distance between the

vehicle and each landmark but also the range differences of

arrival between the acoustic receivers of the USBL, from

each landmark, as depicted in Fig. 1. For further details on

the USBL, the reader is referred to [19], [20], and references

therein. Further assume that the vehicle is equipped with

landmarks

(a) AUV and LBL array (b) AUV with USBL array

Fig. 1. Mission Scenario

a triad of orthogonally mounted rate gyros. The problem

considered in this paper is the design of a highly integrated

sensor-based solution to estimate the attitude of the vehicle

and the rate gyro bias.

A. System dynamics

In order to set the problem framework, let {I} denote a

local inertial reference coordinate frame and {B} a coordi-

nate frame attached to the vehicle, commonly denominated

as the body-fixed reference frame. The linear motion of the

vehicle is described by ṗ(t) = R(t)v(t), where p(t) ∈ R
3

denotes the inertial position of the vehicle, v(t) ∈ R
3 is the

velocity of the vehicle relative to {I} and expressed in body-

fixed coordinates, and R(t) ∈ SO(3) is the rotation matrix

from {B} to {I}, which satisfies

Ṙ(t) = R(t)S (ω(t)) , (1)

where ω(t) ∈ R
3 is the angular velocity of {B}, expressed

in body-fixed coordinates, and S (ω) is the skew-symmetric

matrix such that S (ω)x is the cross product ω × x.

Let si ∈ R
3, i = 1, . . . , N , denote the inertial positions of

known landmarks, and ai ∈ R
3, i = 1, . . . , M , the positions

of the array of receivers of the USBL relative to the origin of

{B}, expressed in body-fixed coordinates. Then, the range

measurement between the i-th landmark and the j-th acoustic

receiver of the USBL is given by

ri,j(t) = ‖si − p(t)− R(t)aj‖ ∈ R. (2)

The rate gyro measurements ωm(t) satisfy

ωm(t) = ω(t) + bω(t), (3)

where bω(t) ∈ R
3 denotes the rate gyro bias, which is

assumed constant, i.e.,

ḃω(t) = 0. (4)

Using (3) and combining (1), (2), and (4) yields


























Ṙ(t) = R(t)S (ωm(t)− bω(t))

ḃω(t) = 0

r1,1(t) = ‖s1 − p(t)− R(t)b1‖
...

rN,M(t) = ‖sN − p(t)− R(t)bM‖

. (5)

The problem considered in the paper is the design of an

observer for (5).

B. Long Baseline / Ultra Short Baseline configuration

Throughout the paper the following standard assumptions

are considered.

Assumption 1: The LBL acoustic positioning system in-

cludes at least 4 noncoplanar landmarks and the distance

between the landmarks of the LBL is much larger than

the distance between the receivers of the USBL acoustic

positioning system.

Assumption 2: The USBL acoustic positioning system

includes at least 4 noncoplanar receivers and the distance

between the landmarks of the LBL is much larger than

the distance between the receivers of the USBL acoustic

positioning system.

III. OBSERVER DESIGN

This section details the design of an attitude observer that

uses directly the ranges and range differences of arrival and

that achieves globally exponentially stable error dynamics.

The proposed approach builds vaguely on two different

methodologies previously proposed by the authors. First, a

sensor-based observer for the rate gyro bias is developed by

appropriate state definition, which bears some resemblance

with the design proposed in [21], where the problems of

source localization and navigation based on single range

measurements were addressed. Secondly, a cascade attitude

observer is proposed assuming that the rate gyro bias is

known. Finally, the overall cascade observer is proposed

and its stability is analyzed. The cascade design is similar,

at large, to that proposed in [15]. However, the structures

of each individual observer are very different as they now

rely on range and range differences of arrival measurements

instead of vector measurements.

