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Abstract. Building occupancy grid maps with sonar sensors is a chal-
lenging task due to angular uncertainty, specular reflections and crosstalk.
This paper presents a quantitative comparison of two probabilistic and
one heuristic approaches to the robotic mapping using real sonar data –
inverse and forward sensor models and the CEMAL methods. Moreover,
the two probabilistic methods are also tested pre-filtering the sonar data
with the CEsp filter, which is part of the CEMAL approach. The results
show that, using the pre-filtering, all algorithms present a similar and
better performance, while without filtering the inverse method presents
the highest error.

1 Introduction

One commonly used map representation in robotics is the occupancy grid map
(OccGrid map), which aims to geometrically represent the environment through
a grid discretization of the space. To gather information about the robot envi-
ronment, one frequently used sensor is the sonar. Sonars are cheap and allow the
construction of maps even with a low number of sensors. Despite these advan-
tages, sonars suffer from angular uncertainty, specular reflections and crosstalk
between each other, causing erroneous and conflicting measurements [3].

OccGrid mapping was first introduced by Elfes and Moravec in 1985, mak-
ing use of inverse sensor models (ISM) [5]. In this approach, cells are assumed
conditionally independent given the robot poses and measurements. In 2001,
Thrun proposed an alternative approach using forward sensor models (FSM) [6].
This method approaches the mapping problem in the high-dimensional space of
all binary maps, trying to solve erroneous and conflicting sonar measurements
which affect the ISM results. Recently, Lee and Chung proposed the Conflict-
Evaluated Maximum Approximated Likelihood (CEMAL), which is an heuristic
method that includes sonar data filtering with the CEsp filter[4].

This paper aims at quantitatively comparing these three OccGrid mapping
methods using real sonar data. The impact of the CEsp filter in the ISM and
FSM results is also assessed. Due to unclear literature, and in order to produce
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meaningful results, the FSM is subject to changes with respect to the original
formulation.

2 OccGrid Maps with Inverse Sensor Models

In this approach, the mapping problem is treated inversely to how sonar data is
generated, being formulated as

p(M |z1:T , x1:T ), (1)

where M represents the complete map, z1:T represents the complete set of mea-
surements and x1:T are the corresponding poses. This is the denominated inverse
sensor model.

To simplify the mapping problem, it is assumed that the occupancy of the
cells is conditionally independent given measurements and the robot trajectory,
transforming the mapping problem into a binary estimation problem,

p(M |z1:T , x1:T ) =
∏
i

p(mi|z1:T , x1:T ), (2)

where mi is an individual cell of the complete map. Other assumption made
is the static world assumption, considering a measurement t conditionally in-
dependent from the previous measurements given the map knowledge. This is
a common assumption in mapping but given the decomposition into a binary
problem this becomes a much stronger and also incorrect assumption, since it
considers conditional independence given only a map cell and not the complete
map. This binary estimation problem can be tackled with a binary Bayes filter
with static state, parameterized with log-odds:

lti = log
p(mi|zt, xt)

1− p(mi|zt, xt)
− log

p(mi)

1− p(mi)
+ lt−1

i , (3)

where lti represents log p(mi|z1:t,x1:t)
1−p(mi|z1:t,x1:t)

. The term lt−1i equals log p(mi)
1−p(mi)

when

t = 1. The probability p(mi) is the prior of occupancy of the cell i of the map. A
typical and simple approach is to model the posterior p(mi|zt, xt) not as a fixed
functional form but by a finite number of values which roughly approximate the
posterior [3]. For the cells at distances between 0 and the neighbourhood of the
measurement the occupancy probability has a low value, in the neighbourhood
it has a high value and 0.5 beyond.

