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Abstract— Range-only simultaneous localization and map-
ping is addressed in this paper, through the design, analysis,
and experimental validation of a globally asymptotically stable
(GAS) filter. A nonlinear sensor-based system is designed and
its dynamics augmented so that the proposed formulation
can be considered as linear time-varying for the purpose
of observability analysis. This allows the establishment of
observability results related to the original nonlinear system
that naturally lead to the design of a Kalman filter with GAS
error dynamics. The performance of the proposed algorithm is
assessed resorting to a set of realistic simulations and to the
results obtained from experimental tests.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is the
problem of navigating a vehicle in an unknown environment,
by building a map of the area and using this map to
compute its actual location, without the need for a priori
knowledge of location. The solution to this problem is of
great importance to the field of autonomous robots operating
in GPS-denied environments, and therefore SLAM has been
subject of intensive research by the community since first
proposed in the 1980’s. From that initial discussion, a myriad
of approaches have arisen. The better known include EKF-
SLAM, graph-based solutions, and particle filters (see [1] for
a survey of these algorithms). Apart from varying in concept,
SLAM approaches also depend on different mapping sensors:
SONAR [2], LIDAR [3], monocular and stereo cameras
[4] are within the most common. These sensors involve
obtaining range and bearing information of the environment,
and usually demand the existence of a data association
algorithm, due to the unknown correspondence between the
reality and the created map. Although localization using
distances to beacons is a very well known subject, the
number of SLAM algorithms using only ranges is relatively
small, especially when compared with the widespread use of
algorithms working on range and bearing, or even bearing-
only. On one hand, the Range-Only SLAM (RO-SLAM)
problem is not prone to association errors, as are the other
SLAM formulations, due to the nature of the ranging signals
that are usually tagged. On the other hand, one of the main
issues in RO-SLAM is the initialization of the algorithm,
either due to the absence of global convergence results
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in EKF solutions, or the computational burden of having
a sufficiently representative prior belief, as is the case of
approaches resorting to particle filters [5]. Most of the RO-
SLAM solutions include some form of initialization proce-
dure before inserting a new landmark in the state, including
trilateration with ranges from different instants to obtain a
first estimate, usually through least squares, such as what
was proposed in [6]. Also, due to the sparse information
one may extract from ranging, RO-SLAM algorithms are
commonly designed for 2-D environments, e.g., a ground
robot and same-height landmarks, see [7]. The common
RO-SLAM formulation is closely related to the problem of
Sensor Networks (SN), in the sense that there is an agent
receiving signals from a network of sensors and, therefore,
the two ideas have been used in conjunction in works such
as [8], where, along with agent-sensor ranges, sensor-sensor
ranges are also used.

This paper introduces a novel RO-SLAM algorithm that
eliminates the landmark initialization problem through the
establishment of global convergence results with a tridi-
mensional (3-D) sensor-based formulation that avoids the
representation of the pose of the vehicle in the state, as
is commonly used. Furthermore, the sensor-based approach
allows the direct use of odometry-like information that is
usually expressed in body-fixed coordinates. This solution is
influenced by the source-localization algorithm proposed in
[9], as the global convergence results are achieved through
a similar state augmentation.

The main contributions of this paper are the design,
analysis, and validation of a 3-D RO-SLAM algorithm that
i) has Globally Asymptotically Stable (GAS) error dynamics;
ii) resorts to the exact linear and angular motion kine-
matics; iii) uses odometry-like measurements of the linear
and angular velocities; iv) solves a nonlinear problem with
no linearization whatsoever; and v) builds on the well-
established linear time-varying Kalman filter. Aside from
simulation, the proposed filter was also validated in real
conditions, using Cricket [10] beacons as landmarks and an
optical flow procedure to determine the linear velocity.

The paper is organized as follows: in Section II, the
problem that is addressed in the paper is stated and the
dynamics of the system are presented. The observability
analysis of the underlying system is performed in Section III
and filter implementation issues are detailed in Section IV.
The results of simulation and real experiments are presented
in Sections V and VI, respectively, and, finally, Section VII
provides some concluding remarks.

