
PALADYN Journal of Behavioral Robotics

Research Article · DOI: 10.2478/s13230-013-0102-z JBR · 3(3) · 2012 · 113-127

Incremental Development of Multiple Tool Models for Robotic
Reaching Through Autonomous Exploration

Lorenzo Jamone1∗,
Bruno Damas2,,3† ,

Nobotsuna Endo1‡ ,
José Santos-Victor2§,

Atsuo Takanishi1,4¶

1 Faculty of Science and Engineering,
Waseda University, Tokyo, Japan

2 Instituto de Sistemas e Robótica, Instituto
Superior Técnico, Lisboa, Portugal

3 Escola Superior de Tecnologia de Setúbal,
Setúbal, Portugal

4 Humanoid Robotics Institute, Waseda
University, Tokyo, Japan

Received 13-12-2012

Accepted 27-03-2013

Abstract

Autonomy and flexibility are two major requirements for modern robots. In particular, humanoid robots should learn
new skills incrementally through autonomous exploration, and adapt to diɼerent contexts. In this paper we consider
the problem of learning forward models for task space control under dynamically varying kinematic contexts: the
robot learns incrementally and autonomously its forward kinematics under diɼerent contexts, represented by the
inclusion of diɼerent tools, and exploits the learned model to realize reaching with those tools. We model the forward
kinematics as a multi-valued function, in which diɼerent outputs for the same input query are related to diɼerent tools
(i.e. contexts). The model is estimated using IMLE, a recent online learning algorithm for multi-valued regression,
and used for control. No information is given about the tool changes, nor any assumption is made about the tool
kinematics. Results are provided both in simulation and with a full-body humanoid. In the latter case we show how
the robot successfully performs reaching using a flexible tool, a clear example of complex kinematics.

Keywords

motor learning and adaptation· humanoid robots · reaching with tools · developmental robotics · continuous online learning

1. Introduction

The future of humanoid robots is to become eɺcient helpers for hu-
mans, both in the execution of everyday tasks and in the accom-
plishment of tedious and dangerous works. Driven by this vision, re-
searchers have been challenged to design more and more complex
robots, that show an increasing number of degrees of freedom and
sensors [1, 2]; these robots should be able to cope with the unstruc-
tured environment in which humans daily live and act. In particular, it
would be desirable that robot behaviors become autonomous (not re-
quiring the supervision of a human expert) and flexible (applicable to
diɼerent situations and contexts).
However, as robots becomemore complex, building the analytical mod-
els needed for robot control is turning more and more diɺcult and time-
consuming. Moreover, the lack of knowledge of certain hard to mea-
sure physical parameters (e.g. friction) and the existence of highly non-
linear physical interactions, such as actuator nonlinearities, soft or de-
formable parts and unmodeled mass distributions, makes it infeasible

∗E-mail: lorejam@liralab.it
† E-mail: bdamas@isr.ist.utl.pt
‡ E-mail: n-endo@takanishi.mech.waseda.ac.jp
§E-mail: jasv@isr.ist.utl.pt
¶ E-mail: contact@takanishi.mech.waseda.ac.jp

to obtain adequate and accurate models for such kind of systems [3];
as a consequence, resorting to modern machine learning techniques
is becoming a more and more popular way to provide these complex
robots with the necessary representation capability (see [4] for a recent
survey).
Among these techniques, there are a few that have been very success-
ful at learning the robot kinematics or dynamics: Gaussian Processes
Regression achieves a state of the art performance with respect to es-
timation generalization error [5], while the Locally Weighted Projection
Regression (LWPR) algorithm [6], an online non-linear function approx-
imation algorithm, has been widely used for robotic learning problems
due to its excellent memory requirements and low computational com-
plexity.
Many robotic tasks, however, involve handling and manipulation of dif-
ferent objects, which makes the environment and the mappings to be
learned non-stationary. The kinematics mapping from robot joint an-
gles to end-eɼector position, for instance, changes whenever diɼerent
tools are used; another classical example is the change in the robot
dynamics due to the variation of the load of the end-eɼector.
This is known as learning and control under a varying context, where an
unobserved context variable changes the map that has to be learned
and used for the control. Such context can generally be a discrete vari-
able, corresponding to the case where only a finite, albeit unknown,
number of diɼerent contexts exist, or continuous, indicating a smooth
change on the mapping to learn. The most straightforward answer
to this problem is to introduce some form of adaptation in the learn-
ing algorithms, making them forget past experience through the use of

113

PALADYN Journal of Behavioral Robotics

some kind of forgetting factors mechanism. Of course, it is terribly inef-
ficient to relearn the complete mapping every time the context changes,
especially when there is an eɼective chance that a previously learned
context may be presented again to the robot. Another approach to this
problem, for the discrete case, is to keep a set of models that describe
the robot model for each diɼerent context. Three critical issues arise
when learning multiple models for robot control. The first issue is i) how
to identify the correct number of models to use, without any problem
specific a-priori information. The other two issues are ii) how to esti-
mate the current context, given that the correct number of models to
use is known, and iii) how to use such estimation for either controlling
the robot or further training the models. In Section 2 we describe how
previous works tackled these issues.
In this paper we propose a diɼerent approach, by directly modeling
the map to be learned as an unknown multi-valued function, a mul-
timap that can assign diɼerent solutions for the same query input point:
in such scheme, each branch of the multimap represents the relation
from an input vector to an output vector, for a specific unknown con-
text. This multi-valued function is learned from sensory data using the
Infinite Mixture of Linear Experts (IMLE) algorithm [7], a recent incre-
mental learning algorithm that is particularly suited for these kind of
multi-valued functions. This algorithm describes the map to be learned
as a collection of local linear models that can coexist in similar input
locations, thus potentially producing multi-valued estimates for the out-
put corresponding to a particular input query point: the most important
mechanisms of this algorithm are detailed in Section 3. Using a single
IMLE multi-valued model for the discrete context estimation problem
has some tremendous advantages over the previous approaches to
discrete varying context and control. On one hand, there is no need to
maintain a bank of single-valued function approximation models, since
IMLE produces a discrete set of solutions for each input query point; the
number and values for this set of solutions depend on the specific in-
put query location and the information gathered so far by the algorithm.
This also avoids the need to define or estimate in advance the number
of single-valued models to use. Secondly, the IMLE training process,
based on the EM algorithm, automatically and transparently assigns re-
sponsibilities to each of the local models for each training point, with no
need to explicitly maintain an estimate for the hidden context variable.
This even allows for the existence of a diɼerent number of contexts in
diɼerent locations of the input space. Choosing an appropriate control
action is also very simple using IMLE: assuming some form of continuity
and smoothness, a particular solution, for a given query point, can be
picked by simply choosing the predicted solution closest to the previ-
ous output point: using IMLE for robot control is described in Section 4.
To evaluate the performance of the IMLE algorithm under the discrete
varying context situation we used it to learn the kinematics of two dif-
ferent humanoid robots, iCub [2] and Kobian [1], while holding diɼer-
ent tools. The two robotic platforms are described in Section 5. The
learned kinematic models were employed to control the robots reach-
ing movements switching dynamically between the diɼerent tools. No
information whatsoever was conveyed to the algorithm whenever the
tool was changed; moreover, no assumptions were made about the
kinematic properties of the tools being used. The results are shown
in Section 6 and Section 7: to our knowledge, this is the most general
and eɺcient approach to learning and controlling under discrete varying
contexts.

