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a b s t r a c t

This paper presents a set of filters with globally exponentially stable error dynamics for source localiza-
tion and navigation, in 3-D, based on directionmeasurements from the agent (or vehicle) to the source, in
addition to relative velocity readings of the agent. Both the source and the agent are allowed to have con-
stant unknown drift velocities and the relative drift velocity is also explicitly estimated. The observability
of the system is studied and realistic simulation results are presented, in the presence of measurement
noise, that illustrate the performance of the achieved solutions. Comparison results with the Extended
Kalman Filter are also provided and similar performances are achieved.
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1. Introduction

The problem of source localization has been the subject of in-
tensive research in recent years. Roughly speaking, an agent has
access to a set of measurements and aims to estimate the posi-
tion of a source. The set of measurements depends on the envi-
ronment in which the operation occurs and the mission scenario
itself. Previous work in the field can be found in [1], where the au-
thors propose a localization algorithm based on the range to the
source and the inertial position of the agent. Global exponential
stability (GES) is achieved under a persistent excitation condition
and the analysis is extended to the case of a non-stationary source,
where it is shown that it is possible to achieve tracking up to some
bounded error. In [2] the same problem was addressed consider-
ing, in addition to range readings to the source, relative velocity
readings of the agent. The observability of the systemwas assessed,
including also relative drift velocities, and filtering solutions were
proposedwith globally asymptotically stable error dynamics.More
recently, in [3], the same problem was addressed, in 2-D, based on
bearing measurements, in addition to the trajectory of the agent.
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The estimation error dynamics were shown to be GES under an ap-
propriate persistent excitation condition and a circumnavigation
control lawwas also proposed. Earlierwork on the observability is-
sues of target motion analysis based on angle readings, in 2-D, can
be found in [4], which was later extended to 3-D in [5]. The spe-
cific observability criteria thereby derived resort to complicated
nonlinear differential equations and some tediousmathematics are
needed for the solution, giving conditions that are necessary for
system observability. Another related framework in the domain of
target motion analysis (TMA) can be found in [6], where frequency
measurements are also included. This topic was further studied
in [7], where Cramer–Rao analysis revealed the parametric de-
pendencies of TMA with angle-only tracking and angle/frequency
tracking, giving also an idea of the increase in estimation accuracy
using the later.

Parallel to the topic of source localization based on range or
bearing measurements is the topic of navigation aided by these
sensors. Previous work by the authors with range measurements
can be found in [8], where acceleration readings were also con-
sidered. The observability of the system was assessed and condi-
tions were derived that guarantee globally asymptotically stable
error dynamics. In [9] a similar design was proposed with two ve-
hicles working in tandem considering relative velocity drifts. Glob-
ally asymptotically stable error dynamics were also shown under
appropriate observability conditions. In [10] the authors deal with
the problem of underwater navigation in the presence of unknown
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currents based on range measurements to a single beacon. An
observability analysis is presented based on the linearization of
the nonlinear system which yields local results. Based on the lin-
earized system dynamics, a Luenberger observer is introduced but
in practice an Extended Kalman filter (EKF) is implemented, with
no warranties of global asymptotic stability. More recently, the
same problem has been studied in [11,12], where EKFs have been
extensively used to solve the navigation problem based on single
beacon range measurements. The problem of localization of a mo-
bile robot using bearing measurements was also addressed in [13],
where a nonlinear transformation of the measurement equation
into a higher dimensional space is performed. This has allowed to
obtain tight, possibly complex-shaped, bounding sets for the feasi-
ble states in a closed-form representation.

This paper addresses the problem of navigation/source local-
ization based on direction measurements to a single source in the
presence of unknown constant drifts. The observability of the sys-
tem is studied and Kalman filters with GES error dynamics are pro-
posed, without system linearizations and yielding performances
comparable to those of the Extended Kalman Filter but with GES
guarantees. Central to the design is the augmentation of the system
state, which allowed to consider linear time-varying (LTV) system
dynamics. The observability conditions have clear physical mean-
ing and they are directly related to themotion of the agent/vehicle,
hence useful for motion planning and control so that the system is
observable. Preliminary work by the authors can be found in [14].
In addition to more detailed explanations and further discussion
of issues such as the physical meaning of the observability condi-
tions, the present paper acknowledges GES error dynamics and in-
cludes an additional solution for navigation that does not require
the knowledge of the source velocity.

1.1. Notation

Throughout the paper the symbol 0 denotes a matrix (or vec-
tor) of zeros and I an identity matrix, both of appropriate dimen-
sions. A block diagonal matrix is represented as diag(A1, . . . ,An)
and the set of unit vectors on R3 is denoted by S(2). Finally, δ(t)
corresponds to the Dirac delta function.

