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Abstract— This paper addresses the problems of source local-
ization and navigation based on discrete-time single direction
measurements, in 3-D, in addition to relative velocity readings.
For source localization, an agent aims at estimating the position
of a source relative to itself, while for navigation the agents aims
to estimate its own position assuming that it also has access to
the position of the source in an inertial frame. Additionally,
unknown constant drift velocities are considered and explicitly
estimated. The design follows essentially by considering an
augmented system, which is linear, and thoroughly address its
observability and its relation with the original nonlinear system.
The final estimation solution is a Kalman filter, with globally
exponentially stable (GES) error dynamics. Simulation results
are presented that illustrate the achievable performance with
the proposed solution.

I. INTRODUCTION

A recurring problem that agents face in robotics is that of

estimating the position of an external target (which can be

another agent), either in absolute or relative coordinates. This

problem is often denominated as that of source localization,

when there is a device in the target that emits signals (hence

the designation as source), although sometimes it is also

referred to as target localization, more often in warfare

applications. In mobile robotics this can be the case of an

unmanned ground vehicle attempting to estimate the position

of a beacon, while in aerial robotics it can be an unmanned

aerial vehicle trying to estimate the position of another

unmanned aerial vehicle. Parallel to the problem of source

localization is that of agent navigation, often navigation of

autonomous vehicles. In this case the aim is to estimate the

position of the agent itself, among other variables, assuming

known positions of externals features of devices.

Earlier solutions to the problem of navigation resort to

absolute position measurements. The celebrated Global Posi-

tioning System (GPS) is usually the workhorse in open-space

mission, while Long Baseline (LBL) acoustic positioning

system are often employed for underwater scenarios. Driven

by the problem of source localization, other solutions have

been pursued for both problems based on different sensors,

such as the use of single range measurements, see e.g. [1],

[2], [3], [4], [5], [6], [7], and references therein. The duality

between navigation and source localization is evidenced in

[8].
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An alternative to single range measurements is the use

of bearing measurements, see e.g. [9], [10], [11], [12], and

references therein. In previous work by the authors [13]

the problems of source localization and navigation based

on bearing measurements were addressed in a continuous-

time framework, where the duality between both problems

is again evidenced. In practice, the bearing measurements

are often acquired in discrete-time, which poses challenge

both in terms of observability analysis and filter design. The

problems of navigation and source localization are revisited

in this paper, building on the results obtained in [13], con-

sidering discrete-time bearing measurements. A discrete-time

augmented system is derived, which is linear time-varying

(LTV), and its observability analyzed, in a constructive

manner, such that the design of an observer (or filter) follows

naturally using estimation tools for linear systems. A Kalman

filter is proposed with globally exponentially stable (GES)

error dynamics.

The paper is organized as follows. The problems con-

sidered in the paper and the nominal system dynamics are

introduced in Section II. The topic of source localization is

addressed in Section III in detail, while in Section IV the dual

for navigation is presented building on the results for source

localization. Simulation results are discussed in Section V

and Section VI summarizes the main results of the paper.

A. Notation

Throughout the paper the symbols 0 and I denote a

matrix of zeros and the identity matrix, respectively, while

diag(A1, . . . ,An) is a block diagonal matrix. For x ∈ R
3

and y ∈ R
3, x · y and x × y represent the inner and cross

products, respectively.

II. PROBLEM STATEMENTS

A. Source localization

In order to set the problem framework, let {I} denote an

inertial frame and consider an agent, whose inertial position

at time t = tk, tk = t0 + kT , k = 1, 2, . . ., T > 0, is

denoted as p (k) ∈ R
3, aiming to determine the position

of a source relative to the agent. Further define a coordinate

frame {B} attached to the agent, usually denominated as the

body-fixed reference frame. Let the inertial position of the

source at time t = tk be denoted by s (k) ∈ R
3 and assume

that the source is drifting with constant inertial unknown

velocity vs (k) ∈ R
3. Suppose that the agent has access

to its velocity relative to the fluid expressed in body-fixed

coordinates, vr (t) ∈ R
3, as well as to its attitude, in the

form of a rotation matrix R(t) ∈ SO(3), from body-fixed

coordinates to inertial coordinates. The fluid is assumed to

have constant velocity in inertial coordinates vf (k) ∈ R
3.
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Finally, assume that the agent measures the direction of the

source relative to itself, given by

d (k) =
s (k)− p (k)