A. Rate gyro bias observer

The dependence of the attitude observer (and, conse-

quently, the bias observer) on the inertial position of the

vehicle is highly undesirable and in fact it should not be

required. Indeed, in a LBL/USBL framework, the positions

of the LBL landmarks with respect to the vehicle, expressed

in body-fixed coordinates, are indirectly available (after some

computations). If one takes the difference between pairs of

these vectors, one obtains a set of body-fixed vectors that

correspond to constant known inertial vectors, obtained from

the differences of the inertial positions of the LBL landmarks.

As such, this information suffices to determine the attitude

of the vehicle without the need of the inertial position of the
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vehicle. In fact, this is the idea of the approach proposed in

[18]. This paper aims at achieving the same result but using

directly the ranges and range differences of arrival.
Let Cs denote a set of 2-combinations of elements of the

set {1, . . . , N}, e.g.

Cs={(1, 2), . . . (1, N), (2, 3), . . . , (2, N), . . . , (N−1, N)} ,
and let Ca denote a set of 2-combinations of elements of the

set {1, . . . ,M}, e.g.

Ca={(1, 2), . . . (1,M), (2, 3), . . . , (2,M), . . . , (M−1,M)} .
Define

q (m,n, i, j, t) := −
1

2

[

r2m,i(t)− r2n,i(t)
]

+
1

2

[

r2m,j(t)− r2n,j(t)
]

(6)

for all (m,n, i, j) ∈ Cs×Ca. First, notice that q (m,n, i, j, t)
is a direct function of the ranges and range differences of

arrival, as it is possible to rewrite it as

q (m,n, i, j, t) = 1
2 [rn,i(t) + rn,j(t)] [rn,i(t)− rn,j(t)]

− 1
2 [rm,i(t) + rm,j(t)] [rm,i(t)− rm,j(t)] .

Next, substituting (2) in (6) gives

q (m,n, i, j, t) = (sm − sn)
T

R(t) (ai − aj) . (7)

As it can be seen, the inertial position of the vehicle does

not influence q (m,n, i, j, t). Yet, it depends on the attitude

of the vehicle and, considering all 2-combinations of LBL

landmarks and all 2-combinations of USBL receivers, it is

related to the entire geometric structure of the LBL/USBL

positioning system. The idea of the bias observer is to use

q (m,n, i, j, t), for all (m,n, i, j) ∈ Cs×Ca, as system states,

which are measured, in order to estimate the rate gyro bias

bω(t), which is unknown.
Before proceeding some additional definitions are re-

quired. In particular, define, for all (i, j) ∈ Ca, additional

unit vectors a⊥1

i,j ∈ R
3 and a⊥2

i,j ∈ R
3 such that











ai−aj

‖ai−aj‖
× a⊥1

i,j = a⊥2

i,j

a⊥1

i,j × a⊥2

i,j =
ai−aj

‖ai−aj‖

a⊥2

i,j ×
ai−aj

‖ai−aj‖
= a⊥1

i,j

. (8)

In short, the sets of vectors
{

ai−aj

‖ai−aj‖
,a⊥1

i,j ,a
⊥2

i,j

}

, for all

(i, j) ∈ Ca, form orthonormal bases of R3. Next, notice

that under Assumption 2, it is always possible to express all

additional vectors a⊥1

i,j and a⊥2

i,j as a linear combination of

vectors ak − al. Let these be defined as










a⊥1

i,j =
∑

(k,l)∈Ca

φ1 (i, j, k, l) (ak − al)

a⊥2

i,j =
∑

(k,l)∈Ca

φ2 (i, j, k, l) (ak − al)
(9)

for all (i, j) ∈ Ca, where φ1 (i, j, k, l) , φ2 (i, j, k, l) ∈ R are

the linear combination coefficients.
The nominal system dynamics of the rate gyro bias

observer are now derived. Taking the derivative of (7), and

using (5), gives

q̇ (m,n, i, j, t) = (sm − sn)
T

R(t)S (ωm(t)) (ai − aj)

