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Abstract— A common assumption in long baseline (LBL)
underwater acoustic navigation is that the speed of sound is
available. This quantity depends on the medium and it is
usually measured or profiled prior to the experiments. This
paper proposes a novel filtering solution that explicitly takes
into account the estimation of the speed of propagation of the
acoustic waves in the medium. Based on discrete-time range
measurements, an augmented system is derived that can be re-
garded as linear for observability and observer design purposes.
Its observability is discussed and a Kalman filter provides the
estimation solution, with globally exponentially stable (GES)
error dynamics. Simulation results are presented, considering
noisy measurements, to evaluate the proposed solution, which
evidence both fast convergence and good performance.

I. INTRODUCTION

Long baseline (LBL) navigation is a common solution

for positioning of underwater vehicles, resorting in general

to the round-trip travel time of acoustic signals from the

vehicle to several transponders, fixed in known positions in

the mission scenario, see e.g. [1], [2], [3], [4], [5], and [6].

In [7] the author proposes a GPS-like system consisting of

buoys equipped with Differential GPS. A related solution,

denominated as GPS Intelligent Buoy (GIB) system, is now

commercially available, see [8]. Further work on the GIB

underwater positioning system can be found in [9]. For

interesting discussions and detailed surveys on underwater

vehicle navigation techniques and challenges see [10], [11],

and [12].

In previous work by the authors a novel filtering solution

was proposed for long baseline navigation [13], based on

an extension of the framework for single range measure-

ments, proposed in [14], to multiple range measurements.

A common assumption, present in all previously mentioned

contributions, is that the speed of propagation of the waves

in the medium is known or measured. This quantity depends

on several characteristics such as the salinity, pressure, and

temperature and it is either measured or profiled, often prior

to the experiments. The main contribution of this paper is

the development of a novel framework for long baseline

navigation that explicitly includes the estimation of the speed

of propagation of the acoustic waves in the medium. Based

on discrete-time range measurements, combined with attitude

and relative velocity readings obtained at high rates, an aug-

mented system is derived that can be considered as linear for

observability and observer design purposes. Its observability
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is carefully analyzed and a Kalman filter is considered as the

estimation solution, with globally exponentially stable error

dynamics.

The paper is organized as follows. The problem statement

and the nominal system dynamics are introduced in Section

II, while the filter design is detailed in Section III. Simulation

results are presented in Section IV and Section V summarizes

the main results of the paper.

A. Notation

Throughout the paper the symbol 0 denotes a matrix

of zeros and I an identity matrix, both of appropriate

dimensions. A block diagonal matrix is represented by

diag(A1, . . . ,An). For x ∈ R
3 and y ∈ R

3, x ·y represents

the inner product.

II. PROBLEM STATEMENT

Consider a standard Long Baseline acoustic positioning

system, consisting of a set of transponders that are fixed in

the mission scenario, where an underwater vehicle operates,

also equipped with an acoustic transponder.Typically, the

transponder of the vehicle sends a known acoustic signal to

interrogate the transponders of the Long Baseline acoustic

positioning system, which then respond sending each a

known acoustic signal. These signals are then received by the

transponder of the vehicle and the range is usually calculated

using the round-trip travel time and the speed of propagation

of the acoustic waves in the medium. In this paper, the latter

is assumed unknown and as such the range measurements,

which are measured periodically, are only available up to a

scaling factor. Further suppose that the vehicle is equipped

with an Attitude and Heading Reference System (AHRS)

and a Doppler Velocity Log (DVL). The problem considered

herein is that of designing a continuous-discrete filter, with

globally exponentially stable error dynamics, to estimate the

position and linear velocity of the vehicle, as well as the

speed of propagation of the acoustic waves in the medium.