‖s (k)− p (k)‖
∈ S(2). (1)

The problem of source localization considered in this paper

is that of estimating the position of the source relative to

the agent, s (k)− p (k), as well as their relative drifting ve-

locities, vs (k)−vf (k), based on the agent relative velocity

measurements, vr (t), and the direction measurements, d (k).
The evolution of the position of the source is simply given

by s (k + 1) = s (k) + Tvs (k), while the evolution of the

position of the agent can be written as
p (k + 1) = p (k) + Tvf (k) + u (k) , (2)

with u (k) :=
∫ tk+1

tk
R (τ)vr (τ) dτ. Let

r (k) := s (k)− p (k)
and

vsa (k) := vs (k)− vf (k)

denote the position of the source relative to the agent and the

relative drift velocities, respectively. Then, the discrete-time

system for source localization can be written as






r (k + 1) = r (k) + Tvsa (k)− u (k)
vsa (k + 1) = vsa (k)

d (k + 1) = r(k+1)
‖r(k+1)‖

. (3)

In other words, the problem of source localization considered

in the paper is that of designing an estimator for the nonlinear

system (3) with globally exponentially stable error dynamics.

B. Navigation

For the problem of navigation, the inertial position of

the source is assumed available to the agent, at the same

rate of the bearing measurements. In addition, the velocity

of the source needs not be constant and its knowledge is

not required for the agent. The corresponding discrete-time

system is






p (k + 1) = p (k) + Tvf (k) + u (k)
vf (k + 1) = vf (k)

d (k + 1) = s(k+1)−p(k+1)
‖s(k+1)−p(k+1)‖

. (4)

The problem of navigation based on bearing measurements

to a single source considered in the paper is that of designing

an estimator for the nonlinear system (4) with globally

exponentially stable error dynamics.
The following (mild) assumption is considered throughout

the paper.
Assumption 1: The movement of the agent and the source

is such that the direction measurements satisfy
d (k) · d (k + 1) > 0

for all k ≥ k0.

III. SOURCE LOCALIZATION FILTER DESIGN

In previous work by the authors [13] the problem of

source localization based on direction measurements was

addressed considering a continuous framework. In the pro-

posed approach, the distance from the agent to the source

was considered as a system state and the output of the

system was redefined so that it could be considered as

linear. This paper follows up this approach but providing

an exact solution is discrete-time, considering discrete-time

bearing measurements. While the estimator dynamics are in

discrete-time, the final filtering solution provides estimates

in continuous-time using the relative velocity readings of the

agent, which are available at high rates.

A. System augmentation

Define as system states






x1(k) := r (k)
x2(k) := vsa (k)
x3 (k) := ‖r (k)‖

.

From (3) the evolution of the first two states is simply
{

x1 (k + 1) = x1 (k) + Tx2 (k)− u (k)
x2 (k + 1) = x2 (k)

. (5)

In order to describe the evolution of x3 (k), notice that, using

the equation of the bearing measurements (1), it is possible

to write

d (k + 1)x3 (k + 1) = x1 (k + 1) . (6)

Computing the inner product of both sides of (6) with

d (k + 1) gives

x3 (k + 1) = d (k + 1) · x1 (k + 1) . (7)

Substituting (5) in (7) gives

x3 (k + 1) = d (k + 1) · x1 (k) + Td (k + 1) · x2 (k)

−d (k + 1) · u (k) . (8)

This form of evolution for x3 (k) is undesirable because

x3 (k + 1) does not depend on x3 (k). In order to make

that happen, notice again that x1 (k) = d (k)x3 (k) , which

allows to rewrite (8) as

x3 (k + 1) = Td (k + 1) · x2 (k) + d (k + 1) · d (k)x3 (k)

−d (k + 1) · u (k) .