− (sm − sn)
T

R(t)S (bω(t)) (ai − aj) . (10)

Express ωm(t) as the linear combination

ωm(t) = ωm(t) ·
(ai − aj)

‖(ai − aj)‖

(ai − aj)

‖(ai − aj)‖

+ωm(t) · a⊥1

i,j a
⊥1

i,j + ωm(t) · a⊥2

i,j a
⊥2

i,j . (11)

Using (11) first and then (8) it is possible to write

ωm(t)× (ai − aj) = ωm(t) · a⊥2

i,j ‖ai − aj‖a
⊥1

i,j

−ωm(t) · a⊥1

i,j ‖ai − aj‖a
⊥2

i,j . (12)

Substituting (9) in (12) gives

ωm(t)× (ai − aj) =

ωm(t) · a⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) (ak − al)

−ωm(t) · a⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) (ak − al) .(13)

Substituting (13) in the first term of the right side of (10),

using (7), and following the same circle of ideas for the

second term gives the nonlinear dynamics

q̇ (m,n, i, j, t) =

ωm(t)·a⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t)

−ωm(t)·a⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t)

+bω(t)·a
⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t)

−bω(t)·a
⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t) .

(14)

for all (m,n, i, j) ∈ Cs × Ca. Notice that (14) depends only

on the USBL array geometry, the rate gyro measurements

ωm(t), the additional quantities q (m,n, i, j, t), the linear

coefficients φ1 (i, j, k, l) and φ2 (i, j, k, l), all available, and

the unknown rate gyro bias bω(t).
Consider the rate gyro bias observer dynamics given by

˙̂q (m,n, i, j, t) =

ωm(t)·a⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q̂ (m,n, k, l, t)

−ωm(t)·a⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q̂ (m,n, k, l, t)

+b̂ω(t)·a
⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t)

−b̂ω(t)·a
⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t)

+α (m,n, i, j) [q (m,n, i, j, t)− q̂ (m,n, i, j, t)] (15)

for all (m,n, i, j) ∈ Cs × Ca, and

˙̂
bω(t) =

∑

(m,n,i,j)∈Cs×Ca

β (m,n, i, j)

‖ai − aj‖ [q (m,n, i, j, t)− q̂ (m,n, i, j, t)]
[

a⊥1

i,j

∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t)

−a⊥2

i,j

∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t)

]

, (16)

where α (m,n, i, j) > 0 and β (m,n, i, j) > 0, for all

(m,n, i, j) ∈ Cs × Ca, are observer tuning parameters.

Let q̃ (m,n, i, j, t) := q (m,n, i, j, t)− q̂ (m,n, i, j, t), for

all (m,n, i, j) ∈ Cs×Ca and b̃ω(t) := bω(t)−b̂ω(t) denote

the observer error. Then, the observer error dynamics are
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given by

˙̃q (m,n, i, j, t) =

ωm(t)·a⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q̃ (m,n, k, l, t)

−ωm(t)·a⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q̃ (m,n, k, l, t)

+b̃ω(t)·a
⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t)

−b̃ω(t)·a
⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t)

−α (m,n, i, j) q̃ (m,n, i, j, t)

for all (m,n, i, j) ∈ Cs × Ca, and

˙̃
bω(t) = −

∑

(m,n,i,j)∈Cs×Ca

β (m,n, i, j) q̃ (m,n, i, j, t)

‖ai − aj‖

[

a⊥1

i,j

∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t)

−a⊥2

i,j

∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t)

]

.

The following theorem establishes that the resulting rate

gyro bias observer has globally exponentially stable error

dynamics.

Theorem 1: Suppose that Assumptions 1 and 2 are satis-

fied and consider the rate gyro bias observer given by (15)

and (16), where α (m,n, i, j) > 0 and β (m,n, i, j) > 0
for all (m,n, i, j) ∈ Cs × Ca. Then, the origin of the error

dynamics is a globally exponentially stable equilibrium point.

