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This paper presents a set of algorithms for the creation of underwa-

ter mosaics and illustrates their use as visual maps for underwater vehicle

navigation. First, we describe the automatic creation of video mosaics,

which deals with the problem of image motion estimation in a robust and

automatic way. The motion estimation is based on a initial matching of

corresponding areas over pairs of images, followed by the use of a robust

matching technique, which can cope with an high percentage of incorrect

matches. Several motion models, established under the projective geom-

etry framework, allow for the creation of high quality mosaics where no

assumptions are made about the camera motion. Several tests were run

on underwater image sequences, testifying the good performance of the

implemented matching and registration methods. Next, we deal with the

issue of determining the 3D position and orientation of a vehicle from new

views of a previously created mosaic. The problem of pose estimation is

tackled, using the available information on the camera intrinsic parame-

ters. This information ranges from the full knowledge to the case where

they are estimated using a self-calibration technique based on the analysis

of an image sequence captured under pure rotation. The performance of

the 3D positioning algorithms is evaluated using images for which accurate

ground-truth is available.
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1. INTRODUCTION

In the last few years, computer vision has increasingly been used as a sensing modality
for underwater vehicles used in tasks where accurate measures at short range are needed

1The work described in this paper has been supported by the Portuguese Foundation for Science and
Technology PRAXIS XXI BD/13772/97 and Esprit-LTR Proj. 30185, NARVAL.
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[28]. Previous applications include sea bed reconstruction, pipeline inspection[4] and ob-
ject tracking[21].
A considerable amount of research interest has been directed towards providing auton-

omy to underwater vehicles using vision, namely in self-location and motion estimation.
Automatic station-keeping, involving motion estimation in order to maintain a fixed po-
sition, has been implemented for remotely operated vehicles with two [20] and three [25]
degrees-of-freedom. A method for 3D motion estimation and mosaic construction was
proposed by Xu et al. [31] and tested on a floating platform. Based on underwater image
formation models using surface irradiance and light attenuation, Yu et al. [32] proposed
estimation methods for motion recovery and surface orientation.
Ocean floor exploration constitutes an important application area for video mosaicing,

in such operations as site exploration, wreckage visualization and navigation. Due to
the underwater limited visual range, the registration of close range images is often the
only solution for obtaining large visual areas of the floor. This limitation has motivated
research on automatic mosaic creation for underwater applications over the last few years.
In [18] a setup was proposed for creating mosaics by taking images at locations whose
coordinates are known with high precision. Image merging can thus be performed without
image analysis, because the frame-to-frame motion parameters can be computed directly
from the camera positions. Marks et al.[22] have developed a system for ocean floor
mosaic creation in real-time. In their work, a four-parameter semi-rigid motion model is
used, and small rotation and zooming on the image frames are assumed. This allows for
fast processing algorithms, but restricts the scope of applications to the case of images
taken by a camera whose retinal plane is closely parallel to the ocean floor. A common
difficulty in underwater mosaicing arises from the presence of 3-D occlusions caused by
seabed irregularities. Strategies for dealing with such occlusions are discussed by Tiwari
in [29]. Another difficulty comes from the propagation of image alignment errors which as
been addressed by Fleischer et al. in [10] and [11].
The use of mosaics as a tool to provide visual maps for navigation as been explored

by Zheng et al.[34], in the context of land robotics and route recognition. In their work,
a visual memory of the motion of a mobile robot is created in the form of panoramic
mosaics that are latter used for robot positioning. However, the visual representations are
used solely for navigation purposes and the panoramic views created do not correspond
to geometrically and visually correct mosaics.
The work described in this paper addresses the issues of mosaic creation and vehicle self-

location using the mosaics as visual maps. The approach for automatic creation of video
mosaics is based on image motion estimation in a robust and automatic way. The motion
estimation starts from an initial matching of corresponding areas over pairs of images,
followed by the use of a robust matching selection technique, which can cope with an high
percentage of wrong matches. Several motion models, established under the projective
geometry framework, are then used to allow the creation of high quality mosaics where
no assumptions are made on the camera motion. This is an improvement over traditional
approaches for underwater mosaicing, often relying on the camera to be facing the sea
floor, so that the image plane is approximately parallel to the floor plane.
Next, we deal with the issue of determining the 3D position and orientation of a vehicle

from a new view of a previously created mosaic. The problem of pose estimation is tackled,
using the available information on the camera intrinsic parameters. This information
ranges from the full knowledge to the case where they are estimated using a self-calibration
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technique based on the analysis of an image sequence captured under pure rotation. The
presented techniques are suitable for autonomous underwater vehicle navigation near a
flat oceanic floor, where a planar map is an accurate representation of the environment.
A possible application scenario for the methods described in this paper would be on

underwater archeological site exploration. An autonomous underwater vehicle (AUV)
equipped with a camera, is assigned to map the area of a newly discovered wreckage. As
an initial goal, the vehicle will thoroughly cover the area, and build a general view of
the site. Later, the vehicle might be instructed to explore a specific region of interest.
By using other types of sensor modalities, such as long-baseline acoustic ranging, which
provide a rough estimate of its position, it will be able to coarsely locate itself with respect
to the previously constructed mosaic. Then, using the onboard camera, it registers the
current image with the mosaic to obtain a finer estimate of its position and make its way to
the desired location. Another application scenario might be in marine geological surveys,
for studying the evolution of oceanic geological activity by checking bubble sources using
periodic inspections by an AUV.
The paper is organized as follows. Section 2 describes some of the geometric foundations

and models required for the methods used later. These include the used camera model, the
recovery of the intrinsic parameter matrix from the projection matrix, planar transforma-
tions and self-calibration from a rotating camera. Mosaic creation methods are presented
in Section 3, together with mosaicing results from underwater video footage. Section 4 is
devoted to the registration of new views on a previously constructed mosaic and to the
problem of estimating the camera pose. Trajectory recovery results are presented for an
image sequence for which ground-truth is available. Finally, Section 5 summarizes and
draws some conclusions on the performance and applicability of the methods.