A. System dynamics

Let {I} denote a local inertial reference coordinate frame

and {B} a coordinate frame attached to the vehicle, usually

referred to as the body-fixed reference frame. The linear

motion of the vehicle satisfies

ṗ(t) = R(t)v(t), (1)

where p(t) ∈ R
3 denotes the inertial position of the vehicle,

v(t) ∈ R
3 is the velocity of the vehicle relative to {I},

expressed in body-fixed coordinates, and R(t) ∈ SO(3) is

the rotation matrix from {B} to {I}.
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The AHRS provides the rotation matrix R(t), while the

DVL measures, in the absence of bottom-lock, the velocity

of the vehicle relative to the fluid, expressed in body-fixed

coordinates. Let vc(t) ∈ R
3 denote the velocity of the fluid,

in inertial coordinates, and vr(t) ∈ R
3 be the DVL reading,

i.e., the velocity of the vehicle relative to the fluid, expressed

in body-fixed coordinates. Then,

v(t) = vr(t) +RT (t)vc(t). (2)

Finally, let si ∈ R
3, i = 1, . . . , L, denote the inertial

positions of the transponders. Then, the range measurements

are given by

ri (k) = vs (tk) ‖si − p (tk)‖ , (3)

with tk := t0 + kT , k ∈ N, where T > 0 is the sampling

period, t0 is the initial time, and vs(t) > 0 is a scaling factor

that accounts for the unknown speed of propagation of the

acoustic waves in the medium.

Assuming that both the fluid velocity and the speed

of propagation of the acoustic waves in the medium are

constant, i.e., v̇c(t) = 0 and v̇s(t) = 0, and combining (1)-

(3), results in the nonlinear system with discrete outputs






























ṗ(t) = vc(t) +R(t)vr(t)
v̇c(t) = 0

v̇s(t) = 0
r1 (k) = vs (tk) ‖s1 − p (tk)‖
...

rL (k) = vs (tk) ‖sL − p (tk)‖

. (4)

The problem considered herein is the design of an estimator

for (4) with globally exponentially stable error dynamics.

III. FILTER DESIGN

In previous work by the authors, [13], a novel LBL frame-

work was proposed, in continuous time. In short, additional

states and outputs are derived that allow to consider the

system as linear in the state, even though it still is, in fact,

nonlinear. This is done by means of identification of some

nonlinear terms as new variables and noticing that the output

and input are available signals for observer design purposes.

In this paper, a similar approach is somehow pursued but

considering: i) discrete-time measurements; and ii) scaled

ranges, with unknown speed of propagation of the acoustic

waves in the medium. This setting leads to a different state

vector and consequently a different dynamic system, and

captures the nature of the underwater ranging sensing system

when the speed of propagation is unknown or only known

approximately.

A. Discretization and system augmentation

The exact discrete-time system dynamics corresponding to

(4) are given by


































p (tk+1) = p (tk) + Tvc (tk) +
∫ tk+1

tk
R (τ)vr (τ) dτ

vc (tk+1) = vc (tk)
vs (tk+1) = vs (tk)
r1 (k) = vs (tk) ‖s1 − p (tk)‖
...

rL (k) = vs (tk) ‖sL − p (tk)‖

.

(5)

Define the discrete-time states






x1(k) := v2s (tk)p (tk)
x2(k) := v2s (tk)vc (tk)
x3 (k) = v2s (tk)

.

From (5) one may write






x1 (k + 1) = x1 (k) + Tx2 (k) + x3 (k)u (k)
x2 (k + 1) = x2 (k)
x3 (k + 1) = x3 (k)

, (6)

where

u(k) :=

∫ tk+1

tk

R (τ)vr (τ) dτ.

Now, consider the scaled range measurements as additional

system states, i.e., define










x4(k) := r1(k)
...

x3+L(k) := rL (k)

.

To derive the discrete-time dynamics of the range measure-

ments, consider their squares and expand

r2i (k + 1) = x3 (k + 1)

∥

∥

∥

∥

si −
x1 (k + 1)

x3 (k + 1)

∥

∥

∥

∥

2

using (6), which gives

r2i (k + 1) = 2u (k) · x1 (k)− 2T [si − u (k)] · x2 (k)

− [2si − u (k)] · u (k)x3 (k)

+r2i (k) + 2T
x1 (k) · x2 (k)

x3 (k)

+T 2 ‖x2 (k)‖
2

x3 (k)
, (7)

i = 1, . . . , L. Identifying the nonlinear terms x1 (k) ·
x2 (k) /x3 (k) and ‖x2 (k)‖