Proof: Let

x̃1(t) :=













...

q̃ (m,n, i, j, t)
...

b̃ω(t)













∈ R
N
2
CM

2
C+3,

(m,n, i, j) ∈ Cs×Ca, denote the estimator error, in compact

form, where N
2 C = N (N − 1) /2 and M

2 C = M (M − 1) /2
denote the number of 2-combinations of N and M elements,

respectively. Define

V1(t) :=
1

2

∑

(i,j,k,l)∈Cs×Ca

β (m,n, i, j) [q̃ (m,n, i, j, t)]
2

+
1

2

∥

∥

∥
b̃ω(t)

∥

∥

∥

2

as a Lyapunov function candidate. Clearly,

γ1 ‖x̃1(t)‖
2
≤ V1(t) ≤ γ2 ‖x̃1(t)‖

2
, (17)

where γ1 := 1
2 min (1, β (m,n, i, j)) , (m,n, i, j) ∈ Cs × Ca

and γ2 := 1
2 max (1, β (m,n, i, j)) , (m,n, i, j) ∈ Cs × Ca.

The time derivative of V1(t) can be written, after some

straightforward computations, as

V̇1(t) = −x̃
T
1 (t)C

T
1 C1x̃1(t)

= −
∑

(i,j,k,l)∈Cs×Ca

α (m,n, i, j) β (m,n, i, j) [q̃ (m,n, i, j, t)]
2
,

where C1 =
[

blkdiag
(

√

α (m, n, i, j) β (m, n, i, j)
)

0
]

.

Hence,

V̇1(t) ≤ 0. (18)

Now, notice that the error dynamics can be written as the

linear time-varying (LTV) system

˙̃
x1(t) =AAA1(t)x̃1(t), (19)

where

AAA1(t) =

[

AAA11(t) AAA12(t)
AAA21(t) 0

]

and each row of the matrix AAA12(t), corresponding to the state

error q̃ (m,n, i, j, t), is given by

‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t)
(

a⊥1

i,j

)T

−‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t)
(

a⊥2

i,j

)T

.

The definitions of AAA11(t) and AAA21(t) are omitted as they are

not required in the sequel. If in addition to (17) and (18),

the pair (AAA1(t),C1) is uniformly completely observable,

then the origin of the linear time-varying system (19) is

a globally exponentially stable equilibrium point, see [22,

Example 8.11]. The remainder of the proof amounts to show

that the pair (AAA1(t),C1) is uniformly completely observable.

For any piecewise continuous, bounded matrix K1(t), of

compatible dimensions, uniform complete observability of

the pair (AAA1(t),C1) is equivalent to uniform complete

observability of the pair (A1(t),C1), with A1(t) :=AAA1(t)−
K1(t)C1, see [23, Lemma 4.8.1]. Now, notice that, attending

to the particular forms of C1 and AAA1(t), there exists a

continuous bounded matrix K1(t), which depends explicitly

on the observer parameters, the rate gyro readings, ωm(t),
the USBL structure, the linear coefficients φ1 (i, j, k, l) and

φ2 (i, j, k, l), and q (m,n, i, j, t), (m,n, i, j) ∈ Cs×Ca, such

that

A1(t) =

[

0 AAA12(t)
0 0

]

.

The expression of K1(t) is not presented here as it is evident

from the context and it is not required in the sequel. It

remains to show that the pair (A1(t),C1) is uniformly

completely observable, i.e., that there exist positive constants

ǫ1, ǫ2, and δ such that

ǫ1I � W (t, t+ δ) � ǫ2I (20)

for all t ≥ t0, where W (t0, tf ) is the observability Gramian

associated with the pair (A1(t),C1) on [t0, tf ]. Since the

entries of both A1(t) and C1 are continuous and bounded,

the right side of (20) is evidently verified. Therefore, only

the left side of (20) requires verification. This is omitted due

to space limitations and it will be included in an expanded

version of the paper.