2. Problem statement

2.1. Source localization

Let p(t) ∈ R3 denote the position of a point-mass agent, in in-
ertial coordinates, moving in a scenario where there is a source
whose position, in inertial coordinates, is denoted by s(t) ∈ R3.
Suppose that the source ismovingwith constant unknown velocity
vs(t) ∈ R3 relative to the inertial frame, which gives ṡ(t) = vs(t)
and v̇s(t) = 0, while the linear motion kinematics of the agent are
given by ṗ(t) = vc(t) + vr(t) and v̇c(t) = 0, where vc(t) ∈ R3

is a constant unknown drift velocity of the agent and vr(t) ∈ R3

is a known input. In the context of the EU project TRIDENT, the
source is an Autonomous Surface Craft (ASC) and the agent an Au-
tonomous Underwater Vehicle (AUV). The ASC ismovingwith con-
stant unknown velocity vs(t) and the AUV is moving with velocity
relative to thewater vr(t), as given by aDoppler Velocity Log (DVL),
in the presence of constant unknown ocean currents with velocity
vc(t). Further consider that the agentmeasures the direction to the
source

d(t) =
r(t)

∥r(t)∥
∈ S(2), (1)

with r(t) := s(t) − p(t) ∈ R3. The problem of source local-
ization considered here is that of estimating the position of the
source relative to the agent, r(t), and the relative drift velocity
vsa(t) := vs(t) − vc(t) ∈ R3, given direction and relative velocity
readings, d(t) and vr(t), respectively. The corresponding system
dynamics are given by
ṙ(t) = vsa(t) − vr(t)
v̇sa(t) = 0

d(t) =
r(t)

∥r(t)∥
.

The following assumption is required in the sequel.

Assumption 1. The relative velocity is continuous and continu-
ously differentiable. Moreover, both vr(t) and v̇r(t) are norm-
bounded.

This is a mild assumption with clear physical interpretation as
the actuation systems of agents or vehicles limit the available force
and torque, which implies upper bounds on the velocities and ac-
celerations. In this paper it allows to consider that both ḋ(t) and
d̈(t) are norm-bounded. The values of the bounds are not required.

2.2. Navigation

In the context of the EU project TRIDENT, an ASC and an AUV
work in close cooperation in order to achieve a certain goal. As-
sume that the ASC (the source) transmits its inertial position s(t)
and velocity vs(t) to the AUV (the agent). In this framework, the
goal of the AUV (the agent) is now to determine its own position
in inertial coordinates p(t), as well as its drift velocity vc(t), given
the information provided by the ASC (the source), the relative ve-
locity readings vr(t), and the direction measurements d(t). In this
framework vs(t) is no longer required to be constant and the sys-
tem dynamics are given by

ṗ(t) = vc(t) + vr(t)
v̇c(t) = 0

d(t) =
s(t) − p(t)

∥s(t) − p(t)∥
.

(2)

3. Source localization filter design

3.1. System dynamics

In order to derive an augmented linear time-varying system
for source localization, consider the system states x1(t) := r(t),
x2(t) := vsa(t), and x3(t) := ∥r(t)∥ and define the state vector
x(t) :=


xT1(t) x

T
2(t) x3(t)

T
∈ R7. From (1) it follows that x1(t) −

x3(t)d(t) = 0 for all t . Then, the system dynamics are given by the
LTV system
ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t), (3)

where

A(t) =

0 I 0
0 0 0
0 dT (t) 0

 ∈ R7×7,

B(t) =

 −I
0

−dT (t)

 ∈ R7×3,

C(t) = [I 0 − d(t)] ∈ R3×7, and u(t) = vr(t).

3.2. Observability analysis

The observability of the problem of source localization with
relative velocity readings and direction measurements is studied
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in this section. The following proposition (Proposition 4.2, [15]) is
useful in the sequel.

Proposition 1. Let f(t) :

t0, tf


⊂ R → Rn be a continuous and

i-times continuously differentiable function on I :=

t0, tf


, T :=

tf − t0 > 0, and such that f (t0) = ḟ (t0) = · · · = f(i−1) (t0) = 0.
Further assume that there exists a nonnegative constant C such thatf(i+1)(t)

 ≤ C for all t ∈ I. If there exist α > 0 and t1 ∈ I such
that

f(i) (t1)
 ≥ α, then there exist 0 < δ ≤ T and β > 0 such that

∥f (t0 + δ)∥ ≥ β.

The following theorem characterizes the observability of the
LTV system (3).

Theorem 1. The LTV system (3) is observable on I :=

t0, tf


if and

only if the unit vector d(t) is not constant on I or, equivalently,

∃t1∈I dT (t0) d (t1) < 1. (4)

Proof. The observability Gramian associated with the pair (A(t),
C(t)) on I is given by

W

t0, tf


=

 tf

t0
φT (τ , t) CT (τ )C(τ )φ (τ , t) dτ ,

where φ (t, t0) is the transition matrix associated with A(t),

φ (t, t0) =


I (t − t0) I 0
0 I 0

0
 t

t0
dT (τ ) dτ 1

 ∈ R7×7.