Define the augmented state vector

x (k) :=





x1 (k)
x2 (k)
x3 (k)



 ∈ R
3+3+1.

From (6) one has

x1 (k + 1)− d (k + 1)x3 (k + 1) = 0. (9)

Considering (9) and discarding the original nonlinear output

(1) allows to write the discrete-time system
{

x (k + 1) = A (k)x (k) +B (k)u (k)
y (k + 1) = C (k + 1)x (k + 1)

, (10)

where

A (k) :=





I T I 0

0 I 0

0 TdT (k + 1) d (k + 1) · d (k)



 ∈ R
7×7,

B (k) :=





−I

0

−dT (k + 1)



 ∈ R
7×3,

and C (k) :=
[

I 0 −d (k)
]

∈ R
3×7.

B. Observability analysis

The following result addresses the observability of the

discrete-time linear system (10).

Theorem 1: Under Assumption 1, the discrete-time linear

system (10) is observable on [k, k + 3], for a fixed k ≥ k0,

if and only if

2 [d(k)·d(k+1)][d(k)·d(k+2)][d(k+1)·d(k+2)]

+1− [d(k)·d(k+1)]
2
− [d(k)·d(k+2)]

2

− [d(k+1)·d(k+2)]
2
6= 0. (11)
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Proof: The proof resorts to the analysis of the ob-

servability matrix O (k, k + 3) associated with the pair

(A (k) ,C) on [k, k + 3], given by

O (k, k + 3) =





C (k)
C (k + 1)A (k)

C (k + 1)A (k + 1)A (k)



 ∈ R
9×7.

The discrete time-varying linear system (10) is observable on

[k, k + 3] if and only if the observability matrix O (k, k + 3)

is full rank. Let c =
[

cT1 cT2 c3
]T

∈ R
7, c1, c2 ∈ R

3, c3 ∈ R.

It is a simple matter of computation to show that

C (k) c = c1 − c3d (k) , (12)

C (k + 1)A (k) c = c1 + T
[

I− d (k + 1)dT (k + 1)
]

c2

−c3d (k + 1) · d (k)d (k + 1) , (13)

and

C (k + 2)A (k + 1)A (k) c = c1

+T
[

2I− d (k + 2)dT (k + 2)
]

c2

−Td (k + 2) · d (k + 1)d (k + 1) · c2d (k + 2)

−c3d (k) · d (k + 1)d (k + 1) · d (k + 2)d (k + 2) .(14)
To prove necessity, suppose that (11) does not hold, i.e.,

2 [d(k)·d(k+1)][d(k)·d(k+2)][d(k+1)·d(k+2)]

+1− [d(k)·d(k+1)]
2
− [d(k)·d(k+2)]

2

− [d(k+1)·d(k+2)]
2
= 0, (15)

and consider two different cases: i) d(k+1) = d(k+2); and

ii) d(k+1) 6= d(k+2). In the first case, with d(k+1) =
d(k+2), notice that (15) is always satisfied regardless of

d(k). Let c1 = 0, c2 = d(k+1), and c3 = 0. Then,

substituting c in (12)-(14) gives O (k, k + 3) c = 0, which

means that the observability matrix is not full rank and hence

the LTV system (10) is not observable. In the second case,

with d(k+1) 6= d(k+2), let c1 = c3d(k) and

c2 = α
c3
2T

d(k+1)−
c3
T

[d(k)− d(k)·d(k+1)d(k+1)] ,

with

α :=
2 [d(k) · d(k+1)] [d(k+1)·d(k+2)]

2

1− [d(k+1)·d(k+2)]
2

−
[d(k) · d(k+2)] [d(k+1)·d(k+2)]

1− [d(k+1)·d(k+2)]
2

−
[d(k) · d(k+1)]

1− [d(k+1)·d(k+2)]
2 , (16)

and c3 6= 0 such that c is unit vector. Again, tedious but

straightforward computations, substituting c in (12)-(14) and

using (15), allow to show that O (k, k + 3) c = 0, which

means that the observability matrix is not full rank and hence

the LTV system (10) is not observable. Thus, it has been

shown that if (11) does not hold, the linear time-varying

system (10) is not observable on [k, k + 3]. Hence, if the

linear time-varying system (10) is observable on [k, k + 3]
then (11) must hold, thus concluding the proof of necessity.