B. Attitude observer

Let x2(t) :=
[

zT1 (t) zT2 (t) zT3 (t)
]T

∈ R
9 be a

column representation of R(t), where

R(t) =





zT1 (t)
zT2 (t)
zT3 (t)



 ,

with zi(t) ∈ R
3, i = 1, 2, 3. Then, it is easy to show that

ẋ2(t) = −S3 (ωm(t)− bω(t))x2(t),

where S3 (x) := blkdiag (S (x) ,S (x) ,S (x)) ∈ R
9×9.
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From (7) it is possible to write q (m,n, i, j, t) as a linear

combination of elements of x2(t), i.e.,

q (m,n, i, j, t) = cm,n,i,j · x2(t),
where

cm,n,i,j :=




(ai − aj) 0 0

0 (ai − aj) 0

0 0 (ai − aj)



 (sm − sn) ∈ R
9.

Let

q(t) :=









...

q (m,n, i, j, t)
...









∈ R
M
2

CM
2

C ,

(m,n, i, j) ∈ Cs × Ca. Then, it is possible to write

q(t) = C2x2(t),

where C2 ∈ R
N
2
CM

2
C×9 is omitted as it is evident from the

context. Under Assumptions 1 and 2 is is trivial to show that

C2 has full rank.
Consider the attitude observer given by

˙̂
x2(t) = −S3 (ωm(t)− bω(t)) x̂2(t)

+CT
2 Q

−1 [q(t)−C2x̂2(t)] , (21)

where Q = QT ∈ R
N
2
CM

2
C×N

2
CM

2
C is a positive definite

matrix, and define the error variable x̃2(t) = x2(t)− x̂2(t).
Then, the observer error dynamics are given by

˙̃
x2(t) =AAA2(t)x̃2(t), (22)

where

AAA2(t) := −
[

S3 (ωm(t)− bω(t)) +CT
2 Q

−1C2

]

.
The following theorem is the main result of this section.
Theorem 2: Suppose that the rate gyro bias is known and

consider the attitude observer (21), where Q ≻ 0 is a design

parameter. Then, under Assumptions 1 and 2, the origin of

the observer error dynamics (22) is a globally exponentially

stable equilibrium point.
Proof: The proof follows by considering the Lyapunov

candidate function V2(t) :=
1
2 ‖x̃2(t)‖

2
. It is similar to that

of [15, Theorem 2] and therefore it is omitted. The only

difference is, in fact, in the definition of C2, which is full

rank, the only requirement for the proof.

C. Cascade observer

This section presents the overall cascade observer and its

stability analysis, whose idea is to feed the attitude observer

proposed in Section III-B with the bias estimate provided

by the bias observer proposed in Section III-A. The bias

observer remains the same, given by (15) and (16), whereas

the attitude observer is now written as
˙̂
x2(t) = −S3

(

ωm(t)− b̂ω(t)
)

x̂2(t)

+CT
2 Q

−1 [q(t)−C2x̂2(t)] . (23)

The error dynamics corresponding to the bias observer are

the same and therefore Theorem 1 applies. Evidently, the use

of an estimate of the bias instead of the bias itself in the

attitude observer introduces an error, and the stability of the

system must be further examined. In this situation, the error

dynamics of the cascade observer can be written as
{

˙̃
x1(t) =AAA1(t)x̃1(t)

˙̃
x2(t) =

[

AAA2(t)− S3

(

b̃ω(t)
)]

x̃2(t) + u2(t),
(24)

where u2(t) := S3

(

b̃ω(t)
)

x2(t).

The following theorem is the main result of the paper.

Theorem 3: Consider the cascade attitude observer given

by (15), (16), and (23). Then, in the conditions of Theorem

1 and Theorem 2, the origin of the observer error dynamics

(24) is a globally exponentially stable equilibrium point.