2. Related work

Humans develop the ability to use tools in a meaningful way following
a long and complex process that begins at birth. Guerin et al. [8] pro-

vide a comprehensive discussion about the mechanisms undelying the
development of tool use abilities in human newborns, from the initial
sensorimotor learning to the emergence of planning capabilities.
In the context of this paper, we focus on how humans (and robots) learn
internal models for motor control, and how they adapt these models to
diɼerent contexts: an example of diɼerent kinematic contexts can be
the use of diɼerent tools for reaching.
Indeed, adult humans can skillfully perform operations with diɼerent
tools, exploiting internal models that are i) learned autonomously from
motor experience and ii) recalled automatically during tool usage; in
other words, humans can dynamically switch between diɼerent learned
models based on the actual context. According to the literature, sub-
jects involved in motor learning and motor adaptation tasks may take
many movements to achieve a good performance in a novel context
characterized by a kinematic [9] or dynamic [10] perturbation. How-
ever, when the perturbation is removed, re-adaptation to the origi-
nal context (i.e. a context that has been experienced, and therefore
learned, for a lifetime) is often very rapid. This suggests that learning
to operate in a new context (e.g. with a new tool) may represent the
creation of a new model, whereas re-adaptation represents the switch-
ing back to a previously learned model. Further evidence is provided
by specific work on re-adaptation, where on repeated presentation of a
kinematic [11] or dynamic [12] perturbation subjects adapt increasingly
rapidly, suggesting that a model of the perturbated context is incremen-
tally build through motor experience, and it is recalled when the context
appears.
Moreover, recent neuroscience studies [13] suggest that an internal
representation of the body is stored in the human brain (i.e. a body
schema); this schema can be extended to include noncorporeal ob-
jects that have a systematic relation to the body itself, such as manip-
ulated tools (i.e. an extended body schema). Indeed, while holding
a tool, humans tend to remap parts of the space allocated as ”far” to
”near” [14]. These inclusions are generally regarded as temporary and
related to the actual context.
Studies on monkeys have analyzed the neural mechanisms underlying
this behavior. Neurons in the monkey’s caudal postcentral gyrus re-
spond to somatosensory and visual stimuli arising from the hands. If
the monkey retrieves food with the hand the visual receptive fields of
these neurons are limited to the hand, but when they use a tool the vi-
sual receptive fields expand to include both the hand and the tool, and
this modification is strictly limited to the time of tool usage [15]. It is
reasonable to assume that similar phenomena take place in the human
brain as well.
As discussed in the introduction, a possible way to achieve similar
adaptation capabilities in robots is to resort to modular control ap-
proaches based on learned models. A number of solutions has been
proposed in the recent years. The early work on adaptive control of
Narendra [16] considers that an appropriate number of models is given
a-priori, already trained and exhibiting good performance within each
context. The MOSAIC architecture [17, 18], on the other hand, as-
sumes that some perceptual cues are available that can guide a cor-
rect context estimation in the early learning process, that can in turn
successfully assign the perceived data points to a predefined number
of models. This, however, can be a quite optimistic assumption, as not
only the number of models must be known beforehand but also a very
domain specific information must be gathered to build the functions re-
lating perceptual cues to specific contexts — precisely what is to be
avoided when using a learning architecture. While the early results us-
ing the MOSAIC model are limited to a very simple system consisting of
an object moving along a single direction axis, recently an extension has
been proposed to control a real humanoid robot [19]. However, even
the extended MOSAIC suɼers from the main limitation of requiring an
a-priori definition of the number of models, which in the work described

114

PALADYN Journal of Behavioral Robotics

in [19] is obtained in simulation before performing the real robot experi-
ments. Finally, the approach presented in [20] claims the ability to deal
with continuous varying contexts, although the method only holds un-
der changes in the mass of the object being manipulated — it could not
be applied, for instance, when varying a robot link length while trying
to learn its forward kinematics. Their assumption of an explicit latent
context variable also brings some problems when the current context
needs to be inferred for training purposes: in the continuous case they
need to resort to two models previously trained using context labeled
data before they are able to generalize to unseen contexts, while in the
discrete case a bootstrap, based on a EM procedure over a batch of un-
labeled data points, is required when no trained models exist yet — this
however, goes against the online, incremental philosophy of LWPR [6],
the function approximation algorithm used in the corresponding simu-
lations.
Several works focus more specifically on learning a model of the robot
body schema (see [21] for a recent survey); among them, a few also
deal with the inclusion of tools into the learned model. Taking direct
inspiration from the studies of Iriki about neural adaptation in monkeys
[15], the work in [22] proposes a visual attention module that can ex-
tend the robot body representation through Hebbian learning when a
tool is being used; simulation results are provided. In [23] a simple 2-
joints planar manipulator is controlled using an analytical model of the
Jacobian, and when a tool is added to the kinematic chain the corre-
sponding Jacobian is obtained through multiplication of the analytical
Jacobian by a linear constant matrix, which is learned exploiting the
temporal integration of visual and tactile information during motor ex-
ploration. A more comprehensive system is presented in [24], where
recurrent neural networks are used to identify the tool currently being
used by the robot, based on previous trained data, and allow to gener-
alize to unseen tools. This work, however, is based on a human gener-
ated set of training movements of the robot arm and can only produce
movements that are replications of the original ones used for training,
thus not addressing the more general problem of full kinematic learn-
ing with diɼerent tools. Another approach is proposed in [25], where
a recurrent neural network parametrized with the length of the tool is
used to estimate the inverse kinematics of a humanoid robot. However,
the length of the tool must be known in advance to train and query the
neural network. Additionally, training is done using circular trajectories
in a fixed plane: this procedure learns a subspace of much lower di-
mensionality than the joint space dimension being used. Another big
limitation of these works is that assumptions are made about the kine-
matics of the tool, and they can account only for rigid transformations
(e.g. they cannot cope with flexible or deformable tools).

3. The IMLE Algorithm

The IMLE algorithm [7] is a probabilistic algorithm that uses a gener-
alized expectation-maximization (EM) procedure to update its param-
eters, fitting an infinite mixture of linear experts to an online stream
of training data (zi, xi), where zi ∈ Rd denotes an input point and
xi ∈ RD denotes the corresponding output. Its only assumptions
about the training data nature is that it can be approximated by a mix-
ture of local linear models: this naturally allows for multi-valued func-
tion learning, as the diɼerent branches of the multimap can be approxi-
mated by diɼerent linear models sharing the same input region. It starts
with the following probabilistic generative model,

p(xi|zi, wij ; Θ) ∼ N
(
µj + Λj (zi − νj), Ψj

)
, (1)

p(zi|wij ; Θ) ∼ N
(
νj , Σj

)
, (2)

where the mean νj and covariance Σj define each expert j active input
region. Parameters µj and Λj define the linear relation from input to
output for a particular expert: µj is the mean for the output marginal
distribution of expert j , while Λj is a matrix containing the regression
coeɺcients; Ψj is a diagonal matrix that represents the uncorrelated
noise at each of the output dimensions. The unobserved, latent variable
wij assigns sample points to experts, while the parameter vector Θ
gathers all the parameters to be learned. The model starting point is
in essence similar to the one presented in [26]; however, some priors
over the mixture parameters are additionally defined to perform some
regularization and to enforce the principle of localized learning, thus
avoiding the interference of experts across diɼerent regions of the input
space. More details on the full probabilistic model are available in [7].
Training of the model is done using an online EM algorithm: in the
expectation step (E-Step) responsibilities are assigned to experts for a
new point (zi, xi), according to:

hij ≡ E [wij |xi, zi; Θ̂] = p(wij |xi, zi; Θ̂) , (3)

where Θ̂ is the most recent estimate for the mixture parameters being
learned. Maximization step (M-Step) then updates the parameters in
Θ̂ according to the responsibilities hij previously obtained. Based on a
model for outlier points, the mixture can grow by automatically adding
new experts whenever the perceived data points are not well explained
by the mixture. Once again, please refer to the original paper for details.
The E-Step above avoids the typical interference between experts for
the multi-valued function estimation case, since it assigns responsibili-
ties based on both the input and output part of the training point. LWPR,
for instance, although sharing the mixture of localized linear models
concept with IMLE, adapts the distance metrics of each receptive field
using a procedure based on the minimization of the (single-valued) pre-
diction error; this, together with an attribution of responsibilities based
on the input part of a data point only, makes the coexistence of linear
models in the same input region infeasible, as required for multi-valued
learning.
Given a current set of mixture parameters, a single-valued prediction
algorithm will typically mixture the individual linear models predictions
according to some weighted average scheme, using weights wx

j (zq)
that depend on how strong each model is activated given only the input
query point zq. This is of course unacceptable for multi-valued predic-
tion. The IMLE algorithm tries to find, for a given input query zq, a set of

estimated predictions ˆ̄xk by grouping and clustering the linear models
point estimates into a minimal set of predictions. It uses a probabilistic
model that relates linear models point predictions x̂j to the unknown set
of true multi-valued predictions x̄k , also taking into account the weights
wx

j (zq) and the estimation variances Rj provided by each linear model.
This process then has to tackle two major questions, namely how to
group linear models point estimates into a set of Npred coherent pre-
dictions and how to choose Npred, the appropriate number of such
predictions. The clustering problem is solved using another EM proce-
dure, by assuming some latent variables sjk exist that assign models
point estimates to unknown predictions — we will call it EMpred to dis-
tinguish it from the EM procedure described before for mixture training.
After the EMpred procedure is carried through, a statistical hypothesis
test is performed, to assess the fit of the resulting set of multi-valued
predictions: if the test rejects the goodness of fit hypothesis then it is
assumed that the number of predictions Npred is insuɺcient. For a
query point zq the IMLE algorithm starts with the single-valued predic-
tion: if the test finds evidence to reject the hypothesis that the models
point estimates are distributed according to a single-valued prediction,
the value of Npred is increased to 2 and the EMpred clustering proce-
dure is carried on; if the goodness of fit hypothesis is again rejected the