II. PROBLEM STATEMENT AND SYSTEM DYNAMICS

Consider a vehicle moving in a static world where beacons
are installed at unknown locations, equipped with a sensor
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suite capable of measuring the linear and angular velocities
and receiving signals from the static beacons, thus being able
to compute the distance to the emitting beacons. This section
details a dynamical system that will be used to design a
simultaneous localization and mapping filter resorting to the
distance between the vehicle and the beacons placed in the
environment, and to the vehicle motion information.

A. Problem statement

Assume the existence of two frames: a reference inertial
frame {I} and a body-fixed frame {B}. Points in the latter
frame are mapped to the former through a rotation, given
by the rotation matrix R(t) ∈ SO(3) and a translation,
given by Ip(t) ∈ R3 that represent, respectively, the attitude
and the position of the vehicle. The rotation matrix respects
the relation Ṙ(t) = R(t)S [ω(t)] where ω(t) ∈ R3 is the
angular velocity of the vehicle expressed in the body-fixed
frame and S [a] encodes the cross-product, i.e., S [a]b =
a× b with a,b ∈ R3.

Let L := {1, . . . , N} be a set of N landmarks present in
the environment to be mapped containing, at each instant,
NO observed, or visible, landmarks in the set LO, and NU
unobserved, or invisible, landmarks in the set LU such that
L = LO ∪ LU . Furthermore, suppose that pi(t) ∈ R3

corresponds to a sensor-based landmark in the set L, i.e.,
the position of the i-th landmark relative to the vehicle,
expressed in {B}, given by pi(t) = RT (t)

(
Ipi − Ip(t)

)
.

Each landmark is assumed static in the inertial frame, where
it is represented by Ipi ∈ R3. Hence, the dynamics of
any landmark expressed in the robotic vehicle coordinate
system {B} are given by ṗi(t) = −S [ω(t)]pi(t) − v(t),
where v(t) ∈ R3 is the linear velocity of the vehicle in
{B}. Both the linear and the angular velocities are available
through sensor measurements. The distances to landmarks,
henceforth denoted ranges, are given by ri(t) = ‖Ipi −
Ip(t)‖ = ‖pi(t)‖ and are measured as well. The information
on the ranges is too scarce to allow obtaining estimates of
the coordinates of the landmarks, raising the need for the
knowledge of the motion of the vehicle. That is why the
linear velocity is required to be measured.

This information motivates the design of a system whose
states are the sensor-based landmarks and the linear velocity,
and with outputs that are the ranges to landmarks and the
linear velocity. This system can be expressed through

ṗi(t) = −S [ω(t)]pi(t)− v(t)

v̇(t) = 0

ri(t) = ‖pi(t)‖
yv(t) = v(t)

(1)

for all i ∈ L. The vehicle velocity is assumed, nominally,
as constant in the body-fixed frame. Proper tuning of the
Kalman filter, considering state disturbances, allows to track
slowly time-varying linear velocities.

The problem addressed in this paper is that of designing a
navigation system for a vehicle operating in the environment
previously described, by means of a filter for the dynamics
(1), in the presence of noisy measurements. The algorithm
consists of a RO-SLAM filter in the space of sensors, and,
therefore, the pose of the vehicle is deterministic as it simply
corresponds to the position and attitude of the body-fixed
frame expressed in the same frame.

B. Augmented system dynamics
The system derived in the previous subsection is clearly

nonlinear, as there is a nonlinear relationship between the
output and the system state. The strategy proposed to avoid
this nonlinearity is to augment the system state in order
to obtain a linear relation between the system state and
output, as has been successfully done in [9]. The resulting
augmented state is x(t) :=

[
xTL(t) xTV (t) xTR(t)

]T
, where

xL(t) ∈ RnL is the stacking of all the landmarks present
in the landmark set L, both the visible ones, xLO (t) :=
{xLi(t), i ∈ LO}, and the invisible ones, xLU (t) :=
{xLi(t), i ∈ LU}, xV (t) ∈ RnV represents the vehicle
state, i.e., the linear velocity of the vehicle in the body-fixed
frame, and xR(t) :=

[
xTRO (t) xTRU (t)

]T ∈ RnR contains
the ranges to all the landmarks in the visible and invisible
sets. In short, the state is defined by

xLi(t) := pi(t)

xV (t) := v(t)

xRi(t) := ri(t)

, (2)

where xLi(t) ∈ R3 and xRi(t) ∈ R are part of the full
landmark and full range states, respectively, for all i ∈ L. It
is important to notice that, both in the landmark and range
states, the first NO quantities are the visible ones, while
the i ∈ {NO + 1, . . . , NU} are the remaining. The state
is chosen in this way to simplify, without loss of generality,
the forthcoming analysis.