Making use of (3) the log-odds occupancy representation can be easily com-
puted for each cell that falls into the coverage cone of the sonar measure-
ments.The desired occupancy probability of the cells can be recovered through

p(mi|z1:t, x1:t) = 1− 1

1 + el
t
i

, (4)

resulting in a map of occupancy beliefs for each individual cell.
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3 OccGrid Maps with Forward Sensor Models

This approach deals with the mapping problem in its complete state space and
assumes the world is static. It uses forward sensor models, modelling the mapping
as a maximum likelihood estimation problem:

p(z1:T |M,x1:T ). (5)

The goal is to maximize (5), by iteratively adjusting M till no better model is
found.

Rather than assuming that all measurements are caused by an obstacle, three
possible cases of beam reflection are considered, maximum reading, random and
non-random. A non-random measurement is caused by an obstacle in the sonar
beam. A maximum value reading happens with the failure in detecting all the
obstacles, when present, and returning the maximum range value, zmax. The
random case models the remaining causes, such as specular reflections.

For the measurement with index t, consider Kt to be the number of obstacles
present in the sonar cone, dt,k the distance from the k’th obstacle in the cone
and Dt the set of obstacle distances in ascending order. Consider the binary
variables ct,∗, ct,k, ct,0, which are equal to 1 when the measurement is random,
caused by obstacle k or equal to the maximum range, respectively. For each t,
only one can be equal to 1.

The random case is modeled as a uniform distribution in the entire sonar
range, since the reading could have been caused in any part of the sonar cone.
When the beam is reflected by an obstacle, it is considered that it is affected by
additive white gaussian noise. In the case where zt = zmax, since it is a discrete
event, a Dirac delta function is considered. The sensor model can be written as
the combination of each of these models:

p (zt|M,xt, ct) = p (zt|M,xt, ct,∗ = 1)ct,∗
Kt∏
k=0

p (zt|M,xt, ct,k = 1)ct,k . (6)

One can now define the prior probability of the causes as

p (ct|M,xt) = p (ct,∗ = 1|M,xt)
ct,∗

Kt∏
k=0

p (ct,k = 1|M,xt)
ct,k (7)

p (ct|M,xt) =


prand if ct,∗ = 1,

pmax if ct,0 = 1,Kt ≥ 1,

(1− prand − pmax)
∏k−1

i=1

[(
1− p(i)hit

)]
p
(k)
hit if ct,k = 1, k ≥ 1,

(8)

where prand is the prior probability of a measurement being random, pmax is

the prior probability of a measurement being maximum and p
(i)
hit is the prior of

the obstacle i to reflect the sonar beam. The phit probability is function of the
obstacle’s width coverage in the sonar cone, varying linearly between a minimum
and a maximum value and being equal to the maximum value when the obstacle
covers 100% of the cone width. Therefore, an obstacle might be formed by one
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or more occupied cells, forming a cluster. Cells are clustered having as criterium
its distance to the sonar cone origin. A cluster is initially formed by a single cell
in which further cells are added if the difference between its distance, dt,k, and
the cluster center of mass is smaller then a given threshold. When a cell does
not meet this criterium, a new cluster is created with it.

One can use (6) and (7) and define the log-likelihood of the complete set of
measurements with the correspondence variables as the latent variables, com-
pute the expected likelihood over those variables and use the Expectation-
Maximization (EM) algorithm to maximize the resulting likelihood [1]. There-
fore, the expected log-likelihood to maximize is given by:

E [log p (z1:T , c1:T |M,x1:T ) |z1:T , x1:T ,M ] (9)

= E

{
T∑
t

log p (zt|M,xt, ct) p (ct|M,xt) |z1:T , x1:T ,M

}
.

On the original formulation, the event of a maximum measurement is a par-
ticular case of the non-random case. As proposed in this paper, considering the
maximum reading event as a different event of the non-random case and defin-
ing p(zt|M,xt, ct,0 = 1) as a Delta dirac function makes those readings have no
influence in the likelihood and in the process of maximization, contrary to what
happens in the original formulation. Making phit function of the coverage and the
introduction of clustering allows the representation of the angular uncertainty,
which is a process not clear in [6].