115

PALADYN Journal of Behavioral Robotics

number of predictions Npred is again increased, until the test fails to
reject the hypothesis and a final set of Npred multi-valued predictions
is obtained.
This clustering procedure is a distinctive feature of IMLE when com-
pared, for instance, to the work described in [27], that can also deal
with multi-valued prediction: while IMLE, for each query, can provide
a minimal set of coherent predictions, the latter algorithm is only able
to stochastically sample a prediction from the set of models. As noted
by their authors, this can lead to unwanted rapid changes of predicted
context, that can have disastrous consequences in the control phase.
As a final remark, note that IMLE features a very low computational
complexity: for every new training point presented the learning algo-
rithm is O(Md(d + D)), i.e., linear in the number of active experts
M and output dimensions D and quadratic in the number of input di-
mensions d, thus making it directly comparable to the state-of-the-art
LWPR in terms of computational complexity per training point1. Like
LWPR, this complexity can be made linear in d if the input distance
metrics Σj are constrained to be diagonal. It also has been shown
in [7] that IMLE can outperform LWPR in terms of prediction error for
single-valued problems, while keeping in general a lower number of al-
located linear models. For prediction, IMLE computational time grows
linearly with Npred, the number of multi-valued solutions found.

4. Task Space Control

Reaching is a particular case of the more general problem of task space
(or operational space) control. Task space is defined as the space in
which the robot tasks are described (e.g. the 3D Cartesian space), as
opposed to the joints space (or motor space). In the case of reach-
ing, we want to control the position of the robot end-eɼector in the task
space: this end-eɼector can be represented by either the robot hand
or the tip of a manipulated tool. Since the robot needs to be controlled
in joints space, an inverse model is required which maps the desired
task space behavior into the appropriate joints space trajectories (i.e.
motor commands). When the joints space dimension is larger than the
task space dimension an infinity of solutions exists for the model inver-
sion: in this case, we say that the robot is redundant with respect to
the specified task. To control the end-eɼector position in task space
we follow the approach originally proposed in [28], where due to the
redundancy of the system two goals can be simultaneously achieved
through null-space projection: a main goal in the task space (i.e. po-
sitioning of the end-eɼector) and a secondary goal in joints space (i.e.
keeping the joints as far as possible from the physical limits). The sec-
ondary goal is projected in the null-space of the main goal; this results
in motor velocities q̇ computed as follows:

q̇ = KmJ† (q)ẋd + Ks(I − J† (q)J(q)) q̇d , (4)

where the Jacobian matrix J(q) maps from motor velocities to task ve-
locities, J† (q) is its Moore-Penrose generalized inverse, (I − J† (q)J(q))
is a null-space projector, ẋd is the desired task space velocity for the
main goal and q̇d is the desired joint space velocity for the secondary
goal. At every control step these desired velocities are chosen as

ẋd = ∆x = xd − x and q̇d = −∇M(q) , (5)

1 This is a consequence of using the Sherman-Morrison formula to per-
form the matrix inversions involved in the training procedure.

where xd and x are the desired and actual task space positions and
∇M(q) is the gradient of M(q), the function we want to minimize as a
secondary goal. Km and Ks are positive definite diagonal gain matrices
respectively for the main and secondary goals. Since our secondary
goal is to keep the joints as far as possible from their limits we chose
M(q) as in [28]:

M(q) = 1
N

N∑

i=1

(
qi − ai

ai − qmax
i

)2

, (6)

ai = qmax
i + qmin

i
2 , (7)

whereN is the overall number of joints and qmin and qmax are lower and
upper joints limits. At every control step we check whether the system
is close to singularities by computing the smaller singular value of the
Jacobian through singular value decomposition (SVD). If the smaller
singular value δm is lower than a predefined threshold δT we rely on the
damped least squares solution [29]. In this case the pseudoinverse is
computed as follows:

J† (q) = JT (q)(J(q)JT (q) + λ2I)−1 , (8)

with

λ2 =
[

1 −
(

δm

δT

)2
]

· λ2
MAX . (9)

The Jacobian J(q) is obtained estimating the local slope, for an input
query point q, of the current learned map from joint to task space, x =
f̂ (q). This solution has been proposed in [30], using LWPR for the
map estimation. Of course, when using IMLE to provide the Jacobian
estimate, we must first choose one of the possible multiple solutions
provided by the algorithm for the same query point q. A fairly simple
and eɺcient solution is to pick the prediction closest to the output point
x acquired on the previous control step. This procedure is implicitly
assuming that the context does not change very frequently (i.e. at each
control step), which seems a reasonable assumption.

5. Robotic platforms

The proposed learning strategy is very general and our goal is to apply it
to diɼerent humanoid robots, namely iCub [2] and Kobian [1] (depicted
in Figure 1). The experiments reported in Section 6 and Section 7 have
been realized using the dynamic simulator of the iCub [31] and the real
robot Kobian, respectively. In the following subsections we describe the
two platforms in detail, describing the diɼerent joints and task spaces
and the diɼerent tools used for reaching. All the software has been
realized using YARP [32] using a modular approach that allowed us to
control both iCub and Kobian robots with minor modifications in the
code.

5.1. The iCub

The iCub is a humanoid robot for research in embodied cognition, de-
veloped in the context of the EU project RobotCub and subsequently
adopted by more than 20 laboratories worldwide. It has 53 motors
that move the head, arms and hands, waist, and legs. It can see and

116

PALADYN Journal of Behavioral Robotics

Figure 1. The humanoid robots iCub (on the left) and Kobian (on the right).

hear, it has the sense of proprioception (body configuration) and move-
ment (using accelerometers and gyroscopes). In the following exper-
iments we use the iCub simulator [31], a realistic software that uses
ODE (Open Dynamic Engine) for simulating rigid bodies and collision
detection algorithms to compute the physical interaction with objects.
Snapshots of the simulated iCub holding the diɼerent tools are dis-
played in Figure 2. The right arm and the waist of the robot are actuated
to control the end-eɼector position in the 3D Cartesian space, using the
task space controller described in Section 4. The end-eɼector can be
either the robot hand or the tip of a tool: the two tools used in the ex-
periments (a 28 cm long stick tool and a 48×30 cm L-shaped tool) are
displayed in Figure 2. The joint space vector q and task space vector
x are defined as follows:

. q = [θsp θsy θsr θe θwy θwr θwp]T ∈ R7

. x = [xp yp zp]T ∈ R3

where θsp, θsy, θsr are the shoulder pitch, yaw and roll rotations (ele-
vation/depression, adduction/abduction and rotation of the arm), θe is
the elbow flexion/extension, θwy, θwr , θwp are the waist yaw, roll and
pitch rotations (rotation, adduction/abduction, elevation/depression of
the trunk), and xp, yp, zp are the three cartesian coordinates describing
the position of the end-eɼector (it can be either the hand of the tip of
a tool) with respect to a fixed reference frame placed on the ground, in
the middle between the robot feet. The robot joints limits are defined in
Table 1.

Table 1. Joints limits of the iCub robot simulator.

arm waist
qmin −80◦ 0◦ 0◦ 20◦ −30◦ −30◦ −10◦

qmax 0◦ 80◦ 80◦ 80◦ 30◦ 30◦ 30◦

5.2. Kobian

Kobian is a 48-DOFs full humanoid robot, that has been designed to
integrate the bipedal walking skill of Wabian [33] to the emotion expres-
sion capabilities of the human-like head robot WE-4 [34], as described
in [35]. Kobian can express diɼerent emotions (e.g. happiness, sad-
ness, fear, anger) with face and whole-body movements [1], also dur-
ing locomotion [36]. The robot size is similar to that of an average

Figure 2. Snapshots of the iCub Simulator grabbing the two diɼerent tools used
in the experiments: on the left, the 28 cm stick tool, on the right, the
48x30 cm L-shaped tool.

520 mm

1
4
7

0
 m

m

Y

Z

X

Figure 3. Kobian humanoid robot. On the left, Kobian expressing surprise. On
the right, description of the robot 48 DOFs.