Let c =

cT1 cT2 c3

T
∈ R7, ci ∈ R3, i = 1, 2, c3 ∈ R, be a unit

vector, i.e., ∥c∥ = 1. Then,

cTW

t0, tf


c =

 tf

t0

∥f(τ )∥2 dτ

for all ∥c∥ = 1, where

f(τ ) = c1 +


(τ − t0) I − d(τ )

 τ

t0
dT (σ )dσ


c2 − c3d(τ )

for all τ ∈ I. The first two derivatives of f(τ ) are given by

d
dτ

f(τ ) =


I − d(τ )dT (τ ) − ḋ(τ )

 τ

t0
dT (σ )dσ


c2 − c3ḋ(τ )

and

d2

dτ 2
f(τ ) =


− 2ḋ(τ )dT (τ ) − d(τ )ḋT (τ )

− d̈(τ )

 τ

t0
dT (σ )dσ


c2 − c3d̈(τ )

for all τ ∈ I. Notice that, under Assumption 1, both derivatives are
norm-bounded, from above, on I.

The proof of necessity follows by contraposition. Suppose that
(4) is not verified. Then, the unit vector d(t) is constant on I,
i.e., d(t) = d (t0) for all t ∈ I. Let c1 =

√
2
2 d (t0), c2 = 0, and

c3 =

√
2
2 . Then, it follows that f(τ ) =

√
2
2 d (t0) −

√
2
2 d(τ ) = 0 for

all τ ∈ I, which in turn allows to conclude that the observability
Gramian W


t0, tf


is not invertible and the LTV system (3) is not

observable on I. Consequently, if the LTV system (3) is observable
on I, it follows that (4) is true.

To show that (4) is also a sufficient condition, suppose first that
c3 ≠ 0. Then, if c1 ≠ c3d (t0), it follows that ∥f (t0)∥ > 0 and,
from Proposition 1, it must be cTW

t0, tf


c > 0. Consider now

c1 = c3d (t0), with c3 ≠ 0. In this case, f (t0) = 0 and

d
dτ

f(τ )


τ=t0

=

I − d (t0) dT (t0)


c2 − c3ḋ (t0) .

If
 d

dτ f(τ )

τ=t0

 > 0, it follows, using Proposition 1 twice, that

cTW

t0, tf


c > 0. Otherwise, if d

dτ f(τ )

τ=t0

= 0, two cases may

be considered: (i) if ḋ (t0) = 0, it may be c2 = 0 or c2 = c2d (t0) for
some scalar c2; or (ii) if ḋ (t0) ≠ 0, it must be c2 = c3ḋ (t0), where
it is used the fact that dT (t)ḋ(t) = 0 for all t . Evaluating f(τ ) at
τ = t1, when c2 = 0, yields f (t1) = c3d (t0) − c3d (t1) which
has a positive norm if (4) is true. As such, it follows from Proposi-
tion 1 that cTW


t0, tf


c > 0 for c1 = c3d (t0) , c2 = 0, c3 ≠ 0. If

c2 = c2d (t0), f (t1) reads as

f (t1) = [c3 + c2 (t1 − t0)] d (t0)

−


c3 + c2

 t1

t0
dT (σ )d (t0) dσ


d (t1) .

If (4) is true, and as d(t) is a continuous function of time, it must
be

 t1
t0

dT (σ )d (t0) dσ ≠ t1 − t0, which allows to conclude that
∥f (t1)∥ > 0. Hence, using Proposition 1, cTW


t0, tf


c > 0 for

c1 = c3d (t0) , c2 = c2d (t0) , c2 ≠ 0, c3 ≠ 0. If c2 = c3ḋ (t0), with
ḋ (t0) ≠ 0 and c1 = c3d (t0), c3 ≠ 0, there exists ϵ > 0 such that

f (t0 + ϵ) = c3d (t0) + c3ϵḋ (t0)

− c3


1 +

 t0+ϵ

t0
dT (σ )ḋ (t0) dσ


d (t0 + ϵ) ,

where d (t0 + ϵ) cannot be expressed as a linear combination of
d (t0) and ḋ (t0). As such, ∥f (t0 + ϵ)∥ > 0 and, using Proposition 1,
cTW


t0, tf


c > 0 for c1 = c3d (t0) , c2 = c3ḋ (t0) , c3 ≠ 0. This

allows to conclude, so far, that if c3 ≠ 0, cTW

t0, tf


c > 0. It re-

mains to see what happens when c3 = 0. If c1 ≠ 0, it turns out
that ∥f (t0)∥ > 0 and again, using Proposition 1, it must be cTW
t0, tf


c > 0 for c1 ≠ 0, c3 = 0. On the other hand, if c1 = 0, c3 =

0, it follows that f (t0) = 0 and

d
dτ

f(τ )


τ=t0

=

I − d (t0) dT (t0)


c2.