The dynamics of the landmark and vehicle states have
already been defined in (1), hence to obtain the full system
dynamics the derivative of the range, given by ṙi(t) =
r−1i (t)vT (t)pi(t), is needed. Note that, although the system
output is now linear, the introduction of the ranges as
states has created another nonlinearity in the dynamics.
On the other hand, the velocity is directly available as a
measurement, as is the distance ri(t) if the corresponding
landmark is visible, i.e., if i ∈ LO. Therefore, it is possible
to replace the dependence on the state by one on the
system output. Observing that the output is given by y(t) =[
yTv (t) yR1

(t) · · · yRNO (t)
]T

, where yRi(t) := ri(t)
for all i ∈ LO, it is possible to derive the dynamics of the
augmented system, which are given by{

ẋ(t) = AF (xRU (t),y(t), t)x(t)

y(t) = CFx(t)
, (3)

where
AF (xRU (t),y(t), t) =[

AL(t) ALV 0nL×nR
0nV ×nL 0nV 0nV ×nR

ARL(xRU (t),y(t), t) 0nR×nV 0nR

]
,

and

CF =

[
03×nL I3 03×NO 03×NU
0NO×nL 0NO×3 INO 0NO×NU

]
.

The block matrices that compose the dynamics matrix
are given by AL(t) := diag (−S [ω(t)] , . . . ,−S [ω(t)]),
ALV := [−I3 · · · −I3]T and
ARL(xR(t),y(t), t) :=

− diag

(
yTv (t)

yR1
(t)
, . . . ,

yTv (t)

yRNO (t)
,

yTv (t)

xRNO+1
(t)
, · · · , yTv (t)

xRN (t)

)
.
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It is clear that the system now derived is still nonlinear,
due to the dependence of the dynamics on the velocity
and on the ranges. However, as both the first NO ranges
and the linear velocity are measured, the dependence of
ARL(xR(t),y(t), t) in the full range state can be partially
substituted by a dependence on the system output. This is
done so that the observability analysis can be performed in a
linear fashion. Notice also that there are several singularities
in the dynamics matrix, if one of the ranges becomes null.
To prevent that, the following assumption is needed.

Assumption 1: The motion of the vehicle is such that
∀
i∈L

∀
t≥t0

∃
RM ,Rm>0

: Rm < ri(t) < RM .

Although needed for the dynamics matrix to be well-defined,
this is only a very mild assumption, as the vehicle is never
coincident with or arbitrarily distant to a landmark.

One final aspect important to retain is the fact that appar-
ently there is nothing in the system dynamics imposing the
state relations expressed by (2). However, the next section
presents a result that shows that, under certain conditions, the
dynamics of the system directly imposes these constraints.

III. OBSERVABILITY ANALYSIS

This section details the observability analysis of the non-
linear system derived in the previous section, both in its
original and augmented forms. Sufficient conditions for the
observability of the system, with a physical insight on the
motion of the vehicle, are obtained, and global convergence
results are established.

Although the introduction of the augmented system (3)
has removed the output nonlinearity existent in the original
nonlinear system (1), the presence of the ranges to invisible
landmarks in the dynamics matrix introduces another kind
of nonlinearity. Furthermore, given that the only available
information with which to obtain xLi(t) and xRi(t) is
the corresponding range, it is obvious that the invisible
landmarks and their ranges cannot be observable. For this
reason, and following the approach used in [11] and [12], the
ranges to invisible landmarks and the landmarks themselves
are removed from the state, resulting in a reduced system
whose dynamics matrix does not depend on the state, as
before, but solely on the system output. Thus, as the output
is known, this new system may be regarded as linear time-
varying for observability purposes.