Japanese woman (see left image in Figure 3) and the overall weight is
62 kg. The degress of freedom of the robot are distributed as follows:
12 in the two legs, 3 in the waist, 14 in the two arms, 8 in the two hands,
4 in the neck and 7 in the head (see right image in Figure 3).
All the joints are driven by DC motors with encoders activated by elec-
tric motor drivers (Tokushu Denso Co., Ltd.); counter readings of the
encoders (i.e. measure of joint angular positions) and output of the ve-
locity references to the motor drivers (i.e. motor commands) are done
by a PC (Pentium M 1.8 GHz, QNX Neutrino 6.3.0 operative system)
embedded in the robot back through the I/O boards (HRP interface
boards of ZUCO, Co., Ltd.). This PC is interfaced through Ethernet (or
wireless) connection to an external laptop (SONY) on which the higher
level programs run (i.e. learning, coordinated control). The laptop is
a node of a local network of several PCs, that can be exploited to re-
alize distributed computation when multiple behaviors and reasoning
processes are executed together. This modular distributed computa-
tion is supported by the use of YARP [32]. Two CMOS color cameras
(ARTRAY, ARTCAM-022MINI) are embedded in the robot eyeballs, and
directly connected to the laptop through an USB connection; the cam-
eras provide images of 640×480 pixels at a frame rate of 30 Hz.
As we want to realize visually guided reaching, we aim at controlling the
Kobian arm (in this case, the right arm) and head, in order to operate
in the part of the workspace which is both visible and reachable. The

117

PALADYN Journal of Behavioral Robotics

Figure 4. Kobian humanoid robot with the flexible rubber tool. Green balls (i.e.
visual markers) are attached to both the wrist and the tip of the tool.

robot end-eɼector is represented by a visual marker (a green ball in this
case) that can be attached either to the wrist (as a marker for the hand)
or to the tip of a 35 cm long flexible rubber tube (i.e. the tool); Figure
4 shows the two possible positions of the green ball on the robot. The
position of the ball center in the cameras images is computed through
visual processing (i.e. color based segmentation) with a precision of
about ±2 pixels (this error is due mainly to slight changes in the illumi-
nation, as we perform the experiments in natural environment).
The joints involved in head and arm control are the following:

. qhead = [θny θnp]T ∈ R2

. qarm = [θsp θsy θsr θe]T ∈ R4

where θny and θnp are the neck yaw and pitch rotations (head rota-
tion and elevation/depression, joints 40 and 39 in Figure 3), θsp, θsy,
θsr are the shoulder pitch, yaw and roll rotations (elevation/depression,
adduction/abduction and rotation of the arm) and θe is the elbow flex-
ion/extension (joints 16, 17, 18 and 19 in Figure 3). The corresponding
limits are defined in Table 2.

Table 2. Joints limits of the Kobian robot.

head arm
qmin −40◦ −10◦ −70◦ −30◦ −15◦ −90◦

qmax 40◦ 20◦ −5◦ −5◦ 15◦ −5◦

The visual position of the end-eɼector in camera coordinates xv can be
defined as follows:

xv =

uR

vR

uL − uR

 (10)

being uR and vR the coordinates on the right image plane and uL and
vL the coordinates on the left image plane. Since vL = vR (a perceived
target has always the same vertical position on both images), we can
univocally describe the 3D visual position with the 2D position in the
right image (uR , vR) plus the depth information (given by uL − uR).

5.2.1. Head control and definition of the forward kine-
matics
When implementing visual based reaching on a humanoid robot, we
are interested in locating 3D points in space by moving the head. Here
we describe how head control is used to localize the robot end-eɼector
and how we define the forward kinematics in Kobian.
The head joints are controlled to bring the end-eɼector to the center
of the right image (i.e. making uR and vR equal to zero); in the rest of
paper we will refer to this behavior as ”fixation”. If the end-eɼector is
visible (i.e. inside the image plane) head joints velocities are generated
as follows: [

q̇0
head

q̇1
head

]
=

[
K0 0
0 K1

] [
∆uR

∆vR

]
(11)

where K0 and K1 are positive gain constants, and ∆uR = ud
R − uR

is the diɼerence between desired and actual uR (in this case ud
R = 0);

the same applies for∆vR . If the end-eɼector is not visible a stereotyped
motion strategy (i.e. random left-right and up-down movements of the
neck) is used to detect it; then the controller given by Equation 11 is
activated.
When fixation is achieved (uR and vR are equal to zero) the 3D position
of the end-eɼector with respect to the arm base can be encoded using a
representation that includes motor variables (similar to the one originally
proposed in [37]), as follows:

xm =

q0

head

q1
head

uL − uR

 (12)

According to these definitions, in the experimental results presented in
Section 7 we estimate a forward kinematic model in the form xm =
f (qarm). The Jacobian J(q) derived from this model can be used to
control the arm in task space, using the controller described in Section
4. Interestingly, due to the linear relation between ∆xm and ∆xv (given
by the K0 and K1 constants in Equation 11), the desired task space
velocities for the control (i.e. ∆x in Equation 5) can be expressed using
either ∆xm or ∆xv , depending if the head is moving or is fixed. These
two possible uses of the learned kinematic model are shown in Section
7.2 and Section 7.3 respectively.

6. Results with iCub simulator

We show here the simulation results obtained using the dynamic sim-
ulator of the iCub humanoid robot. Section 6.1 evaluates the online
estimation perfomance of IMLE during a motor babbling phase, while
in Section 6.2 we use the map learned with IMLE for task space con-
trol. Some of the results present a comparison with LWPR, in order to
show that:

a) the performance of IMLE and LWPR (a state-of-the-art online
algorithm for non-linear regression) are directly comparable for
single-valued regression;

b) the multi-valued approach (which is supported by IMLE) allows
to eɺciently deal with the dynamical inclusion of diɼerent tools
in the kinematic model, a problem in which the classical single-
valued approach fails.

118

PALADYN Journal of Behavioral Robotics

6.1. Model estimation during motor babbling

During the motor babbling phase the robot moves to random reference
configurations in the joint space using a low-level joint position control,
spanning the whole joints space within the robot limits defined in Table
1. Training points, consisting of joint values q and respective 3D posi-
tions of the end-eɼector x, are acquired and presented to the learning
algorithms. We start the simulation without any tool; after 100,000 train-
ing points, the 28 cm stick tool (see left image in Figure 2) is attached
to the robot hand, without informing the algorithm of such change in
the forward kinematics. After more 100,000 training points the tool
is removed and the robot keeps learning its end-eɼector kinematics for
more 100,000 points. During this motor babbling phase, the root mean
square error (RMSE) over two independent test sets S1 and S2 is cal-
culated: test set S1, with 3,000 samples, corresponds to the forward
kinematics of the robot without using any tool, while S2 corresponds
to the task space positions of the end-eɼector using the 28 cm stick
tool, for the same joint angles of S1. The obtained results are shown in
Figure 5: the average of the RMSE over the three components of the
output vector x is plot as a function of the number of samples used for
training. These results show that:

a) for single-valued regression the RMSE performance of IMLE
is comparable to LWPR (in these particular experiments it is
slightly better, even if the number of allocated linear models is
significantly lower for IMLE than LWPR — not shown in the fig-
ure);

b) modeling the kinematics as a multi-valued function allows to
learn diɼerent tool kinematics within a single model;

c) IMLE is an eɼective algorithm for multi-valued regression and
prediction.

Indeed, the estimation performance of IMLE in the case of single-valued
regression (during the first part of the motor babbling, before the inclu-
sion of the tool) is in line with the one of LWPR; this can be noticed in
the left image of Figure 5, looking at the evolution of the estimation error
during the first 100,000 training samples. Then, after motor babbling
with the tool is performed, the advantages of multi-valued regression
speak for themselves: LWPR, as well as any other single-valued regres-
sion algorithm, has to forget the previous kinematics model if it wants to
achieve a better performance on the current training/test set; as a con-
sequence, whenever the model switches (tool removal/append), LWPR
has to start over the learning, and the RMSE on one of the test sets
will increase to allow for a decrease on the one corresponding to the
current training data. IMLE, on the other hand, does not need to restart
learning after the two diɼerent situations are presented to it: as can be
seen in the right of Figure 5, after removing the tool (200,000 training
points) the RMSE suɼers almost no change. In general, after learning a
model, the error in the corresponding test set will remain low irrespec-
tively of further training under diɼerent kinematic models.