On the maximization process with the EM, no terms are discarded in (9),
since any change in M might produce significant value variations in those terms.
To find the map M that maximizes the likelihood, the occupancy of the cells
that fall into the measurements cone is flipped and maintained if its new value
increases the likelihood value. The maximization process stops when no flipping
increases the likelihood. Given the discretization made, this results in a very
greedy algorithm, in which the final result highly depends on the cell flipping
order. Since it gave empirically good results, in this implementation we chose
to first flip the cells closest to the measurement and progressively moving away.
The Dirac delta function in p (zt|M,xt, ct,k = 1) is implemented as a gaussian
distribution with a very low variance.

4 CEMAL

Sonar sensor readings are characterized by two regions: occupied and empty. The
occupied region is the region of occupied cells within a certain neighbourhood of
the measurement. The empty region is the region of unoccupied cells between the
sonar cone origin and the measurement neighbourhood. For time t, the occupied
and empty regions are represented by O(t) and E(t), respectively.

Inconsistencies occur when multiple measurements overlap. Uncertain re-
gions, U(t), are inconsistent regions where a partial part of the occupancy region
of a measurement is overlapped with empty regions of other measurements, Fig-
ure 1(a). A conflict region, F (t), is an inconsistent region where the complete
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occupied region of a measurement is overlapped with empty regions of other
measurements, Figure 1(b). [4]

x3x1 x2

U(1) U(3)

O(2)
E(2)

(a)

t

j1
j2

F (t)

(b)

t

j1
j2

F (t)

(c)

Fig. 1. Inconsistent and conflict cells: (a) uncertain cells, U(t); (b) conflict cells, F (t);
(c) discretized conflict cells F (t).

The candidates to incorrect measurements are the measurements causing
conflict regions, such as the measurements Figure 1(b) presents. To recognize
the incorrect measurements between the candidates the Conflict Evaluation with
sound pressure (CEsp) filter is used.

4.1 CEsp

The CEsp method is a filtering method based on the comparison of the sound
pressure of the waves received by the conflicting measurements. The sound pres-
sure of a wave received in a sonar can be represented as

SPR(r, θ) = c2SPT (2r, 0)10
DT (θ)

20 10
DR(θ)

20 (10)

=
c1
r

10
DT (θ)+DR(θ)

20 ,

where r is the distance from the cone origin to the obstacle, θ is the angle of the
obstacle relative to the measurement cone heading, DT and DR are the transmit-
ting and receiving directivity, respectively, and c1 is an unknown constant which
is canceled when sound pressure levels are compared. For further information on
the deduction of (10), consult [4].

Using (10), one can identify the incorrect measurements within the candi-
dates. Figure 1(c) illustrates the conflict cells on a OccGrid map. Consider the
measurement that indicates occupancy in the conflicting area as being a positive
measurement, P , and the ones that indicate empty space in that area as being
negative measurements, N . Consider the hypothesis that a cell in the conflict
region is occupied. Comparing the sound pressures of these conflicting measure-
ments, one can conclude about that hypothesis:

– SPP ≥ SPN : If there is an obstacle in the conflict cell, the negative reading
might miss it, since its sound pressure is lower the sound pressure from
the positive reading. Thereby, it is considered that the obstacle exists;
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– SPP < SPN : If there is an obstacle in the conflict cell, the negative mea-
surement cannot miss it, as its sound pressure is higher than the pressure
of the positive one. Hence, it is considered that there is no obstacle present.

For instance, for the example of Figure 1(c), consider that it is revealed, through
the just described comparison method, that there is an obstacle in any of the
conflict cells. Then, since the obstacle is in their empty region, it is considered
that measurements j1 and j2 are incorrect and must be discarded.

This filtering method is used to ensure that incorrect measurements are dis-
carded and no conflict regions exist, remaining only consistent and uncertain
regions.