2. GEOMETRIC BACKGROUND
2.1. Camera Model

The camera model used in this work is the standard pinhole model, under which the
camera performs a linear projective mapping from the projective space IP 3 to the projective
plane IP 2. For a 3-D point with coordinates (x, y, z) and its corresponding 2-D projection
(u, v), the camera mapping that can be expressed, in the general form, as:

λ
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where f is the focal distance, ku and kv are scaling factors, (u0, v0) is the location of
the principal point in the new image referential, and λ is an unknown scale factor. The
parameter kθ accounts for the skew between the image axes and, for most CCD cameras,
can be considered zero on applications not relying on highly accurate calibration.
The (3 × 3) matrix K is the intrinsic parameter matrix. The extrinsic parameters are

represented by the (3 × 3) rotation matrix C
WR and by the (3 × 1) vector C

W t, containing
the coordinates of the origin of the world frame expressed in camera frame coordinates.
Combining both intrinsic and extrinsic parameters, the overall camera mapping can be
represented by a (3× 4) perspective projection matrix P = K [CWR

C
W t].
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The task of camera calibration can be accomplished, for this model, by a simple linear
least-squares minimization. Assuming that a set of 3-D points is available, together with
their image projections, then each point will impose two linear constraints on the elements
of P . For a set of n points, an homogeneous system can be created in the form H ·pl = 0,
where H is a (2n × 12) data matrix containing the coordinates of the 3-D points and
projections, and pl is a column vector containing all the 12 elements of P .
If six or more 3-D points are on a general configuration, and their projections are

known with sufficiently high accuracy, then H will have exactly rank 11. By a general
configuration we mean that no four of the points are coplanar, nor do they all lie on a
twisted cubic as described by Faugeras in [7], although this latter situation is very unlikely
to occur in practice. The vector pl is the null space of H, thus defined up to scale. To
avoid the trivial solution pl = 0, one has to impose an additional constraint on P , usually
‖pl‖ = 1. Furthermore, real applications are prone to inaccuracies on the measurements
of point locations and H will not be rank deficient. In order to find a least-squares solution
for this equation, we can formulate the classical minimization problem:

min
pl

‖ H · pl ‖ constrained to ‖ pl ‖= 1 (2)

By the use of the Lagrange multipliers it can be easily shown that the solution to this
problem is the eigenvector associated with the smallest singular value of H. A suitable
algorithm for finding the eigenvector is the Singular Value Decomposition (SVD)[26].

2.1.1. Estimation of the K matrix using the camera projection matrix
The intrinsic parameter matrix K can be obtained from P by means of the QR factor-

ization [13, 19]. For the case of a 3× 3 matrix A, there is a unitary 3× 3 matrix Q and a
upper triangular 3× 3 matrix R, such that A = QR. For a nonsingular A, the R matrix
can be chosen so as to have all positive diagonal entries. It can be shown that, in this
case, the factorization is unique[19]. An algorithm for the QR factorization is described
in [26], and a number of implementations exist in commonly used mathematical packages.
For the case of K matrix estimation, we are interested in the dual of the QR factor-

ization, in the form A = R′Q′, where R′ and Q′ have the same structure of R and Q.
The K matrix can be recovered from the RQ factorization of the first three columns of
P . The RQ factorization for 3 × 3 nonsingular matrices can be computed from the QR
counterpart, thus allowing the use of the number of existing implementations of the QR
algorithm.
Let ATE = QR be the QR factorization of ATE, where A is a 3× 3 nonsingular matrix

and

E =

 0 0 1
0 1 0
1 0 0


By means of algebraic manipulation, it can be seen that, A = R′Q′ where R′ = ERTE

is upper triangular and Q′ = EQT is unitary.

2.2. Planar Transformations
As we are interested in registering scenes with planar content, we will now focus on

2-D projective transformations whose importance is emphasized by the fact that they
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can be used as models for image motion with an enormously vast fields of applications
in Computer Vision. It can be easily shown[24, 14] that two different views of the same
planar scene in 3-D space are related by a collineation in IP 2, represented by a (3 × 3)
matrix defined up to scale and establishing a one-to-one relation between corresponding
points over two images. Thus, for a pair of image points of the same 3-D point of a planar
scene with homogeneous coordinates ũ and ũ′, the collineation T2D relating ũi and ũ′

i will
impose ũ′ .= T2Dũ, where the symbol .= denotes equality up to scale. A collineation in
IP 2 is also commonly referred to as a planar transformation.
The computation of a planar transformation requires at least four pairs of corresponding

points. If we have more than four correspondences, least-square minimization can then be
accomplished in a similar manner to the one outlined above, for the camera calibration.
Let T2D be the collineation relating two image planes from which we have a set of n

correspondences such that ũ′
i

.= T2Dũi, for i = 1, . . . , n. For each pair we will have two
linear constraints on the elements of T2D. An homogeneous system of equations H.tl = 0
can thus be written, where tl is the column vector containing the elements of T2D in a
row-wise fashion, and H is a (2n×9) matrix. The system can now be solved by the means
of the SVD, after imposing the additional constraint of unit norm for tl, i.e., ‖tl‖ = 1.
As it is defined up to scale, the most general collineation in IP 2 has eight independent

parameters. If additional information is available on the camera setup, such as camera
motion constraints, then the coordinate transformation ũ′

i
.= T2Dũi might not need the

eight independent parameters of the general case to accurately describe the image motion.
As an example we can point out the case where the camera is just panning, thus inducing
a simple sideways image translation. If we know beforehand which is the simplest model
that can explain the data equally well, then there will be no reason for using the most
general. Table 1 illustrates some of the commonly used restricted models.

2.3. Self-calibration from a rotating camera
An alternative method can be devised for estimation of the K matrix, for the case where

a sequence of images is available, taken by a camera with constant intrinsic parameters

TABLE 1

Some of the possible motion models used for image merging, ordered by

the number of free parameters p.

Image Model Matrix form p Domain

Translation and zoom T2D =

 t1 0 t2
0 t1 t3
0 0 t4

 3 Image plane is parallel to the planar

scene. No rotation but with variable

focal length or distance to the scene.

”Semi-Rigid” T2D =

 t1 t2 t3
−t2 t1 t4
0 0 t5

 4 Same as above but with rotation and

scaling along the image axes.