2
/x3 (k) in (7) with new system

states, i.e.,
{

x4+L (k) := x1(k)·x2(k)
x3(k)

= v2s (tk)p (tk) · vc (tk)

x5+L (k) := ‖x2(k)‖
2

x3(k)
= v2s (tk) ‖vc (tk)‖

2 , (8)

and noticing that r2i (k) = xi+3(k)ri (k), i = 1, . . . , L,

allows to write

xi+3 (k + 1) =
2u (k) · x1 (k)

ri (k + 1)
−

2T [si − u (k)] · x2 (k)

ri (k + 1)

−
[2si − u (k)] · u (k)

ri (k + 1)
x3 (k)

+
ri (k)xi+3 (k)

ri (k + 1)
+

2Tx4+L (k)

ri (k + 1)

+
T 2x5+L (k)

ri (k + 1)
,

i = 1, . . . , L. The evolution of the new states can be written,

using (6), as
{

x4+L(k + 1) = u (k)·x2 (k) + x4+L (k) + Tx5+L (k)
x5+L (k + 1) = x5+L (k)

.

Define the augmented state vector as

x (k) :=

























x1 (k)
x2 (k)
x3 (k)
x4 (k)

...

x3+L (k)
x4+L (k)
x5+L (k)

























∈ R
3+3+1+L+2.
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Then, the discrete-time system dynamics can be written as

x (k + 1) = A (k)x (k) ,
where A(k) ∈ R

(7+L+2)×(7+L+2),

A (k) =





























I T I u (k) 0 0 0
0 I 0 0 0 0
0 0 1 0 0 0

2T
r1(k+1)

T 2

r1(k+1)

A21(k) A22(k)
...

...
2T

rL(k+1)
T 2

rL(k+1)

0 uT (t) 0 0 1 T
0 0 0 0 0 1





























,

with A21(k) ∈ R
L×7

A21(k) =









2uT (k)
r1(k+1) 2T

u
T (k)−s

T
1

r1(k+1)
u(k)−2s1
r1(k+1) · u (k)

...
...

...
2uT (k)
rL(k+1) 2T

u
T (k)−s

T
L

rL(k+1)
u(k)−2sL
rL(k+1) · u (k)









,

and

A22(k) = diag

(

r1(k)

r1(k + 1)
, . . . ,

rL(k)

rL(k + 1)

)

∈ R
L×L.

To grasp the LBL structure, take the difference of the

squares of range measurements to two different transponders,

which gives

r2i (k)− r2j (k) = v2s (tk)
(

‖si‖
2
− ‖sj‖

2
)

−2v2s (tk) [(si − sj) · p (tk)] . (9)
Using

r2i (k)− r2j (k) = [ri (k) + rj (k)] [x3+i (k)− x3+j (k)] ,
together with (8), allows to rewrite (9) as

2(si−sj)
ri(k)+rj(k)

· x1(k)−
‖si‖

2−‖sj‖
2

ri(k)+rj(k)
x3 (k)

+x3+i(k)− x3+j(k) = 0 (10)
for i, j ∈ {1, . . . , L}, i 6= j. Discarding the origi-

nal nonlinear output equation, considering that the states

x4(k), . . . , x3+L(k) are measured, and using (10) allows to

define the augmented system output






























































































y1(k) = x4(k)
...

yL(k) = x3+L(k)

yL+1(k) =
2(s1−s2)·x1(k)
r1(k)+r2(k)

− ‖s1‖
2−‖s2‖

2

r1(k)+r2(k)
x3 (k)

+x3+1(k)− x3+2(k)

yL+2(k) =
2(s1−s3)·x1(k)
r1(k)+r3(k)

− ‖s1‖
2−‖s3‖

2

r1(k)+r3(k)
x3 (k)

+x3+1(k)− x3+3(k)
...

yL+CL
2

−1(k) =
2(sL−2−sL)·x1(k)
rL−2(k)+rL(k) − ‖sL−2‖

2−‖sL‖2

rL−2(k)+rL(k) x3 (k)

+x3+L−2 − x3+L(k)

yL+CL
2
(k) = 2(sL−1−sL)·x1(k)

rL−1(k)+rL(k) − ‖sL−1‖
2−‖sL‖2

rL−1(k)+rL(k) x3 (k)