6.2. Task space control experiment

To evaluate the performance of the task space control using the learned
kinematics a test movement is executed. A sequence of 16 target end-
eɼector positions is provided to the robot: the end-eɼector trajectory
resulting from the control should draw a cube in the task space, includ-
ing two diagonals. The end-eɼector can be either the hand or the tip of
a tool.
Figure 6 shows the execution of the test movement with the hand, after
motor babbling without any tool (100,000 training samples); the overall
position error of the end-eɼector during the movement is displayed in

Figure 7. The same movement is then realized by the robot using the
28 cm stick tool, after additional motor babbling with the tool (100,000
training samples): results are displayed in Figure 8. Then, the motion is
executed again without the tool, with results shown in Figure 9. Then,
motor babbling is performed again without the tool (100,000 training
samples), and the test trajectory is executed controlling either the hand
or the tool position (see Figure 10).
To test the online learning performance of IMLE during the control, the
test movement is also executed using the stick tool after motor bab-
bling was performed only without the tool: the resulting trajectories are
shown in Figure 11.
Lastly, as we expect the advantages of the multi-valued approach to be
even more evident when dealing with bigger tools, the test movement
is executed with the 48x30 cm L-shaped tool depicted in the right im-
age in Figure 2; the target positions used in the previous test are shifted
in space, as the robot reaches in a diɼerent workspace by using this
tool. Additional motor babbling with the tool is performed (100,000
training points), then the test movement is executed (see Figure 12).
Then, more motor babbling without the tool is realized (100,000 train-
ing points), and the test movement is executed again (see Figure 13).
Note that, during the experiments, IMLE was allocating about 40 ex-
perts to describe the robot forward kinematics, raising to about 130 and
280 with the inclusion of the stick tool and the L-shaped tool, respec-
tively. The number of allocated linear models has a strong influence
on the computational burden of the algorithm, and it may also signal
some sort of learning overfitting. These are reasonably low numbers,
especially considering the dimension of the explored space. As a refer-
ence, with the learning parameters that led to the control performance
shown in Figure 6, LWPR was creating about 400 local experts only
for the robot kinematics (without tools). Trajectories resulting from the
control using IMLE (left images in Figures 6, 8, 9, 12 and 13, both im-
ages in Figures 10 and 11) look straight and regular, suggesting that
the estimation of the Jacobian J(q) (which is obtained computing the
local slope of the learned multi-valued kinematic model, x = f (q)) is
satisfactory both when controlling the hand and when controlling the
tip of a tool. Figure 7 shows how the overall task space position error is
canceled during the control of the hand using IMLE. The error is com-
puted as the diɼerence between current and target hand position; the
sum of the absolute values of the three components (X , Y and Z) of
the error is displayed. Every 20 seconds the target position is changed
and the position error raises accordingly: for instance, the error goes
to 0.05 before starting the shorter edge of the cube-shaped trajectory,
while it goes to 0.25 before starting the diagonal. The particular tra-
jectory of the error, which decreases fast at first and then progressively
more slowly, is peculiar of Jacobian based control, and is a further proof
of the good quality of the Jacobian estimation.
Results in Figure 11 show that the robot can learn to control a new tool
on a specific trajectory without relying on any motor babbling with the
tool: the left image displays the trajectory of the tip of the tool during
the first iteration of the test movement (after motor babbling was per-
formed without the tool), while in the right image the trajectory on the
third iteration is depicted. During one iteration the robot collects about
15,000 training points, even if a big part of them have the same values,
as the robot holds static positions for large portions of the movement
(i.e. when the task space position error is zero).
As expected from the results in Section 6.1, without including any tool
the control performance of IMLE is in line with LWPR (see Figure 6).
Then, the superiority of the multi-valued approach is clear when the
robot uses diɼerent tools (see Figures 8 and 9). This is especially ev-
ident when dealing with the bigger L-shaped tool (see Figures 12 and
13): while for IMLE the 100,000 training points collected during the
motor babbling were suɺcient to obtain a good model of the new tool,
allowing to control the system in task space, for LWPR they were not

119

PALADYN Journal of Behavioral Robotics

0 100,000 200,000 300,000
0

0.05

0.1

0.15

0.2

0.25

0.3

RMSE on Test Set S
1

Training Samples

E
s
ti
m

a
ti
o
n
 E

rr
o
r

(R
M

S
E

)
[m

]

IMLE

LWPR

0 100,000 200,000 300,000
0

0.05

0.1

0.15

0.2

0.25

0.3

RMSE on Test Set S
2

Training Samples

E
s
ti
m

a
ti
o
n
 E

rr
o
r

(R
M

S
E

)
[m

]

IMLE

LWPR

0 100,000 200,000 300,000
0

0.05

0.1

0.15

0.2

0.25

0.3

RMSE on Switching Test Set (S
1
+S

2
)

Training Samples

E
s
ti
m

a
ti
o
n
 E

rr
o
r

(R
M

S
E

)
[m

]

IMLE

LWPR

Figure 5. RMSE of the forward kinematic estimation (average of the three components of x) during motor babbling with the iCub Simulator, using diɼerent test sets.
Motor babbling is realized without the tool (until sample 100,000), then with the tool (until sample 200,000) and then again without the tool (until sample
300,000). Left: test set S1 (no tool). Center: test set S2 (28 cm stick tool). Right: test set is changed according to the tool used during the training, i.e.,
first S1 is used, then S2 and finally S1 again.

enough to make the system controllable (see Figure 12). Moreover, the
additional motor babbling without the tool does not aɼect IMLE perfor-
mances to a big extent, as it does for LWPR (see Figure 13).
Overall, this set of experiments shows that:

a) IMLE provides a good Jacobian estimation, and can therefore
be used for task space control, relying, for instance, on the ap-
proach that was proposed in [30] using LWPR;

b) new tools can be dynamically included in the learned model ei-
ther relying on motor babbling or directly during the task space
control;

c) considering single-valued regression (Figure 6, control of the
hand in task space after motor babbling without any tool) the
performance of IMLE in the control is in line with the one of
LWPR;

d) if multiple tools are used, the improvements of the multi-valued
approach with respect to the single-valued one are dramatic;

e) the computational requirements for IMLE are reasonably low
(i.e. a small number of local experts is allocated), allowing the
use of IMLE for real-time online learning, estimation and control.

Figure 6. Task space trajectory of the hand during the test movement, after
motor babbling without tool was performed. On the left: using IMLE.
On the right: using LWPR.

Figure 7. Overall task space position error (sum of the absolute values of the
X , Y and Z components) of the hand during the test movement us-
ing IMLE. Every 20 seconds the target position is changed and the
position error raises accordingly; the particular trajectory of the error
reduction during the movements is a further proof of the good esti-
mation of the Jacobian.

Figure 8. Task space trajectory of the tip of the stick tool during the test move-
ment, after motor babbling was performed first without and then with
the tool. On the left: using IMLE. On the right: using LWPR.

7. Results with Kobian robot

We report here the experimental results obtained with Kobian. First
we describe how the robot performs motor babbling actuating both the
robot head and arm, in order to incrementally estimate the forward kine-
matics (both with a flexible tool and without) and we present the results

120

PALADYN Journal of Behavioral Robotics

Figure 9. Task space trajectory of the hand during the test movement, after
motor babbling was performed first without and then with the tool.
On the left: using IMLE. On the right: using LWPR.

Figure 10. Task space trajectory during the test movement using IMLE, after
motor babbling was performed first without tool, then with tool, and
then again without tool. On the left: controlling the hand. On the
right: controlling the tip of the tool.

Figure 11. Task space trajectory of the tip of the stick tool during the test move-
ment using IMLE, without previous motor babbling with the tool. On
the left: first iteration of the movement. On the right: after 3 itera-
tions of the movement.

of this estimation with respect to given test sets (Section 7.1). Then
we show how the learned kinematic model can be used for task space
control, realizing two diɼerent behaviors: arm-head coordination (Sec-
tion 7.2) and visually guided reaching (Section 7.3). All the described
behaviors are fully autonomous, and learning is realized in an online
fashion. The inclusion of the flexible tool (i.e. the context change) is
never signalled in any way, neither during motor babbling or task space
control. Moreover, even if we present the results in separate Sections,
the robot may alternate between these behaviors dynamically depend-
ing on the current situation (e.g. performing more motor babbling if the

Figure 12. Task space trajectory of the tip of the L-shaped tool during the test
movement, after motor babbling was performed first without tool,
thenwith the stick tool, thenwithout tool, and thenwith the L-shaped
tool. On the left: using IMLE. On the right: using LWPR.