Affine Transformation T2D =

 t1 t2 t3
t4 t5 t6
0 0 t7

 6 Distant scene subtending a small field

of view.
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and undergoing pure rotation. This method does not require any knowledge on the scene
structure, nor the rotation of the camera frame between images. Therefore, it is specially
suited to applications where the camera can be rotated around its optical center, and
on-line calibration is required. An example of such is in underwater robotics, for vehicles
equipped with pan and tilt camera heads.
Although the problem of camera calibration has been an active research topic in com-

puter vision from its early days, only in the last few years has the issue of self-calibration
been addressed in the literature. The theory behind this method was first presented by
Hartley in [16], and more in-depth in [17], for the case of constant intrinsic parameters.
Recent work by Agapito et al. [6] has extended the method to deal with cameras for which
the intrinsic parameters are allowed to vary.
For the case of stationary cameras (where no translation is allowed), the world coordinate

frame can usefully be chosen to match the first camera frame. Therefore the projection
matrices for cameras may be written in the form Pi = K [Ri 0] where R1 = I3 is the
(3 × 3) identity matrix. The projection of a 3D world point M̃ =

[
x y z 1

]T
, results

in an image point m̃ .= K [Ri 0]
[
x y z 1

]T
which is independent of the last element

of M̃. By dropping the last element of M̃, the projection equations can written in the
form m̃ .= KRi

[
x y z

]T
, where the reduced projection matrix Pi = KRi performs a 2D

projective mapping, similar to the planar transformations described above. Considering
the case where the same 3D point M =

[
x y z

]T
is projected on two different images

using the projection matrices Pi = KRi and Pj = KRj , we will have m̃i
.= KRiM and

m̃j
.= KRjM, from which the following relation between m̃i and m̃j can be written,

m̃i
.= KRiR

−1
j K−1m̃j = KRj,iK

−1m̃j

This equation represents a 2D homography Tj,i = KRj,iK
−1 that maps corresponding

points in two views, taken by a rotating camera. It can be computed directly from image
measurements, and depends only on the intrinsic parameter matrix and on the camera
rotation Rj,i between the two images. As noted in [17], Tj,i is only meaningfully defined up
to scale, but taking into account the fact that the productKRj,iK

−1 has unit determinant,
the exact equality Tj,i = KRjiK

−1 will hold if Tj,i is scaled by an appropriate factor.
The problem remains on how to recover K and a set of rotation matrices from homo-

graphies computed from image correspondences. By using the rotation matrix property
Rj,i = R−T

j,i , and rewriting Tj,i = KRj,iK
−1 as Rj,i = K−1Tj,iK, the following equations

can be written,

K−1Tj,iK = KTT−T
j,i K−T

Tj,iKKT = KKTTj,i
(3)

A linear system of equations can thus be constructed on the elements of the symmetrical
matrix C = KKT . For a set of n > 1 homographies, C can be estimated linearly by
writing the system of equations in the form H.cl = 0, where H is a (9n × 6) matrix and
cl is a column vector containing the independent entries of C. This is the same type of
minimization problem as the one in Section 2.2 and can be solved using the SVD.
The recovery of K can be achieved if C is positive-definite, by means of the Choleski

decomposition[13] and is unique if K is assumed to have positive diagonal entries. For
noise-free data, C is positive-definite by construction, and for noisy data it might not be
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so. However, as reported in [17], the cases where C was found to be not positive-definite
happened only for gross errors in the matching process.
The knowledge of some of the intrinsic parameters can easily be incorporated into this

self-calibration scheme with great improvement on the accuracy of the overall estimation.
Namely, for the most widely used CCD video cameras and image acquisition boards,
the skew between the image axes is quite often negligible. On the other hand, a rough
estimate of the principal point is the central image point location, or it can be more
precisely determined from radial distortion analysis[30].
For the case of zero skew and known location of the principal point, the least-squares

method can still be used with straightforward modifications. Let K = UA be a decompo-
sition for a zero skew intrinsic parameter matrix, such that

U =

 1 0 u0

0 1 v0

0 0 1

 and A =

 f ku 0 0
0 f kv 0
0 0 1


From the equation Tj,i = KRj,iK

−1 it follows that Tj,i = UARj,iA
−1U−1 and U−1Tj,iU =

ARj,iA
−1. By conducting the same algebraic manipulation as in (3), a similar system of

equations can be constructed for the elements of the diagonal matrix D = AAT . The
above considerations hold for the minimization method, with the H matrix being of size
(9n× 3). The recovery of A is possible if the elements of D are positive, which is true for
noise free data but might not be in the presence of large matching errors.

3. MOSAIC CREATION

We will now deal with the problem of creating mosaics from a sequence of video images.
The creation of video mosaics is accomplished in two stages: registration and rendering.
During the registration stage, we estimate the parameters of point correspondence between
frames, then fit individual frames to a global model of the sequence. The rendering stage
deals with the creation of a single mosaic, by applying a temporal operator over the
registered and aligned images.

3.1. Feature selection
The work presented here evolves from the analysis of point projections and their cor-

respondence between image frames. In order to improve the correspondence finding, a
number of points are selected corresponding to image corners or highly textured patches.
The selection of image points is based on a simplified version of the well-known corner
detector proposed by Harris and Stephens[15]. This detector finds corners in step edges by
using only first order image derivative approximations. Further details on the implemented
detector are presented in [14].
The extracted features will be matched over two images, and used for motion estimation.