4.2 Maximum Approximated Likelihood

In the MAL method, it is assumed that the incorrect measurements were dis-
carded by the CEsp filtering. Therefore, and given that sonar sensors were de-
signed to provide the distance to the closest obstacle in their perceiving cone, it
is considered that a reliable OccGrid map can be built through

arg max
M

p(z1:T |M,x1:T ) = arg min
M

∑
t

(zt − d(Nt))
2, (11)

where M is the map, z1:T and x1:T are the set of measurements and correspond-
ing poses, zt is the measurement in time instante t and d(Nt) is the distance from
the sonar cone origin to its nearest obstacle Nt. It is made the assumption that
a measurement zt is conditionally independent from the previous measurements
given the map M and the robot path.

It is considered that the error is minimized when |zt − d(Nt)| ≤ β, where
β is the range uncertainty. Thereby, it is considered that the global solution to
(11) can be found when Nt is placed in the occupied region of the measurement.
Therefore, the mapping problem is reduced to a simple problem: cells in uncer-
tain regions are set to unoccupied and the remaining cells in occupied regions
are set to occupied.

5 Results

The robot used was the Pioneer P3-AT, equipped with eight SensComp 600
Series sonar sensors and a Sick LMS200 laser rangefinder. Both the ground truth
map and the robot pose estimates were obtained using the laser rangefinder and
the GMapping method [2]. The measurements were taken with the robot moving
approximately at 0.6m/s and measurements being taken with a 4Hz frequency
on a single lap to the environment. Two variations of the ISM approach were
implemented. The first is as described in section 2 but removing the maximum
range measurements, in which specular reflections often result, and in the second
it was given less weight to larger measurements. The ISM and FSM methods were
also tested with the CEsp pre-filtering.
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The ground truth map is presented on Figure 2(a), overlapped with the path
made by the robot while the it was acquiring sonar data. Figure 2(b) presents
the cones of the sonar measurements. The red/clearer cones are the ones the
CEsp filtering discarded. The maps resulting from the implemented algorithms
are presented in remaining items of Figure 2.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Results: (a) ground truth map and robot path; (b) sonar measurements –
red/clearer measurements are the ones discarded by CEsp; (c) ISM map; (d) ISM with
measurement decay map; (e) ISM with CEsp map; (f) FSM map; (g) FSM with CEsp
map; (h) CEMAL map.

To compare the results, one computed for each algorithm the overall errors
(OE) and the true positive rates (TPR) and false positive rates (FPR). The
OE is the percentage of incorrectly classified cells. The TPR is the ratio of the
number of occupied cells correctly classified cells over the occupied cells in the
ground truth, while FPR is the rate of the number of cells incorrectly classified
as unoccupied over the unoccupied cells in the ground truth map. The overall
error for each dataset is presented in Figure 3(a). Figure 3(b) shows a plot of the
ROC space in which one is able to present the TPR and FPR. From OE, one
can conclude that, without filtering, the FSM presents better map than the ISM.
All the methods including filtering present a similar error, which is about half
of the errors without filtering. Through the ROC, one can see that the methods
with filtering represent more of the obstacles present in the ground truth, with
the ISM plus CEsp presenting the best TPR. Moreover, with filtering, results
do not present as many ghost obstacles.1

1 Additional datasets and corresponding results can be accessed in
www.isr.ist.utl.pt/˜jcarvalho.
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Fig. 3. Comparison metrics results: (a) overall error for each dataset; (b) ROC graphic.

6 Conclusion

This paper presented a comparison between OccGrid mapping using ISM, FSM
and the CEMAL methods, with the CEsp filtering also being tested with the first
approaches. The results showed that the CEsp filtering as a significant impact
on the final map produced by the methods. With filtering, the FSM presents
lower error. Future work consists in presenting statistically significant results
using multiple datasets and in studying better approaches using forward sensor
models, to achieve better results without filtering.
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