For the sake of simplicity, and without loss of generality,
in this section it is assumed that there is only one visible
landmark, i.e., LO := {1}. This is possible due to the multi-
single-range character of the problem. Furthermore, as de-
scribed, the invisible landmarks are discarded and left out of
the new system state. Let z(t) =

[
zTL1

(t) zTV (t) zR1
(t)
]T

be the new reduced state, and the corresponding system be{
ż(t) = A(t)z(t)

y(t) = Cz(t)
, (4)

where the dynamics matrix is given by

A(t) :=

 ALO (t) ALV O 0nO×nR
0nV ×nO 0nV 0nV ×nR
ARLO (t) 0nRO×nV 0nRO

 ,
and the output matrix is simply

C =

[
03 I3 03×1
0 0 1

]
.

Note that the blocks that constitute the dynamics matrix are
the ones defined in the previous section, while including only
the visible landmark. Also, the dependence on the system
output and input can be seen as merely a dependence on
time, as the two signals are known. This enables to consider
(4) as a linear time-varying system (LTV), as shown in [9,
Lemma 1], a property used throughout this section.

The following result addresses the observability analysis
of the LTV system, but before proceeding with the analysis it
is necessary to define Iv(t) = R(t)v(t) as the linear velocity
of the vehicle in the inertial frame {I}.

Theorem 1: Consider the LTV system given by (4) and
let T := [t0, tf ]. If there exist three instants {t1, t2, t3} ∈ T
such that the linear velocity of the vehicle expressed in
the inertial frame is linearly independent in those instants,
i.e., det

([
Iv(t1)

Iv(t2)
Iv(t3)

])
6= 0, then the system

is observable in the sense that, given the system output
{y(t), t ∈ T }, the initial condition z(t0) is uniquely defined.

Proof: The proof starts by transforming the LTV system
through a Lyapunov transformation (see [13, Chapter 1,
Section 8] for details), to simplify the analysis. Consider
then the transformation T(t) = diag (R(t), I3, 1), and the
transformed system state given by

χ(t) = T(t)z(t). (5)
It is straightforward to see that T(t) has a continuous and
bounded time derivative, while having a bounded determi-
nant itself, and therefore it is indeed a Lyapunov transforma-
tion. This means that it suffices to prove that the transformed
system is observable, an approach employed successfully in
the past, in works such as [9].

The new system dynamics is obtained by simply taking
the first time derivative of (5) and using the inverse transfor-
mation T−1(t), which results in{

χ̇(t) = A(t)χ(t)

y(t) = Cχ(t)
, (6)

where

A(t) =

 03 −R(t) 03×1
03 03 03×1

− yTv (t)
yR1

(t)R
T (t) 01×3 0

 .
The proof follows by computing the transition matrix of

the transformed system and subsequently the observability
Gramian that will help determine whether the system is ob-
servable or not. The computation of the transition matrix can
be made either using the Peano-Baker series or, in this case,
by simply solving φ(t, t0)χ(t0) = χ(t0)+

∫ t
t0
A(τ)χ(τ)dτ ,

which gives

φ(t, t0) =

 I3 −R[1](t, t0) 03×1
03 I3 03×1

−v[0](t, t0) v[?](t, t0) 1

 ,
where the following auxiliary quantities were introduced to
simplify this expression,

R[1](t, t0) =

∫ t

t0

R(τ)dτ, v[0](t, t0) =

∫ t

t0

yT
v (τ)

yR1(τ)
RT (τ)dτ,

v[?](t, t0) =

∫ t

t0

yT
v (τ)

yR1(τ)
RT (τ)R[1](τ, t0)dτ.

Consider again [9, Lemma 1]. If the observability
Gramian, denoted by W(t0, tf ), is invertible, then the trans-
formed system is observable in the sense that, given the
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system output {y(t), t ∈ T }, the initial condition χ(t0) is
uniquely defined. The proof follows by contraposition. Sup-
pose that the observability Gramian is not invertible, which
means that there exists a unit vector c =

[
cT1 cT2 c3

]T ∈
Rnχ such that

cTW(t0, tf )c =

∫ tf

t0

‖f(τ, t0)‖2dτ = 0, (7)

where the definition of the Gramian was employed, and
where f(τ, t0) is given by

f(τ, t0) = [c2 fr(τ, t0)]
T
. (8)

The component associated with the range output is given by
fr(τ, t0) = −v[0](τ, t0)c1 + v[?](τ, t0)c2 + c3,

while its derivative is
d

dτ
fr(τ, t0) = −

yTv (τ)R
T (τ)

yR1(τ)
c1

+
yTv (τ)R

T (τ)

yR1(τ)
R[1](τ, t0)c2.