Since motion estimation is more noise sensitive to location errors when the features are
close to each other, it is convenient to select features not just on the ‘amount of texture’,
but also using some inter-feature distance criterion. Bearing this in mind, the implemented
algorithm selects the features by finding the peaks of the ‘texture’ image and excluding
the subsequent selection on a circular neighborhood. This process is repeated iteratively,
up to the point where no peaks above a defined threshold can be found.
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3.2. Matching
The first step towards the estimation of the image registration parameters, consists

of finding point correspondences between images. This is referred to as the matching
problem, which is considered a challenging task due to its difficulty. Contributing factors
to this difficulty include the lack of image texture, object occlusion and acquisition noise,
which are frequent in real imaging applications. Several matching algorithms have been
proposed over the last two decades, usually based on correlation techniques or dynamic
programming. For a comparative analysis of stereo matching algorithms dealing with pair
of images, refer to [2].
In this work, a correlation-based matching procedure was implemented. It takes a list

of features selected from the first image I1, and tries to find the best match for each, over
a second image I2. The cost criterium, that drives the search on the second image, is
known in the literature as the sum of squared differences (SSD) [1]. For a given feature
fi = (ui, vi), it is defined as

SSD(x, y) =
∑

(u,v)∈Wi

[I1 (u, v)− I2 (u− x, v − y)]2

where Wi is an image patch around fi.
The assumption of large overlap of image contents between the two frames can be used

to significantly reduce the computational burden of the matching. This is achieved by
limiting the search area in I2. In order to compute the appropriate limits, the two images
are cross-correlated and a global displacement vector dG is obtained. By applying a
threshold to the cross-correlation image, we can estimate a bounding box around dG, that
can be loosely interpreted as a confidence area for the global displacement. Then, for a
given feature fi the search area on I2 is constrained to the rectangular area with the size
of the bounding box and centered on fi + dG. Figure 1 illustrates the procedure.

3.3. Robust Motion Parameter Estimation
In this section we will describe a procedure for the estimation of the motion parameters

for a sequence of images. The images are processed as shown on the diagram of Figure
2. For each image Ik, a set of features is extracted and matched directly on the following
image Ik+1, as described in the previous sections. The result of the matching process are
two lists of coordinates of corresponding points. Due to the error prone nature of the
matching process, it is likely that a number of point correspondences will not relate to the
same 3-D point. For this reason, this subsection is devoted to the robust estimation of the
motion parameters taking into account the existence of mismatches.

FIG. 1. Search area selection: image I1(left) with selected feature, search area on I2(center) and
cross-correlation image(right)
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FIG. 2. Block diagram of the sequence of operations on the images Ik for the motion parameter
estimation. The output is the set of planar transformation matrices Tk,k+1.

The first step in image registration is to find the motion parameters for the image mo-
tion, between consecutive frames. In this work, no automatic selection for the motion
model is performed. The most appropriate model is assumed to be known. In the follow-
ing subsections, the most general planar transformation model (performing a collineation
between planes), will be considered.
Let (k)u be a point on frame k, and (k+1)u be its correspondence on frame k + 1. If

Tk,k+1 is the planar transformation matrix relating the frames k and k+1, then the point
coordinates relate by (k)ũ .=Tk,k+1

(k+1)ũ. A robust estimation method is required for the
estimation of Tk,k+1. For this, a random sampling algorithm was used, using the following
minimization criterion. Let (k)ui be the location of the ith feature extracted from image
Ik, and matched with (k+1)u on image Ik+1. The criterion to be minimized is the median
of sum of the square distances,

med
i

(
d2

(
(k)ui, Tk,k+1

(k+1)ui

)
+ d2

(
(k+1)ui, T

−1
k,k+1

(k)u
))

(4)

where d (·, ·) stands for the image point-to-point Euclidean distance.
The random sampling algorithm is a simple two-step variant of least-median-of-squares

(LMedS), referred to as MEDSERE. It exhibits a similar breakdown point[23], but requires
less random sampling in order to achieve the same degree of outlier rejection.
The MEDSERE algorithm comprises two phases of random sampling LMedS. After the

first phase, the data set is reduced by selecting the best data points in the sense of the
chosen cost function. Next, the reduced data undergoes another random sampling LMedS
phase. For the computation of an homography the algorithm is illustrated by the following
operations :
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1. Randomly sample the complete set of matched points Stotal for a set of p pairs.
2. Estimate the Tk,k+1 matrix and compute the median of the sum of the point distance

squares, for Stotal,

med
i

(
d2

(
(k)ui, Tk,k+1

(k+1)ui

)
+ d2

(
(k+1)ui, T

−1
k,k+1

(k)u
))

where d (·, ·) is the orthogonal distance. If the median is below a given threshold mT ,
return Tk,k+1 and exit.
3. Repeat 1. and 2. for a specified number of samples m1.
4. Select the Tk,k+1 matrix for which the minimal median was found, and sort the

matched points by their sum of the point distance squares, using Tk,k+1.
5. Create the set Sbest with the elements of Stotal whose distance is below the median.
6. Repeat 1. and 2. on Sbest for a m2 number of samples.
7. Select the minimal median matrix found.
8. For this matrix select the matched points whose average distance,

1
2

(
d

(
(k)ui, Tk,k+1

(k+1)ui

)
+ d

(
(k+1)ui, T

−1
k,k+1

(k)u
))

(5)

is less or equal to a specified distance threshold dT .
9. Compute and return the final Tk,k+1 using simple least-squares with all the selected

matched points above.

The required parameters are the number of samplings on each part m1 and m2, the
median threshold, and the distance threshold. Since the first two directly determine the
number of operations, they can be defined by processing time constraints.
As it was emphasized before, the use of a robust matching selection procedure is es-

sential for the accurate estimation of the image motion parameters. However, similarly
accurate results to the ones presented in this paper could be obtained by other widely used
random sampling algorithms, such as standard LMedS and RANSAC[9]. In the context
of Computer Vision, an in-depth comparison of LMedS and RANSAC can be found in
[23], while results on the use of the MEDSERE algorithm for mosaicing and fundamental
matrix estimation are presented in [14].

3.4. Global registration
After estimating the frame-to-frame motion parameters, these parameters are cascaded

to form a global model. The global model takes the form of a global registration, where all
frames are mapped into a common, arbitrarily chosen, reference frame. Let TRef,1 be the
transformation matrix relating the chosen reference frame and the first image frame. The
global registration is defined by the set of transformation matrices {TRef,k : k = 1 . . . N},
where for 2 ≤ k ≤ N ,

TRef,k = TRef,1

∏k−1

i=1
Ti,i+1

In this work, the chosen reference is computed using some points with known metric
coordinates. Let us assume that a set of 4 or more points have known positions on a
2D world coordinate frame, and that those points have identifiable projections on the first
image of the sequence. The homography TWorld,1 relating the 2D world frame and the first
image frame can, therefore, be computed using the linear method outlined in Subsection
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2.2. If the mosaic reference frame is chosen to be coincident with the world frame, i.e.
TRef,1 = TWorld,1, then the coordinates on any image frame are straightforwardly related
to the world coordinate system.