+x3+L−1 − x3+L(k)

,

where CL

2 is the number of 2-combinations of L elements,

i.e. CL

2 = L (L− 1) /2.
The discrete-time augmented system can then be written,

in compact form, as
{

x (k + 1) = A (k)x (k)
y (k + 1) = C (k + 1)x (k + 1)

, (11)

with

C (k) =

[

0 I 0

C21(k) C22 0

]

∈ R
(L+CL

2 )×(7+L+2),

where C21(k) ∈ R
CL

2
×7 is given by

C21(k) =























2(s1−s2)
T

r1(k)+r2(k)
0 −‖s1‖

2−‖s2‖
2

r1(k)+r2(k)
2(s1−s3)

T

r1(k)+r3(k)
0 −‖s1‖

2−‖s3‖
2

r1(k)+r3(k)

...
...

...
2(sL−2−sL)

T

r
L−2(k)+rL(k) 0 −‖sL−2‖

2−‖sL‖2

rL−2(k)+rL(k)

2(sL−1−sL)
T

r
L−1(k)+rL(k) 0 −‖sL−1‖

2−‖sL‖2

rL−1(k)+rL(k)























,

and

C22=













1 −1 0 . . . . . . . . . 0
1 0 −1 0 . . . . . . 0

...

0 . . . . . . 0 1 0 −1
0 . . . . . . . . . 0 1 −1













∈ R
CL

2
×L .

Remark 1: Notice that the system (11) is well defined

as no range measurement can be nonpositive. Indeed, by

definition, the range measurements are nonnegative and a

null measurement would imply that two transponders were

in the same position, which is impossible. In fact, there is

always a minimum distance between transponders.

B. Observability analysis

The system (11) can be regarded as a discrete linear time-

varying system for observer design purposes, even though the

system matrices A(k) and C(k) depend on the system input

and the range measurements. This is possible because for

observer (or filter) design purposes both the ranges and the

input are available and, hence, they can be simply considered

as functions of time. This idea was first pursued by the

authors in [14, Lemma 1] for continuous systems, whose

application if equivalent for the discrete-time case, as shown

in the following lemma.
Lemma 1: Consider the nonlinear discrete-time system

{

x(k + 1) =AAA
(

k,UUUk+1

k0
,YYYk+1

k0

)

x(k)

y (k + 1) = CCC
(

k + 1,UUUk+1

k0
,YYYk+1

k0

)

x (k + 1)
, (12)

where UUU
kf

k0
:= {u (k0) ,u (k0 + 1) , . . . ,u (kf − 1)} and

YYY
kf

k0
:= {y (k0) ,y (k0 + 1) , . . . ,y (kf − 1)} are the in-

put and output signals, respectively, on the time interval

[k0, kf [, and x(k) ∈ R
n. If rank (O (k0, kf )) = n, where

O (k0, kf ) is the observability matrix associated with the pair
(

AAA
(

k,UUU
kf

k0
,YYY

kf

k0

)

,CCC
(

k,UUU
kf

k0
,YYY

kf

k0

))

on I := [k0, kf ], then

the nonlinear system (12) is observable on I in the sense

that, given the system input and output signals UUU
kf

k0
and YYY

kf

k0
,

the initial condition x (k0) is uniquely defined.

Proof: The proof follows as in classic linear systems

theory, noting that as all signals are available, it is possible to

compute the transition matrix and the observability matrix,

even though these depend on the system input and output. It

is omitted due to space limitations.

The following result addresses the observability of the

nonlinear discrete-time system (11).

Theorem 1: Suppose that the configuration of the Long
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Baseline acoustic positioning system is such that

L :=























2 (s1 − s2)
T

−
(

‖s1‖
2
− ‖s2‖

2
)

2 (s1 − s3)
T

−
(

‖s1‖
2
− ‖s3‖

2
)

...
...