Now, if c2 ≠ ±d (t0), it follows that d
dτ

f(τ )


τ=t0

 > 0

and, using Proposition 1 twice, it must be cTW

t0, tf


c > 0 for

c1 = 0, c2 ≠ ±d (t0) , c3 = 0. Finally, if c2 = ±d (t0), with c1 = 0
and c3 = 0, it follows that

f (t1) = ± (t1 − t0) d (t0) ∓

 τ

t0
dT (σ )d (t0) dσd (t1) ,

which has a positive norm. Again, using Proposition 1, it follows
that cTW


t0, tf


c > 0 for c1 = 0, c2 = ±d (t0) , c3 = 0. But this

concludes the proof, as it is shown that cTW

t0, tf


c > 0 for all

∥c∥ = 1, whichmeans that the observability Gramian in invertible
and as such (3) is observable. �

Before proceeding, it is important to remark that there is noth-
ing in (3) imposing the nonlinear restriction ∥x1(t)∥ = x3(t) =

∥r(t)∥. This is true, by construction, if it is satisfied for t = t0. The
following theorem addresses this issue.
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Theorem 2. Under the hypothesis of Theorem 1, the initial condition
of the LTV (3) corresponds to the initial condition of the original
nonlinear system, i.e.,x1 (t0) = r (t0)
x2 (t0) = vsa (t0)
x3 (t0) = ∥r (t0)∥ .

(5)

Proof. Under the terms of Theorem 1, the initial condition of
the LTV system (3) is uniquely determined by the corresponding
system output and input. The proof follows by showing that (5)
explains the system output. As the initial condition is uniquely de-
termined, if (5) explains the output of the system, it must corre-
spond to the initial condition. The output of the LTV system (3) is
given by

y(t) = x1 (t0) + (t − t0) x2 (t0) −

 t

t0
u(τ )dτ − x3 (t0) d(t)

−

 t

t0

[x2 (t0) − u(τ )]T d(τ )dτd(t) = 0 (6)

for all t ∈ I, I =

t0, tf


. Substituting (5) in (6) gives

y(t) = r (t0) − ∥r (t0)∥ d(t) +

 t

t0

[vsa (t0) − u(τ )] dτ

−

 t

t0

[vsa (t0) − u(τ )]T d(τ )dτd(t). (7)

It remains only to show that (7) is null for all t ∈ I. Substituting
t = t0 in (7) yields y (t0) = 0. The time derivative of (7) is given by

ẏ(t) = −


∥r (t0)∥ +

 t

t0

[vsa (t0) − u(τ )]T d(τ )dτ

ḋ(t)

+ [vsa (t0) − u(t)] − [vsa (t0) − u(t)]T d(t)d(t). (8)

As vsa(t) is constant, it is possible to rewrite (8) as

ẏ(t) = −


∥r (t0)∥ +

 t

t0

[vsa(τ ) − u(τ )]T d(τ )dτ

ḋ(t)

+ [vsa(t) − u(t)] − [vsa(t) − u(t)]T d(t)d(t). (9)

Using the derivative d
dt ∥r(t)∥ = [vsa(t) − u(t)]T d(t), allows to

write

∥r(t)∥ = ∥r (t0)∥ +

 t

t0

[vsa(τ ) − u(τ )]T d(τ )dτ . (10)

On the other hand, the time derivative of (1) is given by

ḋ(t) =
[vsa(t) − u(t)] − [vsa(t) − u(t)]T d(t)d(t)

∥r(t)∥
. (11)

Substituting (10) and (11) in (9) gives ẏ(t) = 0. This concludes the
proof, as with y (t0) = 0 and ẏ(t) = 0 it must be y(t) = 0 for all
t ∈ I and therefore (5) is true. �

In order to design GES observers (or filtering) solutions,
stronger forms of observability are convenient. The following the-
orem addresses this issue.

Theorem 3. The LTV system (3) is uniformly completely observable if
and only if

∃ α>0
δ>0

∀t≥t0

 t+δ

t
dT (t) d (τ ) dτ ≤ δ (1 − α) . (12)
Proof. The proof of sufficiency follows similar steps to Theorem 1
considering uniformity bounds that stem from the persistent
excitation condition (12). Therefore it is omitted. To show that (12)
is also necessary, suppose that (12) does not hold. Then,

∀ α>0
δ>0

∃t∗≥t0

 t∗+δ

t∗
dT 

t∗

d (t) dt > δ (1 − α) . (13)

Let c =

√
2
2

dT 
t∗


0

√
2/2

T

∈ R7. Then,

cTW

t∗, t∗ + δ


c =

1
2

 t∗+δ

t∗

d 
t∗


− d(τ )