3.5. Rendering
After global registration, the following step consists in merging the images. On ove-

lapping regions there are more multiple contributions for a single point on the output
image, and some method has to be established in order to determine the unique intensity
value that will be used. The contributions for the same output point can be thought of
as lying on a line which is parallel to the time axis, in a space-time continuum of the
globally aligned images. Therefore, the referred method operates on the time domain,
thus called a temporal operator. Some of the commonly used methods are the use-first,
use-last, mean and median. The first two use only a single value from the contributions
vector, respectively the first and the last entries of the timely ordered vector. The mean
operator takes the average over all the point contributions, and is effective in removing
temporal noise inherent in video. Finally, the median operator also removes temporal noise
but is particularly effective in removing transient data, such as fast moving objects whose
intensity patterns are stationary for less than half the frames. It is therefore adequate for
underwater sequences of the seabed, where moving fish or algae are captured.

3.6. Mosaicing Results
The ocean floor mosaics presented were created from a number of video sequences where

no information, other than the images themselves and the most suitable motion model,
was used.
An example of a seabed mosaic is given in Figure 3. It was composed of 101 frames,

registered under the semi-rigid model and rendered with the median operator. The original
sequence was obtained by a manually controlled underwater vehicle, and depicts a man-
made construction. No information was provided about the camera motion, which is
composed of translation and rotation and zoom out. The captured scene is not planar
nor static. The camera is moving along a sea bed fracture with some rocks inside. In
the fracture area, there are noticeable depth variations as opposed to the almost planar
surrounding seabed. Even so, the sea bed is mostly covered with algae and weeds, which

FIG. 3. Seabed mosaic example. The images were registered using the semi-rigid motion model
and rendered using the median operator.
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FIG. 4. Example of mosaic creation where the static scene assumption is violated by the presence
of moving fish.

provide good features for the matching process, but violate the underlying planar scene
assumption. Another assumption violation is caused by some moving fish. Figure 4
shows two sub-mosaics in which the motion of the fish can be clearly noticed. Although
constructed from the same sequence, these sub-mosaics were rendered using the use-last
temporal operator.
Figure 5 presents two views of a mosaic from a sequence of images captured by a

surface-driven ROV, on a pipe inspection task. In this example the perspective distortion
effects are noticeable, since the image plane of the camera is distinctly not parallel to the

FIG. 5. Underwater pipe mosaic example. For the image registration, the full planar tranformation
model was used. The images were registered with the use-last operator (left). A useful reference frame
can be chosen in order to have a better perception of the sea floor (right).
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sea floor. The most suitable motion model is, therefore, the full planar transformation.
The left image was created using the first frame of the sequence as the reference frame.
For the right image, a reference frame was chosen as to make the contour lines of the
pipeline approximately parallel, yielding a top view of the floor.

4. POSE ESTIMATION

For an underwater navigation application, we are interested in using video mosaicing
as a tool to provide visual navigation maps. Having such maps referenced to a world
coordinate system, will enable a camera-equipped autonomous vehicle (in an unknown
position and orientation) to locate itself once it has found the correct mapping from
the mosaic to the image frame. Some methods will be presented in this Section for the
pose estimation. Trajectory recovery is illustrated, based on the assumption of constant
intrinsic parameters.
Over the years, the problem of camera pose estimation has been thoroughly addressed

in the Computer Vision literature. It is a central problem in photogrammetry applica-
tions where it is also referred to as the space resection problem. Due to it’s wide spread
use in aerial photography and cartography, there have been may methods developed for
both minimum data requirements and for redundant data. A review on photogrammetry
methods and for a proof of uniqueness of the solution for the case of coplanar points is
presented by Yuan[33]. For recent progress in linear methods in pose estimation the reader
is referred to [27] and [3]. The pose estimation algorithm presented in this Section decom-
poses of an image-to-mosaic homography matrix, in order to find the rotation matrix and
displacement vector relating the camera frame to a world frame (extrinsic parameters).
In this sense, it relates to the work of Ganapathy[12], where the extrinsic parameters are
recovered directly from a camera projection matrix.
The use of image homographies induced by a plane in the scene has been explored by

Faugeras and Lustman[8], for robot navigation tasks. They have shown how the homo-
graphies could be used to directly recover the camera rotation and translation up to scale,
assuming the camera has been intrinsically calibrated beforehand. The main difference
between their approach and the work presented here lies on the fact that we use the same
world plane for inducing all the inter-image homographies. This allows the trajectory
reconstruction to be based on the analysis of the image-to-world homographies rather
than on the inter-image homographies. The main advantage is that small errors on the
homography estimation do not tend to accumulate, as it will be illustrated later in this
section.

4.1. Algorithm for new view registration on the mosaic
We will now deal with the problem of finding the homographies relating a sequence of

images to a previously constructed mosaic. In this, we will explicitly take advantage of the
timely order nature of the image sequence, to reduce the computational burden of finding
correspondences on the mosaic. By assuming that adjacent image frames correspond to a
small camera translation and rotation, we have a large image overlap. Thus, the feature
matching search can be restricted to a neighboring area of the location predicted by the
last image-to-mosaic homography.
One of the main difficulties with this procedure is due to the fact that feature matching

using correlation produces poor results in the presence of significant image warping be-
tween the image features and the mosaic. However this condition can be greatly alleviated
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by using an estimate of the image-to-mosaic homography, TM,i and performing feature
warping before correlation.
The implemented algorithm requires an estimate T̂M,1 of the first image-to-mosaic ho-

mography TM,1, which need not be too accurate. The procedure can be described by the
following steps:

1. Select features from current image i and perform feature warping using T̂M,i.

2. Match each feature to the mosaic, over a neighboring area around the position pre-
dicted by T̂M,i. Use robust matching selection to compute TM,i.

3. If the number of matched pairs used for computing TM,i is above (or equal to) a given
acceptable minimum number nm, then go to 7. Otherwise, if i is the first image then stop
with error condition. If not, continue to 4.