In order to show sufficiency, suppose that the system is

not observable, which means that there exists a unit vector

c such that O (k, k + 3) c = 0. From (12) it must be

c1 = c3d (k) . (17)

Consider first that c3 = 0. Then, from (17) it must be also

c1 = 0. Substituting that in (13) allows to conclude that

it must be c2 = ±d (k + 1). Substituting c1 = 0, c2 =
±d (k + 1), and c3 = 0 in (14) gives

d (k + 1) = d (k + 1) · d (k + 2)d (k + 2) ,

whose only solution, under Assumption 1, is d (k + 1) =
d (k + 2). With d (k + 1) = d (k + 2) it follows that (15) is

true. Hence, thus far it has been shown that if a unit vector

c exists, with c3 = 0, such that O (k, k + 3) c = 0, then

(11) cannot hold. Consider now c3 6= 0 and substitute (17)

in (13), which gives

c3 [d (k)− d (k + 1) · d (k)d (k + 1)]

+T
[

I− d (k + 1)dT (k + 1)
]

c2 = 0. (18)

Decompose c2 as

c2 =
β

2T
d (k + 1) + c′2, (19)

where β ∈ R and c′2 ∈ R
3 is orthogonal to d (k + 1).

Substituting (19) in (18) implies

c′2 = −
c3
T

[d (k)− d (k + 1) · d (k)d (k + 1)] ,

meaning that it must be

c2 =
β

2T
d (k + 1)−

c3
T

[d (k)− d (k + 1) · d (k)d (k + 1)]

(20)

for some β ∈ R. Substituting (17) and (20) in (14) and

simplifying gives

−c3d(k) + βd(k+1)− βd(k+1)·d(k+2)d(k+2)

+c3d(k)·d(k+2)d(k+2) + 2c3d(k)·d(k+1)d(k+1)

−2c3d(k)·d(k+1)d(k+1)·d(k+2)d(k+2) = 0. (21)

Notice that (21) is a sum of terms along three directions,

d(k), d(k+1), and d(k+2). Hence (21) is satisfied if and

only if the inner product of the left side of (21) with these

three directions is null. It is easy to verify that the inner

product of the left side of (21) with d(k+2) is always null,

regardless of β. Computing the inner product of both sides

of (21) with d(k+1) allows to write

β
(

1− [d(k+1)·d(k+2)]
2
)

=

−c3 [d(k)·d(k+1) + d(k)·d(k+2)d(k+1)·d(k+2)]

+2c3d(k)·d(k+1) [d(k+1)·d(k+2)]
2
. (22)

Suppose first that d(k+1) 6= d(k+2), which implies under

Assumption 1 that [d(k+1)·d(k+2)]
2
6= 1. Then, it follows

from (22) that it must be

β = c3α, (23)

with α as defined in (16). Substituting (23) in (21), comput-

ing the inner product of both sides of (21) with d(k), and

simplifying allows to conclude that (15) holds. On the other

hand, if d(k+1) = d(k+2), then (15) also holds. Thus, it

has been shown that if a unit vector c exists, with c3 6= 0,

such that O (k, k + 3) c = 0, then (11) cannot hold. But that

had already been show for c3 = 0, which allows to conclude

that if a unit vector c exists such that O (k, k + 3) c = 0 or,

equivalently, if the LTV system (10) is not observable, then

(11) cannot be true. Thus, if (11) holds, the LTV system (10)

is observable, thus concluding the proof of sufficiency.

Although given the evolution of the direction readings the

condition (11) can be easily verified, it is rather obscure in

terms of interpretation. The following lemma sheds light into

this issue.

Lemma 1: The condition (11) is satisfied if and only if the

set of vectors D := {d(k) ,d(k+1) ,d(k+2)} is linearly

independent.