Proof: The proof follows exactly the same steps of

[15, Theorem 3] and therefore it is omitted, even though the

specific system dynamics are different. It is omitted due to

space limitations.

IV. SIMULATION RESULTS

This section presents some simulation results in order

to give an idea of the estimation performance achieved

with the proposed solution. The 3-D kinematic model of

an underwater vehicle is employed in the simulations as

the proposed observer relies solely on the vehicle kine-

matics, which are exact. Therefore, the proposed solution

applies to any underwater vehicle, regardless of the par-

ticular dynamics. The trajectory described by the vehicle

is shown in Fig. 2. The LBL configuration is composed
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Fig. 2. Trajectory described by the vehicle

of 4 acoustic transponders and their inertial positions are

s1 =
[

1000 0 0
]

(m), s2 =
[

0 1000 0
]

(m),
s3 =

[

1000 1000 0
]

(m), s4 =
[

0 0 100
]

(m),
while the positions of the USBL array receivers, in body-

fixed coordinates, are a1 =
[

0 0 0
]

(m), a2 =
[

0 0.3 0
]

(m), a3 =
[

0.20 0.15 0.15
]

(m), a4 =
[

0.20 0.156 −0.15
]

(m), hence both Assumptions 1

and 2 are satisfied.

Sensor noise was considered for all sensors. In particular,

the LBL range measurements and the USBL range differ-

ences of arrival are assumed to be corrupted by additive

uncorrelated zero-mean white Gaussian noise, with standard

deviations of 1m and 6× 10−3 m, respectively. The angular

velocity measurements are also assumed to be perturbed by

additive, zero mean, white Gaussian noise, with standard

deviation of 0.05 °/s.

The observer parameters were chosen as α (m,n, i, j) =
0.1, β (m,n, i, j) = 5× 10−8 for all (m,n, i, j) ∈ Cs × Ca,

and Q = 104I. The initial condition of the rate gyro bias

observer was set to zero, while R (0) = blkdiag (−1,−1, 1).
The convergence of the observer error is very fast, as it is

possible to observe from the evolution of the errors of the

components of the rotation matrix R(t) and the rate gyro
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bias error, which are depicted in Figs. 3 and 4, respectively.

Although it is not shown here due to space limitations, the

rate gyro bias error is confined, in steady-state, to a very

tight interval, below 0.01 °/s.
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Fig. 3. Initial convergence of the attitude angle error
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Fig. 4. Initial convergence of the rate gyro bias error

In order to evaluate the performance of the attitude ob-

server, and for the purpose of performance evaluation only,

an additional error variable is defined as R̃p(t) = RT (t)R̂(t),
which corresponds to the rotation matrix error. Using the

Euler angle-axis representation for this new error variable,

R̃p(t) = I cos
(

θ̃(t)
)

+
[

1− cos
(

θ̃(t)
)]

d̃(t)d̃T (t)

−S
(

d̃(t)
)

sin
(

θ̃(t)
)

,

where 0 ≤ θ̃(t) ≤ π and d̃(t) ∈ R
3,
∥

∥

∥
d̃(t)

∥

∥

∥
= 1, are

the angle and axis that represent the rotation error, the

performance of the observer is identified with the evolution

of θ̃. After the initial transients fade out, the resulting angle

mean error is 0.19 °.

V. CONCLUSIONS

This paper presented a novel attitude observer for under-

water vehicles based on a combined LBL/USBL acoustic

positioning system. In the envisioned solution, the range and

range differences of arrival are directly used in the observer,

as measured by the USBL/LBL. No linearizations are carried

out whatsoever and the resulting error dynamics are globally

exponentially stable. The design is computationally efficient

and preliminary simulations results are shown that illustrate

the achievable performance. Future work includes the anal-

ysis of the multi-rate case, the treatment of measurement

outages and outliers, and comparison with other solutions.
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