In order for (7) to be true, both f(τ, t0) and d
dτ f(τ, t0)

must be zero for all τ ∈ T . Evaluating (8) at τ = t0 while
equating the result to zero, immediately yields c2 = 0 and
c3 = 0. Making d

dτ f(τ, t0) = 0, given that Assumption 1 is
true, leads to the final condition, expressed through

Iv(τ) · c1 = 0, ∀τ ∈ T .
This condition implies that either c1 = 0, which cannot be
as c was assumed to be a unit vector and it has already been
shown that c2 = 0 and c3 = 0, or the linear velocity of the
vehicle in the inertial frame for any t1, t2, and t3 in T is
such that

det
([
Iv(t1)

Iv(t2)
Iv(t3)

])
= 0. (9)

Hence, it has been shown that, if the observability Gramian
is not invertible, there do not exist three time instants such
that the linear velocity of the vehicle on those three time
instants span R3. By contraposition, if there exist t1, t2
and t3 such that (9) is false, the observability Gramian
is invertible, and, using [9, Lemma 1], it follows that (6)
is observable. Furthermore, the LTV system (4) is also
observable, as it is related with the system (6) through a
Lyapunov transformation, thus concluding the proof.

Remark 1: This theorem establishes conditions for the
motion of the vehicle, as it allows to conclude that if
there are at least three velocity vectors that span R3, or,
equivalently, if the trajectory of the vehicle is not restricted
to a line or a plane, the system is observable. This relates to
a trilateration technique, where ranges to four non-coplanar
vehicle positions are needed.

The LTV system (4) is a reduction of the augmented
nonlinear system (3) in the sense that it does not include
the invisible landmarks, and assumes the existence of only
a single visible landmark. Due to the independence of the
landmarks, whichever their number is, the two systems are
completely equivalent in terms of observability, discarding
the invisible landmarks. However, care must be taken before
extending the observability results of this section to the
original nonlinear system (1) as there is nothing imposing the
state relations (2). The following result addresses this issue
by showing the equivalence of the state of the nonlinear and
LTV systems in a similar fashion to what was done in [9]
and [12].

Theorem 2: Consider the LTV system (4) and the nonlin-
ear system (1). If the conditions of Theorem 1 hold, then

(i) the state of the original nonlinear system and that of
the LTV system are the same and uniquely defined,
provided that the invisible landmarks are discarded; and

(ii) a state observer with uniformly globally asymptotically
stable error dynamics for the LTV system is also a state
observer for the underlying nonlinear system, retaining
the same error dynamics properties.
Proof: The proof of the first part of the theorem is

made by considering the system output, its derivative and
their relation to the states of the two systems in analysis,
leading to a series of equations which, in the conditions of
the theorem, result in the correspondence between the states.

The second part of the theorem follows naturally from the
first part. A GAS observer for (4) provides estimates that
converge to the true state. Therefore, if the state of the LTV
system and that of the original nonlinear system are one and
the same when the invisible landmarks are discarded, the
estimates of the observer will also tend to the true state of
system (1) with the same error dynamics.

The previous result shows that, if it is possible to design a
globally asymptotically stable observer for the LTV system,
it will also be suitable for the original nonlinear system. This
has established the ground to the design of such an observer,
using a linear time-varying Kalman filter, which, to assure
the GAS nature of the estimation error dynamics, requires
the pair (A(t),C) to be uniformly completely observable
(see [14]). The following theorem addresses this issue.