2 (sL−2 − sL)
T

−
(

‖sL−2‖
2
− ‖sL‖

2
)

2 (sL−1 − sL)
T

−
(

‖sL−1‖
2
− ‖sL‖

2
)























∈ R
CL

2
×4

is full rank, i.e.,

rank (L) = 4. (13)

Then, the discrete-time system (11) is observable on

any interval [ki, ki+3], ki = 0, 1, 2, . . ., in the sense

that the initial state x (ki) is uniquely determined

by the input {u (k) : k = ki, ki+1, ki+2} and the output

{y (k) : k = ki, ki+1, ki+2}.

Proof: The proof resorts to Lemma 1 and it reduces to

show that the observability matrix O (ki, ki + 3) associated

with the pair (A (k) ,C (k)) on [ki, ki+3], ki > k0, has

rank equal to the number of states of the system. Fix

ki > k0 and suppose that the rank of the observability

matrix is less than the number of states of the system.

Then, there exists a unit vector d ∈ R
7+L+2, d =

[

dT
1 dT

2 d3 dT
4 d5 d6

]T
, with d1,d2 ∈ R

3, d3 ∈
R, d4 ∈ R

L, d5, d6 ∈ R, such that O (ki, ki + 3)d = 0 or,

equivalently,






C (ki)d = 0

C (ki + 1)A (ki)d = 0

C (ki + 2)A (ki + 1)A (ki)d = 0

. (14)

From the first equation of (14), and attending to the structure

of C (ki), one immediately concludes that d4 = 0. Substi-

tuting that in the first equation of (14) gives










































2 (s1 − s2)
T
d1 −

(

‖s1‖
2
− ‖s2‖

2
)

d3 = 0

2 (s1 − s3)
T
d1 −

(

‖s1‖
2
− ‖s3‖

2
)

d3 = 0

...

2 (sL−2 − sL)
T
d1 −

(

‖sL−2‖
2
− ‖sL‖

2
)

d3 = 0

2 (sL−1 − sL)
T
d1 −

(

‖sL−1‖
2
− ‖sL‖

2
)

d3 = 0

. (15)

Under Assumption (13), the only solution of (15) is d1 = 0

and d3 = 0. Now, with d1 = 0, d3 = 0, and d4 = 0, one

may write, from the second equation of (14), that






























(s1 − s2)
T
d2 = 0

(s1 − s3)
T
d2 = 0

...

(sL−2 − sL)
T
d2 = 0

(sL−1 − sL)
T
d2 = 0

. (16)

Again, under Assumption (13), the only solution of (16) is

d2 = 0. Substituting that in the second equation of (14),

together with d1 = 0, d3 = 0, and d4 = 0 gives

2d5 + Td6 = 0. (17)

Substituting d1 = d2 = 0, d3 = 0, and d4 = 0 in the third

equation of (14) allows to write

d4 + Td5 = 0. (18)

The only solution of (17)-(18) is d5 = d6 = 0. But this

contradicts the hypothesis of existence of a unit vector d

such that (14) holds. Hence, the observability matrix must

have rank equal to the number of states of the system. As the

derivation remains unchanged for any other different ki >
k0, the proof is concluded invoking Lemma 1.

Finally, it is important to stress that, in the definition of

the augmented system (11), the original nonlinear outputs

ri(k) =
√

x3 (k + 1)
∥

∥

∥
si −

x1(k+1)
x3(k+1)

∥

∥

∥
, i = 1, . . . , L, were

discarded. Furthermore, there is nothing in (11) imposing

the nonlinear constraints (8). While it is true that these

restrictions could be easily imposed including artificial out-

puts, e.g., x4+L (k) − x1 (k) · x2 (k) /x3 (k) = 0, this form

was preferred as it allows to apply Lemma 1. However,

care must be taken when extrapolating conclusions from

the observability of (11) to the observability of (5). The

following theorem addresses this issue and provides the

means for design of a state observer or filter for (5), as it

will be seen shortly after.