Figure 13. Task space trajectory of the tip of the L-shaped tool during the test
movement, after motor babbling was performed first without tool,
then with the stick tool, then without tool, then with the L-shaped
tool, and then again without tool. On the left: using IMLE. On the
right: using LWPR.

outcome of visually guided reaching is not satisfactory). The use of
a flexible tool (made of a soft rubber) increases the complexity of the
model that has to be learned, with respect to the use of a rigid tool: in
fact, the shape of the tool changes depending on the arm configuration,
due to the influence of gravity.

7.1. Arm-head motor babbling and model estimation

During the motor babbling Kobian moves the arm to random reference
configurations in the joint space using a low-level joint position control,
spanning the whole arm joints space within the limits defined in Table 2.
After each movement of the arm, the head controller described in Sec-
tion 5.2.1 is activated, in order to bring the end-eɼector to the center of
the right image plane (i.e. fixation). Training points, consisting of arm
joint values qarm and respective 3D positions of the end-eɼector xm,
are acquired at the instant of fixation and presented to both IMLE and
LWPR learning algorithms in an online, incremental fashion. Due to the
head joints limits, not all the possible arm configurations allows fixation.
In particular, we further limited the range of q0

arm to [−70◦ − 60◦] and
the range of q3

arm to [−90◦ − 40◦] in order to achieve fixation for all
the arm configurations explored during motor babbling, both with and
without the tool. This has been done to provide a more fair and precise
evaluation of the estimation capabilities of IMLE and LWPR: the robot
collects the same number of training points for both contexts (with and
without tool), in the same area of the input space (i.e. arm joints space).

121

PALADYN Journal of Behavioral Robotics

During normal operations this modification of the arm joints limits is not
required, and indeed the motor babbling behavior also allows to auto-
matically identify the area of the workspace in which 3D points can be
both fixated and reached for.
We start the motor babbling without the tool; after 500 training sam-
ples have been gathered, we proceed doing motor babbling with the
tool, without informing the algorithm of such change in the forward kine-
matics. After more 500 training points have been collected the tool is
removed and the robot keeps learning the forward kinematics without
the tool for more 300 points. During this motor babbling phase, the root
mean square error (RMSE) over two independent test sets of 100 sam-
ples (S1 and S2) is calculated: test set S1 corresponds to the forward
kinematics of the robot without the tool, while S2 corresponds to the
forward kinematics with the flexible tool. Figure 14 and Figure 15 show
the distribution of arm joints values and head joints values respectively,
for both training and testing, with and without the tool. From these two
plots is evident that while the input space (qarm) has a similar distribu-
tion both with and without the tool, the output space (xm; only the first
two components, q0

head and q1
head, are displayed in the figure) has very

diɼerent distributions, requiring the map to be learned (xm = f (qarm))
to be modeled as a multi-valued function.

Figure 14. Distribution of arm joints values (i.e. model input) during motor bab-
bling. Green color indicates without tool, brown color with tool. Dots
indicates training samples, crosses test samples.

Figure 15. Distribution of head joints values (i.e. model output) during motor
babbling. Green color indicates without tool, brown color with tool.
Dots indicates training samples, crosses test samples.

The results of the estimation are shown in Figure 16. These results
are in line with the simulation results obtained with the iCub Simulator

0 500 1000 1300
0

10

20

30

Training Samples

E
st

im
at

io
n

E
rr

or
 (

R
M

S
E

)

Estimation Error on Switching TestSet (S
1
/S

2
/S

1
)

IMLE
LWPR

Figure 16. RMSE of the forward kinematic estimation during motor babbling
with Kobian, both without and with the tool. Motor babbling is re-
alized without the tool (until sample 500), then with the tool (until
sample 1000) and then again without the tool (until sample 1300).
The test set is changed according to the tool used during the train-
ing, i.e., first S1 is used, then S2 and finally S1 again.

(compare this plot to the right plot in Figure 5). Again, the estimation
performance of IMLE in the case of single-valued regression (in the first
part of the plot, before the inclusion of the tool at training sample 500)
is in line with the one of LWPR. The advantages of multi-valued regres-
sion are however evident after motor babbling is performed with the
tool as well:

a) faster convergence of the estimation error when a new tool is
introduced (from sample 500 to sample 1000);

b) no degradation in the estimation of the original kinematic model
(without the tool) when the tool is removed (after sample 1000);

c) further improvement on the original kinematic model during fur-
ther motor babbling without the tool (from sample 1000 to sam-
ple 1300).

The residual RMSE (average of the three components of the output
vector) at sample 1000 (after 500 training samples without the tool
and 500 with the tool) is 2.79 for test set S1 (without tool) and 2.74 for
test set S2 (with tool); these values are averages over quantities with
diɼerent ranges and units (i.e. degrees [◦] for joints angles, pixels [px]
for the visual depth measured as uL − uR), that we show for visual-
ization purposes. More precisely, the RMSE is [0.44◦ 0.53◦ 7.39px]
for S1 and [0.97◦ 0.91◦ 6.33px] for S2; normalized to the range of
those variables, the RMSE becomes [0.5% 1.8% 2.9%] for S1 and
[1.2% 3% 2.5%] for S2.

7.2. Arm-head coordination

We describe here a task space control experiment in which Kobian
moves both the head and the arm simultaneously exploiting the learned
forward kinematics model. A sequence of 16 target visual positions
xd = xd

v = [ud
R vd

R (uL −uR)d] is provided to the robot: ud
R and vd

R can
be either −50, 50 or 0, while (uL − uR)d is always 0. The target visual
position is updated every 2 seconds. When a new target is presented,
the robot moves the head to fixate the target (i.e. the head controller
described in 5.2.1 is activated). As the head starts to move to fixate
the new target (i.e. a point in the image plane), the arm is controlled to
follow the head motion. The resulting behavior is a coordinated move-
ment of the head and the arm, during which the end-eɼector remains
in fixation (i.e. uR and vR remain equal to zero) with a constant value

122

PALADYN Journal of Behavioral Robotics

of depth (i.e. uL − uR remains constant; equal to zero in this specific
experiment).
The arm is actuated using the task space controller described in Sec-
tion 4, where the desired task space velocity (see Equation 5) has been
modified as follows:

ẋd = ff + fb = ẋm +kc · (xd
v −xv) =

q̇0

head

q̇1
head

0

+kc · (xd
v −xv) (13)

where q̇0
head and q̇0

head are the head joints velocities generated by the
head controller (feed-forward term) and xd

v − xv is the error in the vi-
sual position of the end-eɼector (feed-back term), with xd

v = 0 in our
experiment. The presence of the feed-forward term ensures a quick
movement of the arm in response to the head motion, while the feed-
back term is necessary to cancel the steady-state residual visual error.
Figure 17 and Figure 18 show the norm of the end-eɼector visual posi-
tion error (

∥∥xd
v − xv

∥∥) during the execution of the test, without and with
the flexible tool respectively. It can be noticed from these plots that the
end-eɼector remains in fixation during the coordinated head-armmove-
ment, as the visual error is typically limited to 1 or 2 pixels. The error
raises a bit each time the head starts to move towards a new target,
and then it is quickly reduced as soon as the arm motion follows; even
during this initial part of the motion, the visual error is still less than 3px
(when moving without the tool) and 6px (when using the tool). In par-
ticular, when using the tool, the error raises for a very short time (almost
just the duration of one control step, 20ms) at the beginning of each
movement due to small (unmodeled) oscillations of the flexible tool (as
the tool is made of a soft rubber).

Figure 17. End-eɼector visual position error with respect to time during the arm-
head coordination test performed without the tool. The norm of the
visual error (

∥∥xd
v − xv

∥∥) is shown.

Figure 19 and Figure 20 display the trajectories of the head and arm
joints positions (qhead and qarm) respectively, during the execution of
the test without the tool. The motion of the head and the arm joints is
perfectly synchronized in time, and the joints movements are fast and
smooth; similar trajectories (not reported here) have been measured
while performing the test with the tool.

7.3. Visually guided reaching

To further test the performance of the task space control using the
learned kinematics a visually guided reaching experiment is executed

Figure 18. End-eɼector visual position error with respect to time during the arm-
head coordination test performed with the tool. The norm of the
visual error (

∥∥xd
v − xv

∥∥) is shown.