4. Compute the Ti−1,i, by matching the unwarped feature with the previous image. If
the number of matched pair used for Ti−1,i is below nm, then stop with error condition.

5. Update T̂M,i, by taking T̂M,i = T̂M,i · Ti−1,i. Repeat step 4. and recompute TM,i.

6. If the number of matched pair used for TM,i is below nm, then assume TM,i to be the
composition of the last correctly computed image-mosaic homography with the image to
previous image homography, i.e., TM,i = TM,i−1 · Ti−1,i.

7. If i is not the last image, then use TM,i as an estimate for the computation of the
next image-to-mosaic homography, i.e., T̂M,i+1 = TM,i. Select the next image and go to
the beginning.

For each image, the algorithm tries to find a reliable image-to-mosaic homography.
Reliability is insured by a specified minimum number of correct matches. If it fails to
find it, the algorithm uses the homography with the previous image to compute it. The
advantage of registering each frame directly on the mosaic (as opposed to computing by
sequentially cascading the homographies Ti−1,i, between previous images), is due to the
fact that small estimation errors on Ti−1,i are not on accumulated. This condition is
apparent on the results in Section 4.4.3.
Once the image-mosaic homographies have been computed and the mosaic is referenced

to a world frame, the camera pose can be estimated with respect to the world frame.
Four methods have been implemented for this, which differ on the amount of information
available on the intrinsic parameters of the camera. They are:

• Completely known intrinsic parameter matrix.

• Known principal point and skewing.

• Unknown intrinsic parameter matrix, but estimated using self-calibration from rotat-
ing scenes.

• Unknown intrinsic parameter matrix, estimated using self-calibration from rotating
scenes with additional knowledge on the principal point and skew.

The last two methods are extentions of the first. Under these two, the self-calibration
scheme described in Section 2.3 is initially used to estimate the K matrix. Afterwards,
the first method is used to recover the trajectory. In practical setups, this implies an
additional manoeuvre using a pan and tilt head mounted on the vehicle, or the possibility
of the vehicle rotating maintaining the camera optical center approximately at the same
position.
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4.2. Known intrinsic parameter matrix
Throughout the rest of this section we will consider a 3-D world frame to be such that

all the points in the planar scene have null −→z coordinate.
Let us now assume that the intrinsic parameter matrix K has been estimated before-

hand. Let ũ .= P X̃ be the projection of a 3D point X̃ of a planar scene, where .= denotes
equality up to a scale factor. From Equation (1), the projection matrix P can be expressed
as P

.= K [I3 o] C
WG, where I3 is the 3× 3 identity matrix, o is the 3× 1 null vector and

C
WG represents the 3-D rigid transformation

C

WG =
[

C
WR

C
W t

0 0 0 1

]
The planar points x̃ of the 2D world frame relate with the 3D frame, by

X̃ .=


1 0 0
0 1 0
0 0 0
0 0 1

 x̃ = J x̃ (6)

The projection of a planar world point is therefore ũ .= PJ x̃. It can be seen that the
matrix product PJ implements the homography between the scene plane and the image
plane, i.e., PJ

.= Timage,World.
Considering the components of C

WG ,

C

WG =


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1


one can write

Timage,World
.= PJ

Timage,World
.= K [I3 o] C

WGJ

Timage,World
.= KL (7)

where

L =

 r11 r12 t1
r21 r22 t2
r31 r32 t3



The L matrix comprises the first two columns of the camera-to-world rotation matrix
C
WR, and the position of the 3D world referential in the 3D camera frame, C

W t. It can be
computed up to scale, from L

.= K−1Timage,World, since Timage,World is also only defined
up to scale.
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In order to recover the C
WR matrix, one has first to estimate the unknown scale factor λ.

This factor effects the matrix L, therefore scaling the first two columns of C
WR. Let r1 and

r2 be the first two columns of L. It is easy to see that the absolute value of λ is given by
the norm of r1 (or r2), due to the fact that the columns of a rotation matrix have unit
norm. In this work we have used the following formula for ‖λ‖,

‖λ‖ = norm r1 + norm r2
2

A simple way of recovering the rotation matrix C
WR is, firstly, to scale r1 and r2 by the

two symmetric solutions for λ and, secondly, to compute their cross-product. This cross-
product is, in fact, the same for both solutions. Since Timage,World is estimated from noisy
image measurements, it is to expect r1 and r2 to be non-orthogonal. In this work, the
orthogonality condition was enforced by computing the two orthogonal unit vector that
have the same bisectrix and stand on the same plane as r1 and r2.
Let C

WR1 and C
WR2 be the two candidates for C

WR, corresponding respectively to the scaling
by + ‖λ‖ and −‖λ‖. The corresponding optical centre locations are given by

W
C t1= − 1

λ
C

WR
T
1

 t1
t2
t3

 and W
C t2=

1
λ

C

WR
T
2

 t1
t2
t3



It can easily be seen that C
WR1 and C

WR2 relate by C
WR1 =C

W R2

 −1 0 0
0 −1 0
0 0 1

, which repre-

sents a rotation of 180 degrees around the −→z axis. Therefore the locations of the optical
centres differ by the last coordinate which is symmetric. Both solutions for C

WR and W
C t are

coherent with Timage,World, and therefore valid. In the application of this work, we are
only interested in the positive −→z axis solution for W

C t, which corresponds to the camera
being above the plane of the floor.