Theorem 3: Consider system (4) and that Assumption 1
is true. If there exist positive constants δ > 0 and α∗ > 0
such that, for all t ≥ t0, it is possible to choose a set of
instants {t1, t2, t3} ∈ Tδ , with Tδ := [t, t+ δ], for which the
linear velocity of the vehicle in the inertial frame respects∣∣det ([Iv(t1) Iv(t2)

Iv(t3)
])∣∣ > α∗,

then the pair (A(t),C) is uniformly completely observable.
Proof: The concept of uniform complete observability

implies uniform bounds on the observability Gramian in time
intervals of length δ. It is equivalent to having cTW(t, t+
δ)c ≥ α for t ≥ t0 and all unit c. Hence, the proof consists
of studying cTW(t, t+ δ)c for every possible cases of c. It
follows steps similar to those of Theorem 1 and is therefore
omitted. However, the reader is referred to [9] for a similar
proof with slightly different dynamics.

Remark 2: The condition in (9) can be understood as per-
sistent excitation, i.e., the velocity at t1 must be sufficiently
out of the plane defined by the velocity at t2 and t3 for the
vector space defined by them not to degenerate in time.

IV. FILTER DESIGN AND IMPLEMENTATION

This section addresses the design of the sensor-based
RO-SLAM filter. The results of the previous section were
established in a deterministic setting, and thus the presence
of measurement noise raises the need for a filtering solution.
Theorems 2 and 3 show that it is possible to design a GAS
observer for the nonlinear system (1). Hence, a Kalman filter
follows naturally for the augmented nonlinear system.

Due to the discrete nature of the available sensor suite,
the chosen solution is a discrete time Kalman filter, and
thus the continuous-time system (3) must be discretized. Let
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Ts be the synchronized sampling period of the sensor suite
and t0 be the initial time. Then, the discrete time steps can
be expressed through tk = kTs + t0, with k ∈ NO. Any
quantity denoted as (.)k is the same as (.)(tk). The process
employed was the Euler forward discretization, with a small
detail regarding the rotation of a landmark from one instant to
the following. For the purpose of obtaining the said rotation,
assuming ωk constant over each sampling interval, it follows
that RT

k+1Rk = exp (−S [ωk]Ts), and thus it is possible to
write the discrete system dynamics{

xk+1 = Fkxk + ξk
yk+1 = Hk+1xk+1 + θk+1

with

Fk =

[
FLk I3 + TsALV 0nL×nR

0nV ×nL I3 0nL×nR
I3 + TsARLk 0nR×nV I3

]
,

FLk = diag
(
RT
k+1Rk, . . . ,R

T
k+1Rk

)
, and Hk := CF (tk).

The vectors ξk and θk represent the model disturbance and
measurement noise vector, that are assumed to be zero-mean
discrete white Gaussian noise.

The algorithm is a standard discrete-time LTV Kalman
filter, (see [15]), with the detail that, when a landmark is
invisible and its range is unavailable, the estimated range is
used in the predict step, allowing the propagation in open
loop of the invisible landmarks.

V. SIMULATION RESULTS

In this section, results from a typical run in a simulation
setting are presented. The simulated environment consists of
20 landmarks spread randomly throughout a 16m×16m×3m
map. The path of the vehicle was designed in order to
satisfy the observability conditions, and it can be seen
in Fig. 1. All the measurements are assumed to be per-
turbed by zero-mean Gaussian white noise, with standard
deviations of σω = 0.05 rad/s for the angular rates,
σv = 0.03 m/s for the linear velocity, and σr = 0.03 m
for the ranges. The Kalman filter parameters were chosen
as Q = Ts diag

(
10−3I3N , 10

−2I3, 10
−5IN

)
and R =

10−3 diag (I3, INO ).
The performance of the RO-SLAM filter can be assessed

through Fig. 2, where the norm of the estimation errors
of 5 landmarks are presented: it can be seen to converge
to a maximum of 10 cm, which is consistent with the
uncertainty in Fig. 2(b). The estimation error of the velocity
is understandably small, as the quantity is directly observed.
Its mean is below 10−4 m/s and its standard deviation
below 10−3 m/s. The range error, that grows for invisible
landmarks, is 0.0266 m and its standard deviation is 0.0435
m. These results are in accordance with the theoretical results
of Section III, as the visible landmarks, as well as the other
quantities, converge both in uncertainty and in error.