2 dτ

=
1
2

 t∗+δ

t∗

d 
t∗

2
+ ∥d(τ )∥2

− 2dT 
t∗


d(τ )


dτ . (14)

As d(t) is a unit vector, it is possible to write (14) as

cTW

t∗, t∗ + δ


c = δ −

 t∗+δ

t∗
dT 

t∗

d(τ )dτ . (15)

Using (13) in (15) allows to conclude that for all α > 0 and δ > 0
there exists time instant t∗ ≥ t0 such that cTW (t∗, t∗ + δ) c <
δα, which means that the LTV system (3) is not uniformly com-
pletely observable. Therefore, if the LTV system (3) is uniformly
completely observable, (12) is true. �

For observability over a fixed time interval Theorem 1 already
provides sufficient insight: the system is observable if the direc-
tion measurements do not remain constant on that interval. For
uniform complete observability the result provided by Theorem 3
is essentially an extension considering uniformity in time: the sys-
tem is uniformly completely observable if it is possible to choose a
fixed time interval length δ > 0 such that, for all time intervals of
length δ, there is a minimum variation in the direction measure-
ments, uniformly in time, which is encoded by the positive con-
stant α in (12).

3.3. Kalman filter

Section 3.1 introduced a LTV system for source localization and
its observability was characterized in Section 3.2. In particular, it
was shown that the LTV system (3) is uniformly completely ob-
servable if and only if an appropriate persistent excitation condi-
tion, (12), is satisfied. As such, the design of a Kalman filter, with
globally exponentially stable error dynamics, follows naturally. An
alternative observer with globally exponentially stable error dy-
namics could be devised using [16, Theorem 15.2]. Considering ad-
ditive system disturbances and sensor noise, the system dynamics
are given by
ẋ(t) = A(t)x(t) + w(t)
y(t) = C(t)x(t) + n(t),

where w (t) ∈ R7 is zero-mean white Gaussian noise, with
E


w (t)wT (t − τ)


= 4δ (τ ), 4 ≻ 0, n (t) ∈ R3 is zero-mean

white Gaussian noise, with E

n (t)nT (t − τ)


= 2δ (τ ), 2 ≻ 0,

and E

w (t)nT (t − τ)


= 0. It is important to stress, however,

that it is not possible to conclude that this is an optimal solution,
as the actual system disturbances and sensor noise may not be ad-
ditive. Nevertheless, the nominal filter error dynamics are globally
exponentially stable if the LTV system is uniformly completely ob-
servable and controllable [17]. The design of the Kalman filter is
well known and therefore it is omitted.

Remark 1. Even though the drift velocities are assumed, in nom-
inal terms, as constant, it is possible to track slowly time-varying
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drift velocities (up to some error) by appropriate tuning of the cor-
responding state disturbance covariance design parameter of the
Kalman filter.

4. Navigation filter design assuming known source velocity

This section presents a solution for navigation based on direc-
tion measurements similar to the solution for source localization
proposed in Section 3. In order to derive an augmented linear time-
varying system for navigation based on direction readings, define
the system states x1(t) := p(t), x2(t) := vc(t), and x3(t) = ∥r(t)∥.
From (1) it follows that x1(t) + x3(t)d(t) = s(t) for all t . Let
x(t) =


xT1(t) x

T
2(t) x3(t)

T
∈ R7. Then, the system dynamics are

given by the LTV system
ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t), (16)

where

A(t) =

0 I 0
0 0 0
0 −dT (t) 0

 ∈ R7×7,

B(t) =

 I 0
0 0

−dT (t) dT (t)

 ∈ R7×6,

C(t) = [I 0 d(t)] ∈ R3×7, and u(t) =

vTr (t) vTs (t)

T
∈ R6.

Next, consider the Lyapunov state transformation of the LTV
system (16) given by z(t) = diag (I, I, −1) x(t), which preserves
observability properties. The new system dynamics read as
ż(t) = A(t)z(t) + diag (I, I, −1) B(t)u(t)
y(t) = C(t)z(t).

Notice that the new system matrices A(t) and C(t) are those of
the LTV system (3). This immediately allows to characterize the
observability of the LTV system (16) with the following two the-
orems, as both systems are related by a Lyapunov state transfor-
mation [18].

Theorem 4. The LTV system (16) is observable on I :=

t0, tf


if and

only if the unit vector d(t) is not constant on I or, equivalently, (4) is
true.

Theorem 5. The LTV system (16) is uniformly completely observable
if and only if (12) holds.

It remains to see that, as in the solution for source localization,
the initial condition of the LTV system, uniquely determined under
the observability condition expressed in the previous theorems,
matches the initial condition of the original system. This is shown
in the following theorem.

Theorem 6. Under the hypothesis of Theorem 4, the initial condition
of the LTV (16) corresponds to the initial condition of the original
nonlinear system, i.e.,x1 (t0) = p (t0)
x2 (t0) = vc (t0)
x3 (t0) = ∥r (t0)∥ .