4.3. Known principal point and skewing
An alternative method for estimating the camera pose can be devised if only the principal

point location and the skewing ratio fkθ

fkv
are known, instead of the full K matrix. Let us

decompose K as the product of a upper triangular matrix U with ones on the diagonal by
a diagonal matrix A, such that

K
.= UA =

 1 fkθ

fkv
u0

0 1 v0

0 0 1


 fku 0 0

0 fkv 0
0 0 1


Since U is invertible, one can extend Equation (7) to

U−1Timage,World
.= AL (8)

The left side of Equation (8) can be computed from image measurements. As we are
interested in estimating the unknown intrinsic parameters in the A matrix, we will start
by explicitly including an unknown scale factor λ, in order to remove the equality up to
scale. Let M = U−1Timage,World. Equation (8) can thus be written as A(λL) = M . By
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considering the first two columns of this equality, where the unknown scale factor λ has
been multiplied to the elements of L, the following system of equations can be written,

 fku 0 0
0 fkv 0
0 0 1

  λ · l11 λ · l12
λ · l21 λ · l22
λ · l31 λ · l32

 =

 m11 m12

m21 m22

m31 m32


By imposing the additional conditions of equal norm and vector orthogonality on

[
λ · l11 λ · l21 λ · l31

]T

and
[
λ · l12 λ · l22 λ · l32

]T
, a system of equations on fku and fkv can be written in the

form of

[
m11 ·m12 m21 ·m22

m2
11 −m2

12 m2
21 −m2

22

] [
1

fk2
u

1
fk2

v

]
= −

[
m31 ·m32

m2
31 −m2

32

]
After estimating fku and fkv the pose can be recovered using the method described in

Section 4.2.
Although this method can be used independently for each frame of the image sequence,

higher accuracy for the pose recovery can be achieved by using more than one frame in
the estimation of fku and fkv. For the experiments conducted in this paper, we have used
an iterative least-squares method[5], which is suitable for the on-line processing of image
sequences.

4.4. Pose Estimation Results

4.4.1. Original Sequence
In order to evaluate the performance of the pose estimation algorithms, accurate ground-

truth is required. For this reason we have used the mosaic of Figure 5 and synthesized
new views according to a specified camera matrix and trajectory. These images are then
used to retrieve the camera and position parameters. The mosaic was set to cover an area
of 6 by 14.5 meters. The sequence comprises 40 images of 320 × 240 pixels taken by a
camera on a moving vehicle combining 3D motion and rotation. The camera is pointing
downwards with a tilt angle of approximately 150 degree with respect to the horizontal.
The used intrinsic parameters matrix K accounts for a skewless camera with the following
intrinsics,

K =

 480 0 160
0 480 120
0 0 1


In order to simulate the vehicle drift induced by water currents, perturbations have been

added to the nominal forward motion of 0.23 meters/frame and to the nominal height above
sea floor of 3 meters. The perturbations account for periodic drifts of around 0.4 meters in
position and 15 degrees in orientation. The combined movement of the camera is depicted
on Figure 6, where the camera is represented with the optical axis, for each frame.
The resulting synthetic sequence is fairly realistic-looking. Frames 9 and 18 are presented

on Figure 7. Although it does not take into account the effects of non-uniform lighting
and barrel distortion, usually present in underwater imagery, this sequence can still be a
good approximation of real images taken in shallow waters under daylight illumination.
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FIG. 6. 3D view of the camera positions and corresponding optical axes used for generating the
sequence with available ground-truth.

4.4.2. Camera Self-calibration
In order to use the self-calibration method, an additional set of 20 images was produced,

in which the camera undergoes pure rotation. The optical centre remained fixed at 4 meters
above the sea bottom, while the camera faced down, and rotated around the 3 axes (pan,
tilt and yaw). For each axis, the angle range is ±5 degrees. The sequence of angular
positions used for pan and tilt are plotted in Figure 8, while a 3D view of the cameras
optical axes over the mosaic is presented in Figure 9. The intrinsic parameters matrix K

used for this sequence was the same as the one used for the other sequence.
The estimation of the homographies between adjacent images constitutes the starting

point for the self-calibration procedures. The homographies were computed using the
algorithms described above for the mosaic creation. For the sequence of 20 images, 19
homographies were estimated using 6 to 70 matched pairs of points, within a 0.5 pixel
distance threshold. Using the self-calibration methods for unknown intrinsics and known
principal point and skew, the recovered matrices were, respectively,

Krec =

 499.8 −10.1 159.2
0 482.9 82.8
0 0 1.00

 and KrecPP =

 484.38 0 160.00
0 487.33 120.00
0 0 1.00



FIG. 7. Two frames of the generated image sequence used for positioning evaluation with ground-
truth.
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−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Pan angles (degrees)

T
ilt

 a
ng

le
s 

(d
eg

re
es

)

FIG. 8. Pan and tilt angles used for generating the sequence containing pure camera rotation.

4.4.3. Camera Trajectory Recovery
The performance of the pose estimation was experimentally evaluated by testing the

camera path reconstruction using the available ground-truth data. The test results pre-
sented assume constant intrinsic parameters in time and differ on the amount of intrinsic
parameter information used. With decreasing required calibration information, the con-
ducted tests were the following:

Exp1 - Trajectory recovery with known K matrix

Exp2 - Trajectory recovery with known principal point and zero skew

Exp3 - Trajectory recovery with self-calibration with known principal point and zero
skew

Exp4 - Trajectory recovery with self-calibration for all intrinsic parameters

The synthetic images from the sequence containing camera translation were registered
directly on the mosaic, using the algorithm described in subsection 4.1. The algorithm
was run with a specified acceptable minimum of eight match pairs per homography. In
each frame it was able to find between 16 and 39 pairs, as displayed in Figure 10. For

FIG. 9. 3D view of the camera positions and corresponding optical axes used for generating the
sequence containing pure camera rotation.
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the set of 40 images, 2 homographies were computed with matched pairs from a second
attempt, while the other 38 were computed at the first attempt.
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FIG. 10. Number of correctly matched pairs of points used for the final computation of the each of
the image-to-mosaic homographies. The circular marks refer to successful matching on the first attempt,
while the star-shaped ones refer to sucessful matching on the second attempt.

For the trajectory recovery with known principal point and zero skew (Exp2), an it-
erative least-squares estimation method was implemented for the estimation of the two
unknown intrinsic parameters. When processing a sequence of images, this method uses
the current frame-to-mosaic homography, together with all the past homographies.
Statistics for the reconstruction errors are presented in Table 2. The position errors

were measured by taking the Euclidean distance between the ground-truth position and
the estimated position. As for the orientation, the error was measured by computing the
angle between the true and estimated camera frame orientations. For each image and
method, the position errors are plotted in Figure 11.
In these results, the lowest position and orientation errors correspond to the trajectory

recovery with known K matrix (Exp1). This is not surprising, as this method uses the

TABLE 2

Trajectory recovery results for known K matrix, known principal point,self-

calibration with known principal point and full self-calibration. Average,

Maximum and Standard Deviation of position and angular

errors.