Figure 19. Head joints positions trajectory with respect to time during the arm-
head coordination test performed without the tool.

both without and with the flexible tool. The same sequence of visual
targets of the arm-head coordination test (see Section 7.2) is presented
to the robot, but in this experiment the head is kept in a fixed position,
while the arm is controlled to reach for the targets. The end-eɼector tra-
jectory resulting from the control should draw an asterisk with 8 ends
in the right image plane: we refer to this movement as the STAR test.
The arm is controlled using the task space controller described in Sec-
tion 4, with ẋd = xd

v − xv , and the head is kept in a fixed position
(qhead = [−30◦ − 10◦] when the test is performed without the tool,
qhead = [15◦ 5◦] with the tool). The STAR test is executed both with-
out and with the tool, after motor babbling has been performed both
without and with the tool, as described in Section 7.1. The visual tra-
jectories of the end-eɼector in the right image plane are shown in Figure
21 (without the tool) and Figure 22 (with the tool).
Again, these results are in line with the ones obtained in simulation,
and presented in Section 6.2. The robot can switch between the two
diɼerent contexts (without and with the tool) without a significant diɼer-
ence in the performance. Indeed, a perfect estimation of the Jacobian
would produce perfectly straight trajectories of the end-eɼector in the
image plane. The experimental trajectories shown in the plots are al-

123

PALADYN Journal of Behavioral Robotics

Figure 20. Arm joints positions trajectory with respect to time during the arm-
head coordination test performed without the tool.

Figure 21. End-eɼector visual trajectory in the image plane during the STAR
test performed without the tool.

most straight both with and without the tool; slight deviations from the
straight trajectory can be seen in a few diagonal directions, with trajec-
tories that are however more than satisfactory. These deviations have
to be ascribed to the residual estimation error of the forward kinematics
(as reported in Section 7.1, and shown in Figure 16) and to the noise
in the visual perception (about ±2 pixels, as reported in Section 5.2).
The trajectories of all the components of xv and qarm with respect to
time are depicted in Figure 23 and Figure 24 respectively, regarding the
execution of the test without the tool, and in Figure 25 and Figure 26,
when using the tool. Figure 23 and Figure 25 show how the uR (blue
dashed line) and vR (red dotted line) components of the task space
vector xv reach the desired values (either −50, 50 or 0) and how the
uL − uR (green solid line) component is eɼectively controlled to zero
(as desired). Figure 24 and Figure 26 show the smooth trajectories of
the controlled arm joints qarm; due to the robustness of the Jacobian
control, the noise in the visual perception and the residual estimation
error of the learned model are not reflected in a noisy motor command
generation, neither they cause a jerky motion.

Figure 22. End-eɼector visual trajectory in the image plane during the STAR
test performed with the tool.

Figure 23. End-eɼector visual position with respect to time during the STAR
test performed without the tool. The three components of the task
space vector xv are shown: uR (blue dashed line), vR (red dotted
line) and uL − uR (green solid line).

7.3.1. Selection of the best IMLE solution
As described in Section 4, when using IMLE to obtain the Jacobian
estimate needed for control, we must choose one of the possible mul-
tiple solutions provided by the algorithm for a single query point. The
strategy we typically adopt is to pick the prediction closest to the out-
put point acquired on the previous control step. However, this cannot
be done in the visually guided reaching experiment described here, as
output points (xm = [q0

head q1
head uL − uR] in this case) must be ac-

quired during fixation of the end-eɼector (when xv = 0); such fixation
does not occur during the whole trajectory, because the arm moves
while the head is kept in a fixed position, but only at the beginning
of the test. Therefore, we need to estimate the head motion that the
robot would perform to maintain fixation of the end-eɼector. In par-
ticular, we estimate x̂m(i) at each control step i using the estimated
Jacobian of the previous control step, J(qarm)(i − 1), and the mea-
sured arm joints displacement from the previous to the current step,
∆qarm(i) = qarm(i) − qarm(i − 1), in the following way:

x̂m(i) = x̂m(i − 1) + J(qarm)(i − 1) · ∆qarm(i), (14)

124

PALADYN Journal of Behavioral Robotics

Figure 24. Arm joints positions with respect to time during the STAR test per-
formed without the tool.

Figure 25. End-eɼector visual position with respect to time during the STAR test
performed with the tool. The three components of the task space
vector xv are shown: uR (blue dashed line), vR (red dotted line) and
uL − uR (green solid line).

and we initialize the estimation (x̂m(0) = xm(0)) at the beginning of
the test. Indeed, the third component of the output vector (i.e. the
visual depth x2

m = uL − uR) can also be directly measured at each
control step, while the other two components (i.e. the head joints po-
sitions, x0

m = q0
head and x1

m = q1
head) need to be estimated. Then,

to obtain the proper Jacobian at the i control step we pick the IMLE
solution which gives the prediction (xm(i) = f (qarm(i))) closest to this
estimated output x̂m(i), and we estimate the Jacobian computing the
local slope of this solution.
To evaluate the accuracy of this estimation we compare the estimated
head motion to the real head motion during the execution of the arm-
head coordination TEST without the tool (described in Section 7.2), in
which the head is actually moving. Figure 27 displays both the real head

Figure 26. Arm joints positions with respect to time during the STAR test per-
formed with the tool.

motion, qhead(t), and the estimated one, q̂head(t). The estimation error
is almost zero over the whole trajectory; the maximum instantaneous
error measured during the test is

∥∥qhead − q̂head
∥∥ = 0.27◦, while the

mean and standard deviation are 0.09◦ and 0.05◦ respectively.
This estimation of the head motion allows to select the appropriate
IMLE solution for control during the STAR test, as proven by the good
results obtained while controlling the arm both without and with the tool
(as shown in Figures from 21 to 26).

Figure 27. Comparison between real head motion, qhead(t) blue solid line,
and estimated one, q̂head(t) red dashed line, during the execution
of the arm-head coordination test without the tool.

125

PALADYN Journal of Behavioral Robotics

8. Conclusions and Future Work

We presented a novel approach to learn the kinematic model of a re-
dundant robot for task space control that can cope with the dynamic
inclusion of tools with diɼerent kinematic properties. Modeling the for-
ward kinematics as a multi-valued function and using IMLE (an online
multi-valued function approximation algorithm) to learn this model al-
lows an eɺcient control under dynamically switching contexts (in the
case study presented in this paper, the diɼerent contexts consist in dif-
ferent tools used for reaching). Diɼerently from previous works in the
literature, no assumptions are made about the kinematic properties of
the tool. Also, no information is given to the robot about the current
tool being used, or when a change or removal of the tool is performed.
Moreover, the number of diɼerent contexts represented by the model
doesn’t need to be decided a priori, but it is automatically determined
by the learning algorithm based on the training samples. Experimental
results show the eɼectiveness of the proposed strategy: after acquir-
ing some training data through autonomous exploration, the robot can
easily switch from one tool to another without degradation in the control
performance, and can cope with new tools being dynamical included
during the control phase. Learning can be performed both during mo-
tor babbling and during the control; indeed, we show that the motor
babbling part can be limited or eliminated, due to the online nature of
IMLE, therefore leading to a complete goal-directed exploration. This
strategy is very general and can be applied to any robot that needs to
be controlled in a specific task space, given that both the joint space
and the task space variables can be measured. Indeed, we presented
results controlling both a simulated humanoid robot in the 3D Cartesian
space and a real humanoid robot in the 3D visual space (uncalibrated
camera coordinates). The real robot experiments show how the system
can deal with sensor noise, control delays and inaccuracies; moreover,
the robot was able to perform reaching movements using a flexible rub-
ber tool (whose shape changes depending on the arm configuration,
due to the influence of gravity), a clear example of complex, diɺcult to
model, kinematics.
We believe that this work constitutes an important step towards the
achievement of autonomy and flexibility in robot behaviors. Recently,
we proposed an autonomous learning strategy for robotic reaching,
which is completely goal-directed and online, and does not require any
motor babbling [38]; this form of goal-directed exploration has been fur-
ther analyzed in a separate publication [39]. Moreover, we showed how
the robot can build an internal (motor) representation of its workspace
while perfoming goal-directed reaching movements, and how this rep-
resentation can be used to plan and execute complex reaching move-
ments, like bimanual whole-body reaching [40]. On the basis of these
studies, a first extension to this work could be to use IMLE to learn
a multi-valued representation of the workspace during goal-directed
reaching with diɼerent tools, in order to provide the robot with the ability
to choose the best tool to perform a specific reaching task, based on
its past experience.
A further interesting extension of this study would be the application of
IMLE to the online learning of the robot dynamics. This would allow to
cope with more complex control problems, and to compare quantita-
tively with recent works that tackled the same issue (as, for instance,
the application proposed in [19]).