(17)

Proof. Under the terms of Theorem 4, the initial condition of the
LTV system (16) is uniquely determined by the corresponding
system output and input. The proof follows by showing that (17)
explains the system output. The output of the LTV system (16) is
given by

y(t) = x1 (t0) + (t − t0) x2 (t0) +

 t

t0
vr(τ )dτ + x3 (t0) d(t)

+

 t

t0

[vs (τ ) − vr(τ ) − x2 (t0)]T d(τ )dτd(t) = s(t) (18)

for all t ∈ I, I =

t0, tf


. Substituting (17) in (18) gives

y(t) = p (t0) + (t − t0) vc (t0) +

 t

t0
vr(τ )dτ + ∥r (t0)∥ d(t)

+

 t

t0

[vs (τ ) − vr(τ ) − vc (t0)]T d(τ )dτd(t). (19)

It remains only to show that (19) is equal to s(t) for all t ∈ I.
Substituting t = t0 in (19) yields

y (t0) = p (t0) + ∥r (t0)∥ d (t0) = p (t0) + r (t0) = s (t0) .

The time derivative of (19) is given by

ẏ(t) = ∥r (t0)∥ ḋ(t) + vr (t) + vc (t0)

+

 t

t0

[vs (τ ) − vr(τ ) − vc (t0)]T d(τ )dτ ḋ(t)

+ [vs (t) − vr(t) − vc (t0)]T d(t)d(t). (20)

As vc(t) is constant, it is possible to rewrite (20) as

ẏ(t) = ∥r (t0)∥ ḋ(t) + vr (t) + vc (t)

+

 t

t0

[vs (τ ) − vr(τ ) − vc (τ )]T d(τ )dτ ḋ(t)

+ [vs (t) − vr(t) − vc (t)]T d(t)d(t). (21)

Using d
dt ∥r(t)∥ = [vs(t) − vr(t) − vc(t)]T d(t) one may write

∥r(t)∥ = ∥r (t0)∥ +

 t

t0

[vs(τ ) − vr(τ ) − vc(τ )]T d(τ )dτ . (22)

On the other hand, the time derivative of (1) is given by

ḋ(t) =
vs (t) − vr(t) − vc (t)

∥r(t)∥

−
[vs (t) − vr(t) − vc (t)]T d(t)

∥r(t)∥
d(t). (23)

Substituting (22) and (23) in (21) gives ẏ(t) = vs(t). This concludes
the proof, as with y (t0) = s (t0) and ẏ(t) = vs(t) = ṡ(t) it must
be y(t) = s(t) for all t ∈ I and therefore (17) is true. �

The design of a Kalman filter with globally exponentially stable
error dynamics for navigation based on direction measurements
follows naturally as in Section 3.3.

5. Navigation filter design without the source velocity

Thedesign for navigation aidedbydirectionmeasurements pre-
sented in Section 4 requires the velocity of the source. Although
that is feasible in cooperative navigation, it is also interesting to
consider a scenariowhere vs(t) is not available. This could be inter-
esting when the source is equipped with a localization sensor but
not a full navigation system. This section deals with this problem,
presenting an alternative design for navigation based on direction
measurements that does not require the velocity of the source.
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To that purpose, notice that
I − d(t)dT (t)


r(t) =


I − d(t)dT (t)


∥r(t)∥ d(t) = 0

for all t , which allows to write
I − d(t)dT (t)


p(t) =


I − d(t)dT (t)


s(t). (24)

Combining (24) with (2) gives the LTV system
ẋr(t) = Arxr(t) + Brur(t)
yr(t) = Cr(t)xr(t)

(25)

where xr(t) =

pT (t) vTc (t)

T
∈ R6 is the system state, ur(t) =

vr(t) is the system input,

Ar =


0 I
0 0


∈ R6×6, Br =


I
0


∈ R6×3

and Cr(t) =

I − d(t)dT (t) 0


∈ R3×6.

It is now important to assess about the observability of the LTV
system (25) in order to apply a Kalman filter. It turns out that the
results are identical to those previously derived, as detailed in the
following theorems.

Theorem 7. The LTV system (25) is observable on I :=

t0, tf


if and

only if the unit vector d(t) is not constant on I or, equivalently, (4) is
true.

Proof. Let c =

cT1 cT2

T
∈ R6, ci ∈ R3, i = 1, 2, be a unit vector,

i.e., ∥c∥ = 1. Then, it is straightforward to show that

cTW r

t0, tf


c =

 tf

t0

∥fr(τ )∥2 dτ

for all ∥c∥ = 1, where W r

t0, tf


denotes the observability

Gramian associated with the pair (Ar , Cr(t)) on I and

fr(τ ) =

I − d(τ )dT (τ )


[c1 + (τ − t0) c2]

for all τ ∈ I. The first derivative of fr(τ ) is given by

d
dτ

fr(τ ) = −

ḋ(τ )dT (τ ) + d(τ )ḋT (τ )


c1 +


I − d(τ )dT (τ )


c2

− (τ − t0)

ḋ(τ )dT (τ ) + d(τ )ḋT (τ )


c2

for all τ ∈ I. It is easily shown that, under Assumption 1, the first
two derivatives are norm-bounded, from above, on I.