Proof: Suppose first that the set of vectors D is not

linearly independent. Then, one of the vectors of the set can
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be written as a linear combination of the other two. Due to

the symmetry of (11) and the fact that all the vectors of D
are unit vectors, suppose, without loss of generality, that it

is possible to write

d(k+2) = c0d(k) + c1d(k+1) (24)

for some [c0 c1]
T
6= 0. Notice that, as all vectors of D are

unit vectors, it follows from (24) that

c20 + c21 + c0c1d(k) · d(k+1) = 1. (25)

Substituting (24) in (15) and using (25) allows to conclude

that (11) is not verified. By contraposition, if (11) holds, then

the set of vectors D must be linearly independent.

Suppose now that the set of vectors D is linearly indepen-

dent. Then, there must exits c0 ∈ R, c1 ∈ R, and c2 ∈ R,

with c2 6= 0, such that

d(k+2) = c0d(k) + c1d(k+1) + c2
d(k)× d(k+1)

‖d(k)× d(k+1)‖
.

(26)

From (26), as all vectors of D are unit vectors, and as d(k)×
d(k+1) is orthogonal to both d(k) and d(k+1), it follows

that

c20 + c21 + c22 + c0c1d(k) · d(k+1) = 1. (27)

Now, using (26) and (27) allows to write

2 [d(k)·d(k+1)][d(k)·d(k+2)][d(k+1)·d(k+2)]

+1− [d(k)·d(k+1)]
2
− [d(k)·d(k+2)]

2

− [d(k+1)·d(k+2)]
2
= c22

[

1− [d(k)·d(k+1)]
2
]

.(28)

As the set of vectors D is linearly independent, it must be

[d(k)·d(k+1)]
2
6= 1. In addition, c2 6= 0. Hence, it follows

from (28) that (11) holds. This concludes the proof.

Before proceeding, it is important to remark that in the

definition of the augmented system (10) the original non-

linear output was discarded. In addition, there is nothing in

(10) imposing that x3(k) = ‖x1(k)‖. As such, care must be

taken about the conclusions drawn for the original system (3)

from the conclusions derived for (10). The following theorem

addresses this issue.

Theorem 2: Consider Assumption 1 and suppose that (11)

holds. Then:

i) the initial condition of (10) corresponds to the initial

condition of (3), i.e.,






x1 (k0) = r (k0)
x2 (k0) = vsa (k0)
x3 (k0) = ‖r (k0)‖

; (29)

ii) the nonlinear system (3) is observable in the sense that,

given the system input u(k) and output d(k), for k =
k0, k0 + 1, k = k0 + 2, its initial condition is uniquely

determined; and

iii) an observer for the linear system (10) with globally

exponentially stable error dynamics is also an observer

for the nonlinear system (3), with globally exponentially

stable error dynamics.

Proof: Due to space limitations, only a sketch of the

proof is provided. Under the terms of Theorem 1, the initial

condition of the LTV system (10) is uniquely determined

by the corresponding system output and input. The proof of

the first part of the theorem follows by proving that (29)

explains the system output, which is null for the present

system, according to (9). As the initial condition is uniquely

determined, if (29) explains the output of the system, it

must correspond to the initial condition. As it is unique and

corresponds to that of the nonlinear system (3), the second

part of the theorem immediately follows. The proof of the

last part follows from the first two. Indeed, the estimates of

an observer for (10) with globally exponentially stable error

dynamics approach the true state globally exponentially fast.

But as it has been shown that this corresponds to the state

of the nonlinear system (3), it follows that those estimates

approach the state of (3) globally exponentially fast, thus

concluding the proof.

The observability conditions that were derived in this sec-

tion consider the smallest possible interval for observability.

However, less demanding conditions may be derived for

larger intervals. In particular, considering larger intervals

(more measurements), the directions measurements need

only span R
2 for the system to be observable. Unfortunately,

space limitations prevent the derivation of such results in

the paper and are left for future work. These results follow

from the analysis of the observability matrix for larger

intervals, e.g. the observability matrix O (k, k + 4) instead

of O (k, k + 3). This is an interesting behavior that is not

present in the continuous-time case.