Theorem 2: Suppose that (13) holds. Then:

i) the nonlinear system (5) is observable on any inter-

val [ki, ki+3], ki = 0, 1, 2, . . ., in the sense that

the initial state x (ki) is uniquely determined by

the input {u (k) : k = ki, ki+1, ki+2} and the output

{r1 (k) , . . . , rL (k) : k = ki, ki+1, ki+2}; and

ii) the initial condition of the augmented nonlinear system

(11) matches that of (5), i.e.,














































x1 (ki) = v2s (tki
)p (tki

)
x2 (ki) = v2s (tki

)vc (tki
)

x3 (ki) = v2s (tki
)

x4 (ki) = vs (tki
) ‖s1 − p (tki

)‖
...

x3+L (ki) = vs (tki
) ‖sL − p (tki

)‖
x4+L (ki) = v2s (tki

)p (tki
) · vc (tki

)

x5+L (ki) = v2s (tki
) = ‖vc (tki

)‖
2

.

Proof: The second part of the theorem is established

comparing the outputs of both systems as a function of

their initial state. This is omitted due to the lack of space.

Then, notice that, using Theorem 1, the initial condition of

(11) is uniquely determined. Hence, it follows due to the

correspondence between the two systems, that the initial

condition of (5) is also uniquely determined.

C. Estimation solution

1) Augmented system: The means to design an observer

for the quantities v2s (tk)p (tk), v
2
s (tk)vc (tk), and v2s (tk)

are provided by Theorem 2 as it is shown that an observer

for (11), which can be regarded as linear for observer design

purposes, suffices. A simple Kalman filter can be applied,

yielding globally exponentially stable error dynamics if the

system is shown to be uniformly completely observable

[15]. In the paper, the pair (A (k) ,C (k)) was shown to

be observable. The proof of uniform complete observability

follows similar steps considering uniform bounds in time.

It is omitted due to space limitations. An alternative to the

Kalman filter could be the design of a Luenberger observer

as detailed in [16, Theorem 29.2], which would allow to

choose the convergence rate.

Notice that, even though the ocean current velocity and the

factor that accounts for the unknown sound speed velocity are
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assumed constant, in nominal terms, by appropriate tuning

of the Kalman filter it is possible to successfully track slowly

time-varying quantities.
2) Estimation between range measurements: An observer

(or filter) for the discrete-time system (11), as previously

derived, only provides estimates when there are range mea-

surements. However, the relative velocity and attitude mea-

surements are usually available at a much higher rate than the

range readings. As such, it is possible to obtain estimates of

the scaled position, scaled velocity, and speed to propagation

of the acoustic waves, at a higher rate, using open-loop

propagation between range measurements, as given by














x̂1(t) = x̂1 (tk) + (t− tk) x̂2 (tk)

+x̂3 (tk)
∫ t

tk
R (τ)vr (τ) dτ

x̂2(t) = x̂2 (tk)
x̂3(t) = x̂3 (tk)

for tk < t < tk+1.
3) Estimates of p(t), vc(t), and vs(t): Estimates for

p (tk), vc (tk), and vs(t) follow from the Kalman filter

or the Luenberger observer estimates, under some mild

assumptions.

Assumption 1: The speed of propagation of the acoustic

waves in the medium satisfies Vm ≤ vs(t) ≤ VM , with

Vm, VM > 0.

Assumption 2: The inertial position of the vehicle and the

ocean current velocity are norm-bounded.

Considering estimates x̂3(t) with globally exponentially

stable error dynamics, the estimate of the speed of propaga-

tion of the acoustic waves in the medium can be obtained

from

v̂s(t) =







Vm, x̂3(t) < V 2
m

√

x̂3(t), V 2
m < x̂3(t) < v2M

VM , x̂3(t) > V 2
M

,

whose error also converges globally exponentially fast to zero

under Assumption 1. Estimates for the position and ocean

current velocity then follow from
{

p̂(t) = x̂1(t)
v̂2
s(t)

v̂c(t) =
x̂2(t)
v̂2
s(t)

,

and it is possible to show that, under Assumptions 1 and 2,

these also follow globally exponentially stable error dynam-

ics. These (rather trivial) results are omitted due to space

constraints and are left for an extended version of the paper.

IV. SIMULATION RESULTS

This section presents a numerical simulation in order to

exemplify the achievable performance with the proposed

solution for long baseline navigation with explicit estimation

of the velocity of propagation of the acoustic waves. These

are only preliminary results and extensive Monte Carlo simu-

lations will be carried out in the future, prior to experimental

validation, as well as comparison with the Extended Kalman

filter, which does not offer globally exponentially stable error

dynamics.