The proof of necessity follows by contraposition. Suppose that
(4) is not verified. Then, the unit vector d(t) is constant on I,
i.e., d(t) = d (t0) for all t ∈ I. Let c1 = d (t0), c2 = 0. Then, fr(τ ) =
I − d (t0) dT (t0)


d (t0) = 0 for all τ ∈ I, which in turn allows to

conclude that the observability Gramian W r

t0, tf


is not invert-

ible and the LTV system (25) is not observable on I. Consequently,
if the LTV system (25) is observable on I, it follows that (4) is true.

To show that (4) is also a sufficient condition, suppose first
that c1 ≠ 0. For τ = t0 one has fr (t0) =


I − d (t0) dT (t0)


c1.

If ∥fr (t0)∥ > 0, then it follows, using Proposition 1, that cTW r
t0, tf


c > 0. Otherwise, it must be c1 = c1d (t0) for some c1 ≠ 0.

Suppose then that c1 = c1d (t0). Then,

d
dτ

fr(τ )


τ=t0

= −c1ḋ (t0) +

I − d (t0) dT (t0)


c2.

If
 d

dτ fr(τ )

τ=t0

 > 0, it follows, using Proposition 1 twice, that

cTW r

t0, tf


c > 0. Otherwise, if d

dτ fr(τ )

τ=t0

= 0, two cases may

be considered: (i) if ḋ (t0) = 0, it may be c2 = 0 or c2 = c2d (t0)
for some scalar c2 ≠ 0; or (ii) if ḋ (t0) ≠ 0, it must be c2 = c1ḋ (t0).
Consider first c1 = c1d (t0), c2 = 0. Then, using (4), it is possible to
conclude that

∥fr (t1)∥ =
c1 

I − d (t1) dT (t1)

d (t0)

 > 0

and, using Proposition 1, it follows that cTW r

t0, tf


c > 0 for

c1 = c1d (t0) and c2 = 0. Suppose now that c1 = c1d (t0) and
c2 = c2d (t0). Then

∥fr (t1)∥ = |c1 + (t1 − t0) c2|


I − d (t1) dT (t1)

d (t0)

 .

If c1 + (t1 − t0) c2 ≠ 0, then it is possible to conclude, from (4),
that ∥fr (t1)∥ > 0 and, using Proposition 1, cTW r


t0, tf


c > 0.

Otherwise, if c1 + (t1 − t0) c2 = 0, there exists, by continuity,
t0 < t2 < t1 such that dT (t0) d (t2) < 1. As such

∥fr (t2)∥ = |c1 + (t2 − t0) c2|


I − d (t2) dT (t2)

d (t0)


is positive. Again, using Proposition 1, it follows that cTW r


t0, tf


c > 0 for c1 = c1d (t0) and c2 = c2d (t0). If c2 = c1ḋ (t0), with
ḋ (t0) ≠ 0, there exists ϵ > 0 such that

f (t0 + ϵ) = c1

I − d (t0 + ϵ) dT (t0 + ϵ)


d (t0)

+ ϵc1

I − d (t0 + ϵ) dT (t0 + ϵ)


ḋ (t0)

where d (t0 + ϵ) cannot be expressed as a linear combination of
d (t0) and ḋ (t0). As such, ∥f (t0 + ϵ)∥ > 0 and, using Proposition 1,
cTW


t0, tf


c > 0 for c1 = c1d (t0) and c2 = c1ḋ (t0). This allows

to conclude, so far, that if c1 ≠ 0, then cTW

t0, tf


c > 0. Suppose

now that c1 = 0, which implies that ∥c2∥ = 1. Then, fr (t0) = 0
and

d
dτ

fr(τ )


τ=t0

=

I − d (t0) dT (t0)


c2.

If c2 ≠ ±d (t0), then d
dτ

fr(τ )


τ=t0

 > 0

and using Proposition 1 twice, it is possible to conclude that
cTW


t0, tf


c > 0. Otherwise, if c2 = ±d (t0) then

∥fr (t1)∥ = |t1 − t0|


I − d (t1) dT (t1)

d (t0)

 > 0.