References

[1] N. Endo, A. Takanishi, Development of Whole-body Emotional Ex-
pression Humanoid Robot for ADL-assistive RT services. Journal

of Robotics and Mechatronics 23, 6, pp. 969-977 (2011)
[2] G. Metta, G. Sandini, D. Vernon, L. Natale, F. Nori, The iCub hu-

manoid robot: an open platform for research in embodied cog-
nition. Workshop on Performance Metrics for Intelligent Systems
(2008)

[3] J. Peters, S. Schaal, Learning Operational Space Control.
Robotics: Science and Systems (2006)

[4] O. Sigaud, C. Salan, V. Padois, On-line regression algorithms for
learning mechanical models of robots: A survey. Robotics and
Autonomous Systems 59, 12, pp. 1115–1129 (2011).

[5] D. Nguyen-Tuong, J. Peters, Local gaussian process regression
for real-time model-based robot control. International Conference
on Intelligent Robots and Systems (2008)

[6] S. Vijayakumar, A. D’Souza, S. Schaal, Incremental Online Learn-
ing in High Dimensions. Neural Computation 17, 12, pp. 2602-
2634 (2005)

[7] B. Damas, J. Santos-Victor, An Online Algorithm for Simulta-
neously Learning Forward and Inverse Kinematics. International
Conference on Intelligent Robots and Systems (2012)

[8] F. Guerin, N. Kruger, D. Kraft, A Survey of the Ontogeny of Tool
Use: from Sensorimotor Experience to Planning. IEEE Transac-
tions on Autonomous Mental Development, Online early access
(2012)

[9] J. Krakauer, Z. Pine, M. Ghilardi, C. Ghez, Learning of Visuomotor
Transformations for Vectorial Planning of Reaching Trajectories.
Journal of Neuroscience 20, pp. 8916-8924 (2000)

[10] R. Shadmehr, F. Mussa-Ivaldi, Adaptive representation of dynam-
ics during learning of a motor task. Journal of Neuroscience 14,
pp. 3208-3224 (1994)

[11] R. Welch, B. Bridgeman, S. Anand, K. Browman, Alternating prism
exposure causes dual adaptation and generalization to a novel
displacement. Perception and Psychophysics 54, 2, pp. 195-204
(1993)

[12] T. Brashers-Krug, R. Shadmehr, E. Bizzi, Consolidation in human
motor memory. Nature 382, pp. 252-255 (1996)

[13] G. Berlucchi, S. Aglioti, The body in the brain: neural bases of
corporeal awareness. Trends in Neurosciences 20, 12, pp. 560-
564 (1997)

[14] A. Berti, F. Frassinetti, When Far Becomes Near: Remapping of
Space by Tool Use. Journal of Cognitive Neuroscience 12, 3, pp.
415-420 (2000)

[15] A. Iriki, M. Tanaka, Y. Iwamura, Coding of modified body schema
during tool use by macaque postcentral neurones. NeuroReport
7, pp. 2325-2330 (1996)

[16] K. Narendra, J. Balakrishnan, Adaptive control usingmultiple mod-
els. IEEE Transactions on Automatic Control 42, 2, pp. 171-187
(1997)

[17] D. Wolpert, M. Kawato, Multiple paired forward and inverse mod-
els for motor control. Neural Networks 11, 7-8, pp. 1317-1329
(1998)

[18] M. Haruno, D. Wolpert, M. Kawato, Mosaic model for sensorimo-
tor learning and control. Neural Computation 13, 10, pp. 2201-
2220 (2001)

[19] N. Sugimoto, J. Morimoto, S. Hyon, M. Kawato, The eMOSAIC
model for humanoid robot control. Neural Networks 29, 30, pp.
8-19 (2012)

[20] G. Petkos, S. Vijayakumar, Context estimation and learning con-
trol through latent variable extraction: From discrete to continuous
contexts. International Conference on Robotics and Automation
(2007)

[21] M. Hoɼmann, H. Marques, A. Arieta, H. Sumioka, M. Lungarella,
R. Pfeifer, Body schema in robotics: A review. IEEE Transactions
on Autonomous Mental Development 2, 4, pp. 304–324 (2010)

126

PALADYN Journal of Behavioral Robotics

[22] M. Hikita, S. Fuke, M. Ogino, M. Asada, Cross-modal body repre-
sentation based on visual attention by saliency. International Con-
ference on Intelligent Robots and Systems (2008)

[23] C. Nabeshima, Y. Kuniyoshi, M. Lungarella, Adaptive body
schema for robotic tool-use. Advanced Robotics 20, 10, pp. 1105-
1126 (2006)

[24] S. Nishide, J. Tani, T. Takahashi, H. Okuno, T. Ogata, Tool–Body
Assimilation of Humanoid Robot Using a Neurodynamical System.
IEEE Transactions on Autonomous Mental Development 4, 2, pp.
139-149 (2012)

[25] M. Rolf, J. Steil, M. Gienger, Learning flexible full body kinematics
for humanoid tool use. International Symposium on Learning and
Adaptive Behavior in Robotic Systems (2010)

[26] L. Xu, M. Jordan, G. Hinton, An Alternative Model for Mixtures of
Experts. Advances in Neural Information Processing Systems, pp.
633-640 (1995)

[27] D. Grollman, O. Jenkins, Incremental learning of subtasks from un-
segmented demonstration. International Conference on Intelligent
Robots and Systems (2010)

[28] A. Ligeois, Automatic supervisory control of the configuration and
behavior of multibodymechanisms. Transactions on System, Man
and Cybernetics 7, pp. 868-871 (1977)

[29] Y. Nakamura, H. Hanafusa, Inverse kinematic solutions with sin-
gularity robustness for robot manipulator control. Transactions of
the ASME Journal of Dynamic Systems, Measurement and Con-
trol 108, pp. 163–171 (1986)

[30] C. Salaun, V. Padois, O. Sigaud, Control of reundant robots using
learned models: an operational space control approach. Interna-
tional Conference on Intelligent Robots and Systems (2009)

[31] V. Tikhanoɼ, P. Fitzpatrick, G. Metta, L. Natale, F. Nori, A. Can-
gelosi, An open source simulator for cognitive robotics research:
The prototype of the icub humanoid robot simulator. Workshop on
Performance Metrics for Intelligent Systems (2008)

[32] G. Metta, P. Fitzpatrick, L. Natale, Yarp: yet another robot platform.
International Journal on Advanced Robotics Systems 3, 1, pp. 43-
48 (2006)

[33] Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima,
H. Lim, A. Takanishi, Development of a new humanoid robot
WABIAN-2. International Conference on Robotics and Automation
(2006)

[34] H. Miwa, T. Okuchi, H. Takanobu, A. Takanishi, Development of
a new human-like head robot WE-4. International Conference on
Intelligent Robots and Systems (2002)

[35] M. Zecca, N. Endo, S. Momoki, K. Itoh, A. Takanishi, Design of the
humanoid robot KOBIAN-preliminary analysis of facial and whole
body emotion expression capabilities. International Conference on
Humanoid Robots (2008)

[36] N. Endo, K. Endo, K. Hashimoto, T. Kojima, F. Iida, A. Takanishi,
Integration of Emotion Expression and Visual Tracking Locomo-
tion Based on Vestibulo-Ocular Reflex. International Symposium
on Robot and Human Interactive Communication (2010)

[37] G. Metta, G. Sandini, J. Konczak, A developmental approach to
visually-guided reaching in artificial systems. Neural Networks 12,
10, pp. 1413-1427 (1999)

[38] L. Jamone, L. Natale, G. Metta, F. Nori, G. Sandini, Autonomous
online learning of reaching behavior in a humanoid robot. Inter-
national Journal of Humanoid Robotics 9, 3, pp. 1250017.1-
1250017.26 (2012)

[39] L. Jamone, L. Natale, K. Hashimoto, G. Sandini, A. Takanishi,
Learning task space control through goal directed exploration. In-
ternational Conference on Robotics and Biomimetics (2011)

[40] L. Jamone, L. Natale, G. Sandini, A. Takanishi, Interactive online
learning of the kinematic workspace of a humanoid robot. Interna-

tional Conference on Intelligent Robots and Systems (2012)

127