Method Position Errors (meters) Angular Errors (degrees)

Avg. Maximum Std.Dev. Avg. Maximum Std.Dev.

Known K (Exp1) 0.031 0.159 0.031 0.610 2.932 0.525

Known PP (Exp2) 0.045 0.159 0.030 0.636 2.978 0.509

Self-Calib. with PP (Exp3) 0.061 0.163 0.025 0.690 2.675 0.463

Full Self-Calib. (Exp4) 0.258 0.366 0.036 1.678 2.754 0.421
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FIG. 11. Trajectory position errors for the experiments 1 to 4.

most prior information. For Exp2, a 50 % increase on the average error is observed. With
self-calibration for known principal point and zero skew (Exp3), the average position error
is approximately 2 times larger than the one for Exp1. However the worst case error is
15 cm, which can be considered small when compared to the distance to the sea floor of
3 meters (5%). The average error is 6.1 cm which accounts for slightly more than 2% of
the distance to the sea floor. When using unconstrained self-calibration (Exp4), position
errors of around 25 cm are observed.
An additional experiment was conducted in order to compare the following image reg-

istration schemes:

Exp1 - Image-to-mosaic homographies computed by direct mosaic registration
Exp5 - Image-to-mosaic homographies computed by cascading inter-images homogra-

phies

The first scheme refers to the use of the algorithm of Subsection 4.1 with the same
setup as in (Exp1). In the second, the true camera position and orientation is used for
computing the first image-to-mosaic homography TM,1. The subsequent homographies are
calculated by,

TM,i = TM,1 ·
i∏

k=2

Tk−1,k i > 1

where Tk−1,k are the inter-images homographies and the matrix product is computed by
right-multiplying for each increment of the index k. The set of Tk−1,k was estimated from
the same sequence of images, and the number of used matched points varied from 10 to
76 pairs, as displayed in Figure 12, with an average of 60.
Table 3 and Figure 13 present, respectively, the observed position and orientation error

statistics, and the plot of the positions errors for each frame. It can be seen that the
second scheme produces less accurate results, due to the fact that small errors, inherent
to the inter-image homography estimation, are accumulated. This phenomena is in many
ways comparable to the positioning errors arising from the use of dead-reckoning during
navigation.
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FIG. 12. Number of correctly matched pairs used for the final computation of the each homography
between consecutive frames.

TABLE 3

Error statistics for the direct mosaic registration scheme (same as in Exp1)

and for the inter-image registration scheme. The values of the average,

maximum and standard deviation are shown for the position

and angular errors .

Method Position Errors (meters) Angular Errors (degrees)

Mean Maximum Std.Dev. Mean Maximum Std.Dev.

Direct Reg. 0.031 0.159 0.031 0.610 2.932 0.525

Inter–image Reg. 0.252 0.437 0.151 2.667 5.528 1.313
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FIG. 13. Trajectory position errors for the experiments 1 and 5. The error accumulation resulting
from the inter–image homography estimation is apparent for Exp5.
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FIG. 14. 3D representation of the camera trajectories for the ground-truth (upper set) and the
result of Exp5 (lower set).

The drift induced by the error accumulation is apparent in Figure 14 where a 3D view
of the correct and estimated trajectories is given.
A final experiment was conducted for evaluating the quality of reconstruction using

self-calibration when the principal point location is known or estimated beforehand with
a different method. For the set of synthetic images described above, the self-calibration
algorithm with defined principal point was used, with the location of the principal point
varying from (0,0) to (320,240) in equally spaced intervals of 1 pixel. For each location, the
average error on camera position and orientation was computed. Contour plots showing
the results for average errors are given in Figures 15 and 16.
The lowest errors correspond to the true principal point at (160,120), at the center

of the graphs. This case reverts to the third experiment (Exp3) described above, for
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FIG. 15. Results for the trajectory recontruction procedure using self-calibration from rotating
camera with known principal point. This contour plot contains the average position error (in meters) as
a function of the assumed principal point location.
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FIG. 16. Results for the trajectory recontruction procedure using self-calibration from rotating
scamera with known principal point. This contour plot contains the average orientation error (in degrees)
as a function of the assumed principal point location.

which the average position and orientation errors were 0.061 meters and 0.690 degrees.
The method used in that experiment outperforms the unknown intrinsics self-calibration
method (Exp4), for a considerably large area around the principal point.
From this, a conclusion with practical implications for the setups where self-calibration

is feasible can be drawn. Even if the principal point location is not known precisely,
it might be more advantageous to use a rough estimate and perform self-calibration for
known principal point than to do it for unconstrained intrinsics. For the case presented
here, better results on position error are achieved even if the assumed principal point
location is within a 35 pixel neighborhood of the correct value.

5. CONCLUSIONS

We have presented an approach for the automatic creation of underwater video mosaics
and illustrated their use as visual reference maps for subsequent vehicle localization. Key
issues for the mosaicing process are the robust selection of correspondences and the use
of geometric models capable of registering any view of a planar scene. Presented mosaics
illustrated the good performance of the implemented matching and registration methods.
Even with notorious violations of the assumed model, the algorithm is still able to find the
image motion parameters as to create a mosaic with small misalignments to the human
eye.
Methods for pose estimation were presented, which allow the estimation of the 3D

position and orientation of a vehicle from a view of a previously created mosaic. The
performance was evaluated using images corresponding to known camera motion that
served as the ground-truth.
An emphasis was put on using several degrees of available information on the camera

intrinsic parameters, including self-calibration. The possibility of calibrating a camera
on-line can be of practical importance for a number of visually guided tasks, specially if
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the camera parameters are subject to change slowly in time. This paper illustrated how
relevant information for the pose estimation process can be obtained by the analysis of
rotation images. These images are easier to acquire than having to resort to calibration
grids. Also, we have shown that the knowledge of the principal point can easily be incor-
porated in the self-calibration scheme with benefits on the accuracy. This is true even if
its location is not precisely known.
By automatically creating visual representations of the sea floor and using them for

navigation, the methods in this paper provide an important capability for the autonomous
operation of submersibles.
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