Again, using Proposition 1, it is possible to conclude that cTW
t0, tf


c > 0 for c1 = 0 and c2 = ±d (t0). But that concludes

the proof, as it was shown that cTW

t0, tf


c > 0 for all ∥c∥ = 1,

which means that (25) is observable. �

Theorem 8. The LTV system (25) is uniformly completely observable
if and only if

∃ α>0
δ>0

∀t≥t0

 t+δ

t


dT (t) d (τ )

2
dτ ≤ δ (1 − α) . (26)

Proof. The proof of sufficiency follows similar steps to Theorem 7
considering uniformity bounds that stem from the persistent
excitation condition (26). Therefore it is omitted. To show that (26)
is also necessary, suppose that (26) does not hold. Then,

∀ α>0
δ>0

∃t∗≥t0

 t∗+δ

t∗


dT 

t∗

d (τ ) dτ

2
> δ (1 − α) . (27)

Let c =

dT 

t∗


0
T

∈ R6. Then, it is easily shown that

cTW r

t∗, t∗ + δ


c =

 t∗+δ

t∗


1 −


d


t∗


d (τ )

2 dτ . (28)
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Fig. 1. Trajectory described by the agent and the source.

Using (27) in (28) allows to conclude that, for all α > 0 and δ > 0
there exists a time instant t∗ ≥ t0 such that cTW (t∗, t∗ + δ) c <
δα, which means that the LTV system (25) is not uniformly com-
pletely observable. Therefore, if the LTV system (25) is uniformly
completely observable, (25) is true. �

Remark 2. Notice that (26) is true if and only if (12) is true. The
former was preferred in this section because it simplifies the proof
of Theorem 8.

6. Simulation results

This section presents realistic simulation results for the
source localization problem in order to evaluate the performance
achieved with the proposed solutions. Further testing revealed
that similar performances are achieved for the navigation problem
based on direction measurements.
In the simulations, the source and the agent trajectories are
those depicted in Fig. 1. Clearly, the persistent excitation condi-
tion (12) is satisfied, which allows to apply the solutions pro-
posed in the paper. The drift velocity of the source was set to vs(t)
= [1 0 0]T (m/s), while the drift velocity of the agent was set to
vc(t) = [−0.5 0 0]T (m/s), which gives vsa(t) [1.5 0 0]T (m/s) for
the relative drift velocity.

Noise was considered for both the direction measurements
and the relative velocity of the agent vr(t). In particular, addi-
tive zero mean white Gaussian noise was considered for vr(t),
with standard deviation of 0.01 m/s, while the direction readings
were assumed perturbed by rotations about random vectors of an
angle modeled by zero-mean white Gaussian noise, with standard
deviation of 1°. The Kalman filter parameters were set to 4 =

diag

10−2I, 10−5I, 10−2


and 2 = I. The initial estimates were

all set to zero.
The evolution of the estimation error is shown in Fig. 2. As it

is possible to see, the initial transients due to the mismatch of the
initial conditions quickly fade out, resulting in state estimates very
close to the true value.

In order to better evaluate the performance of the proposed so-
lution, the Monte Carlo method was applied. The simulation was
carried out 1000 times with different, randomly generated noise
signals. The mean and standard deviation were computed for each
simulation and averaged over the 1000 simulations. The results are
depicted in Table 1, where the results obtained with an Extended
Kalman Filter with similar parameters are also presented. As the
initial estimate for the source location cannot be set to zero with
the EKF (in the linearization there appear terms divided by the
norm of this estimate), the initial source position estimate was set
to [1 0 0] m. The convergence speed results slightly smaller. As it
is possible to observe, the proposed solutions achieve similar per-
formance to the EKF, while providing, at the same time, global ex-
ponential stability guarantees.
Fig. 2. Evolution of the estimation errors.
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Table 1
Standard deviation of the steady-state estimation error, averaged over 1000 runs of
the simulation.

Proposed solution EKF

σx̃11 (m) 8.5 × 10−3 19.6 × 10−3

σx̃12 (m) 3.3 × 10−3 11.7 × 10−3

σx̃13 (m) 1.2 × 10−3 9.2 × 10−3

σx̃21 (m/s) 4.8 × 10−4 5.6 × 10−4

σx̃22 (m/s) 4.8 × 10−4 5.8 × 10−4

σx̃23 (m/s) 4.6 × 10−4 5.8 × 10−4

σx̃3 (m) 1.1 × 10−2 Not explicitly estimated

7. Conclusions

This paper presented a set of globally exponentially stable
Kalman filters for the problems of source localization and naviga-
tion based on direction measurements to a single source. The ob-
servability of the systems was fully characterized, which allowed
to conclude about the asymptotic stability of the Kalman filters.
The observability conditions that were derived are directly related
to the motion of the agent/vehicle and as such they are useful for
motion planning and control. Simulation results were presented
that illustrate the good performance achieved by the proposed so-
lutions, which were also compared with the EKF, achieving similar
performance but with global asymptotic stability guarantees. Fu-
ture work includes the extension of the present work to the case
where directions to multiple sources are available for navigation
purposes.
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