C. Kalman filter and further discussion

The design of an observer for (10) may follow using

a myriad of tools for linear systems, e.g., the Luenberger

observer as detailed in [14, Theorem 29.2], which would

allow to choose the convergence rate. In this paper, the

Kalman filter was chosen as the estimation solution.

In order to ensure stability of the Kalman filter, stronger

forms of observability are required as this is a time-varying

system, in particular, uniform complete observability. For

the sake of ease of presentation, this paper focuses on the

derivation of observability conditions. The conditions for

uniform complete observability, which are somehow related

to the observability of the system but considering uniform

bounds in time, will be derived in an extended version of

this paper.

It is important to stress that, in spite of the fact that, in

nominal terms, the drift velocity was assumed constant, it is

possible to consider, during the design of the Kalman filter,

that this state is driven by a white Gaussian process, with zero

mean. By appropriate adjustment of the magnitude of the

corresponding filter parameter (state disturbance variance),

it is possible to allow the filter to estimate slowly time-

varying source velocities. It is also important to mention that

it is not claimed that the solution is optimal, as there exists

multiplicative noise.

In the proposed setup, it is assumed that the agent mea-

sures its relative velocity. An alternative setting is trivially

derived from this using position measurements instead and

estimating the source position directly, as well as its drift ve-

locity. Using the relative velocity allows to obtain estimates

at a higher rate resorting to open-loop integration between

discrete-time bearing measurements, with no loss of stability,

as given by
{

r̂(t) = r̂ (tk) + (t− tk) v̂sa (tk)−
∫ t

tk
R (τ)vr (τ) dτ

v̂c(t) = v̂c (tk)
for tk < t < tk+1.
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IV. NAVIGATION FILTER DESIGN

Define as system states






x1(k) := p (k)
x2(k) := vf (k)
x3 (k) := ‖s (k)− x1 (k)‖

.

From the equation of the direction measurements (1) it is

possible to write

x3 (k + 1)d (k + 1) = s (k + 1)− x1 (k + 1) . (30)

In a similar way to the development of Section III, left

multiply both sides of (30) by dT (k + 1) and use (2), which

yields

x3(k + 1) = d (k + 1)·s (k + 1)− d (k + 1)·x1 (k)

−Td (k + 1)·x2 (k)− d (k + 1)·u (k) . (31)

Once again, the evolution of x3 (k) described by (31) is

undesirable as x3 (k + 1) does not depend on x3 (k). In order

to avoid that, add and subtract d (k + 1) ·s (k) to the right

side of (31) and notice that

d (k + 1)·s (k)−d (k + 1)·x1 (k) = d (k + 1) ·d (k)x3 (k) ,

which allows to rewrite (31) as

x3(k + 1)=−Td (k + 1)·x2 (k) + d (k + 1)·d (k)x3 (k)

−d (k + 1)·u (k) + d (k + 1)·[s (k + 1)− s (k)] .

Define the augmented state vector

x (k) :=





x1 (k)
x2 (k)
x3 (k)



 ∈ R
3+3+1.

Discarding the original nonlinear output (1) and considering

(30) instead allows to write the discrete-time linear system
{

x (k + 1) =AAA (k)x (k) +BBB (k)u (k)
y (k + 1) = CCC (k + 1)x (k + 1)

, (32)

where

AAA (k) :=





I T I 0

0 I 0

0 −TdT (k + 1) d (k + 1) · d (k)



 ∈ R
7×7,

BBB (k) :=





I 0

0 0

−dT (k + 1) dT (k + 1)



 ∈ R
7×6,

CCC (k) :=
[

I 0 d (k)
]

∈ R
3×7,

and

u (k) =

[

u (k)
s (k + 1)− s (k)

]

∈ R
3+3.

In order to characterize the observability of the LTV

system (32), consider the Lyapunov state transformation

z(k) = diag (I, I,−1)x(k).

The new system dynamics read as
{

z (k + 1) = A(k)z(k) + diag (I, I,−1)BBB(k)u(k)
y (k + 1) = C (k + 1) z (k + 1)

.