Finally, an example of the estimated map is given in Fig.
1, where the coloured ellipsoids represent the uncertainty as-
sociated (2σp) and the small circles mark the true coordinates
of each landmark. Note that the 95% uncertainty ellipsoids
surround the true values, as they should.

This simulation was designed to assess the validity of
the theoretical results presented in this paper, as well as
the convergence properties of the RO-SLAM filter here
proposed. It was shown that the algorithm is able to produce
a consistent map, depicted in Fig. 1.

Fig. 1. Picture of the estimated map t = 300 s, after a full lap.

0 200 400 600

0.01

 0.1

   1

  10

E
rr
o
r
[m

]

t [s]

(a) Norm of the error.

0 200 400 600

0.01

 0.1

   1

  10

9
9
%

B
o
u
n
d
s
[m

]

t [s]

(b) Uncertainty.

Fig. 2. Evolution of the estimation of 5 landmarks in time.

VI. EXPERIMENTAL RESULTS

A. Setup

This section details an experiment that took place in the
Sensor-based Cooperative Robotics Research Laboratory –
SCORE Lab – of the Faculty of Science and Technology
of the University of Macau. The experimental setup con-
sists of an AscTec Pelican quadrotor instrumented with a
Microstrain 3DM-GX3-25 inertial measurement unit (IMU)
working at 200 Hz, a Microsoft Kinect, at 10 Hz, a Crossbow
Cricket receiver, and VICON markers. Furthermore, the lab
was equipped with 7 more Crossbow Cricket motes, emitting
sequentially one at a time at 10 Hz (each beacon emits every
700 ms), as well as with a VICON Bonita motion capture
system, providing accurate estimates of the linear and angular
motion quantities of the vehicle used solely for validation of
the estimates provided by the RO-SLAM algorithm.

The cricket beacons emit radio and acoustic pulses that are
received by the cricket placed on the vehicle, thus allowing
the computation of the ranges through difference between the
time of arrival of the two pulses. The facing down camera
is used to compute the linear velocity of the vehicle: an
implementation of SURF, see [16], detects features in the
RGB images that are matched to the pointclouds built using
the depth images. The Nk tridimensional features (fk) of
two subsequent frames are associated using a Sequential
Compatibility Nearest Neighbour [17] algorithm, and then
used in a Least Squares problem to obtain the linear velocity
using the angular rates provided by the IMU. Alternative
sensors for the linear velocity of the platform could have
been employed.

B. Results

The experiment here detailed consists of series of hand-
driven circular-like laps of the quadrotor in a 4m×4m area
covered by the Cricket constellation. The trajectory, depicted
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in Fig. 3, was intended to maximize the exposure to each of
the beacons, as well as to provide sufficient excitation.
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Fig. 3. The position of the vehicle in time.
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Fig. 4. A sensor-based landmark estimate against ground truth.

Figure 4 depicts the estimated position of a landmark
against the ground truth data provided by VICON. It can be
seen that the convergence is very fast in the horizontal plane,
represented by Figs. 4(a) and 4(b), and that, after converging,
the estimation is very close to ground truth. However, in the
vertical axis (Fig. 4(c)), the estimation is much worse, and
the convergence is also slower. That is due to the less rich
trajectory in that axis, as Fig. 3 shows.

These experiments show the good performance of the
proposed algorithm in realistic conditions, as well as the need
for appropriate trajectories.

VII. CONCLUSIONS

This paper presented a novel sensor-based range-only
simultaneous localization and mapping filter with globally
asymptotically stable error dynamics. This was achieved

through state augmentation of a nonlinear system, which,
along with the disposal of the non-visible landmarks, enabled
regarding the resulting system as linear time-varying. The
work focused on the observability analysis of the resulting
system, providing theoretical observability guarantees, and
equivalence between the systems used in each step of the
analysis. These results were followed by the design of
a Kalman filter with globally asymptotically stable error
dynamics. Simulations allowed for the validation of the
theoretical results, and real world experiments illustrated also
the good performance of the proposed algorithm. Future
work will include the extension of this algorithm to make
use of the full capabilities of a sensor network, namely the
inter-sensor ranging.
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