The initial position of the vehicle is p(0) = [0 0 10]
T
m,

while the ocean current velocity was set to vc(t) =
[−0.1 0.2 0]

T
m/s. The trajectory that was described by

the vehicle is shown in Fig. 1. The LBL configuration

is composed of 5 acoustic transponders and their iner-

tial positions are s1 =
[

0 0 1000
]T

(m), s2 =

0

100

200

300 −80

−60

−40

−20

0

0

50

100

150

y (m)
x (m)

z 
(m

)

start

end

Fig. 1. Trajectory described by the vehicle

[

1000 0 500
]

(m), s3 =
[

0 750 500
]

(m), s4 =
[

0 0 500
]

(m), and s5 =
[

1000 1000 500
]

(m),
hence satisfying the rank condition (13). The velocity of

propagation factor was set to vs (t) = 1.05.
Sensor noise was considered for all sensors. In partic-

ular, the LBL range measurements and the DVL relative

velocity readings were assumed to be corrupted by additive

uncorrelated zero-mean white Gaussian noise, with standard

deviations of 1m and 0.01m/s, respectively. The attitude,

provided by the AHRS and parameterized by roll, pitch,

and yaw Euler angles, was also assumed to be corrupted

by zero-mean, additive white Gaussian noise, with standard

deviation of 0.03° for the roll and pitch and 0.3° for the yaw.

The sampling period for the range measurements was set to

T = 1 s, while the remaining sensors were sampled at 100

Hz. The discrete time input u(k), corresponding to a definite

integral, was approximated using the trapezoid rule, while the

open-loop solution of the position and ocean current velocity

estimates, between range measurements, was computed using

the Euler method. In fact, as it also corresponds to a definite

integral, it is equivalent to the application of the trapezoid

rule.
To tune the Kalman filter, the state disturbance covariance

matrix was chosen as

blkdiag
(

10−3I, 10−5I, 10−5, 10−2I, 10−2, 10−5
)

and the output noise covariance matrix was set to

blkdiag (I, 0.5I) .
The initial condition for the position was set with a large

initial error, x̂1(0) = [1000 1000 1000]
T
(m), while the

velocity of propagation factor estimate was set to x̂3 (0) = 1.

The states corresponding to the range measurements were

set according to the initial range measurements and the

remaining initial state estimates were set to zero.
The initial convergence of the position and velocity errors

is depicted in Fig. 2, along with details of the discrete-

time updates and open-loop propagation between range mea-

surements, which translates into linearly increasing position

errors between range measurements (approximately, due to

noise). The detailed evolutions of the position and velocity

errors are depicted in Figs. 3 and 4, respectively. The

most noticeable feature is that the position and velocity

errors remain, most of the time, below 1m and 0.03m/s,
respectively. The evolution of the error of the speed of

propagation of the acoustic waves is shown in Fig. 5. The

relevant feature here is that the error remains well below

0.5%.
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(a) Position error
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(b) Ocean current velocity error

Fig. 2. Initial convergence of the errors

300 600 900 1200 1500
−3

−2

−1

0

1

2

3

t (s)

P
o

si
ti

o
n

 e
rr

o
r 

(m
)

 

 

x

y

z

Fig. 3. Steady-state evolution of the position error
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Fig. 4. Steady-state evolution of the ocean current velocity error
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Fig. 5. Evolution of the error of x3 (k)

V. CONCLUSIONS

A common assumption in Long Baseline navigation is that

speed of propagation of the acoustic waves in the medium

is either known or measured. This paper presents a novel

long baseline navigation framework where the factor related

to the speed of propagation of the waves is explicitly taken

into account and estimated. Considering discrete-time range

measurements, an augmented system is proposed that can

be regarded, for observability and observer design purposes,

as linear. Its observability was analyzed and sufficient condi-

tions were derived. The Kalman filter provides the estimation

solution, with globally exponentially stable error dynamics,

and DVL and AHRS measurements, obtained at higher rates,

are integrated to obtain estimates at high rates. Simulation

results evidence fast convergence and good performance.
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