Notice that the new system matrices A(t) and C(t) are

those of the LTV system (10). This immediately allows to

characterize the observability of the LTV system (32) with

the following theorem, as both systems are related by a

Lyapunov transformation [15].

Theorem 3: Under Assumption 1, the discrete-time linear

system (32) is observable on [k, k + 3], for a fixed k ≥ k0,

if and only if (11) holds.

As in Section III-B, the relation between the augmented

system (32) and the original nonlinear system (4) is estab-

lished in the following theorem.

Theorem 4: Consider Assumption 1 and suppose that (11)

holds. Then:

i) the initial condition of (32) corresponds to the initial

condition (4), i.e.,






x1 (k0) = p (k0)
x2 (k0) = vf (k0)
x3 (k0) = ‖s (k0)− p (k0)‖

;

ii) the nonlinear system (4) is observable in the sense that,

given the system inputs u(k) and s (k + 1)− s (k) and

the system output y(k), for k = k0, k0+1, k = k0+2,

its initial condition is uniquely determined; and

iii) an observer for the linear system (32) with globally

exponentially stable error dynamics is also an observer

for the nonlinear system (4), with globally exponentially

stable error dynamics.

The proof follows similar steps to that of Theorem 2 and

therefore it is omitted.

V. SIMULATION RESULTS

A numerical simulation is presented in this section in order

to demonstrate the achievable estimation performance with

the proposed solutions. Due to space limitations, only the

problem of source localization is addressed here. Moreover,

these are only preliminary results: extensive Monte Carlo

simulations and comparison with the Extended Kalman filter

will be performed in the future.

The initial position of the source is s(0) = [5 0 0]
T
m,

while the agent starts in the origin. The drift velocity of

the source is vs(t) = [1 0 0]
T
m/s and the fluid velocity

is vf (t) = [−0.5 0 0]
T
m/s, meaning an overall relative

drift velocity of vsa(t) = [1.5 0 0]
T
m/s. The trajectories of

the agent and the source are depicted in Fig. 1. Notice the

rich trajectory described by the agent, ensuring that uniform

complete observability is attained.
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Fig. 1. Trajectories described by the agent and the source

A sampling period of T = 1 s was employed for the

bearing measurements, which were rotated about random

vectors of an angle that follows a zero-mean white Gaussian

noise distribution, with standard deviation of 1°. The agent

relative velocity is assumed available at 100 Hz and it

is corrupted by additive zero-mean white Gaussian noise,

with standard deviation of 0.01m/s. Euler integration was
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employed for open-loop propagation of the relative position

of the source between direction measurements. To tune the

Kalman filter, the state disturbance covariance matrix was

chosen as diag
(

10−2I, 10−5I, 10−2,
)

and the output noise

variance was set to the identity. The initial condition is

[−10 − 10 − 10]
T

m for the relative position and zero for

the remaining states.

The initial convergence of the position and velocity errors

is depicted in Fig. 2, whereas the initial evolution of the

range errors is shown in Fig. 3. As it can be seen from the

various plots, the convergence rate of the filter is quite high.

Although it is not shown here due to space limitations, the
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Fig. 2. Initial convergence of the estimation error
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Fig. 3. Evolution of the estimation error of the range

steady-state error of the position error remains below 0.1 m

for most of the time, while the velocity error remains below

0.002 m/s.

VI. CONCLUSIONS

This paper addressed the problems of source localization

and navigation based on single discrete-time direction mea-

surements, considering also constant unknown drift veloci-

ties. Based on previous work by the authors, discrete-time

augmented linear systems were derived that were shown to

mimic the evolution of the original nonlinear systems under

appropriate observability conditions, with no conservative-

ness whatsoever. The Kalman filter provides the estimation

solution, with globally exponentially stable error dynamics,

and simulation results evidence both fast convergence and

good performance in the presence of sensor noise. Future

work will cover the comparison with existing techniques, in

particular with the Extended Kalman Filter (EKF), which

does not offer global convergence guarantees, and experi-

mental validation.
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