
Towards efficient path planning of a mobile robot in rough terrain 1

Diogo Amorim
diogo.amorim@ist.utl.pt

Rodrigo Ventura
rodrigo.ventura@isr.ist.utl.pt

Instituto Superior Técnico - Technical University of Lisbon
Lisbon, Portugal

Abstract

Path planning for autonomous vehicles on rough terrain is a different
problem to solve comparing to traditional 2D, flat terrain path planning.
We address this problem by first constructing a cost grid map where each
cell represents a passage/progress cost for the robot rather than, for ex-
ample, an occupancy grid map given a known surface representation. The
cost value for each (x,y,θ) is based on the pose of the vehicle when on
the surface and it results from the pitch angle. One possible way of cal-
culating the robot’s pose is to define that as a constrained optimization
problem with non- linear constraints.

1 Introduction

This paper shows the steps being taken in order to create a path planning
method for a robot presented with a rough terrain. Path planning for 2D
maps is usually based on an occupancy grid map with a (x,y,θ) configu-
ration where each entry depicts whether or not that position is free to the
robot [7], and the total path cost is usually the distance until the goal po-
sition or some simple variation of that value. There already are some path
planning methods that solve 2D map path planning problems which are
powerful tools [6], and so, part of the intention of this project is to apply
these tools to the same sort of problem, and with the same goal, but with a
different premise. This premise is the type of map, a map that represents
a rough surface has information about the free space and insuperable ob-
stacles but also the elevation of each coordinate. The elevation variations
can implicate new obstacles, i.e., if a slope it too steep the vehicle will not
be able to climb it.
The purpose of this paper is to show how to create a map in a (x,y,θ)
configuration where each coordinate is associated with a cost based on the
vehicle’s pose if it were to rest on those coordinates. Defining the prob-
lem as a constrained optimization problem with non-linear constraints it
is possible to determine the pose of the mobile robot as well as the num-
ber of contact points with the ground, an important factor to determine
whether or not it is possible for it to stand on that position.
After creating a map of the robot’s world depicting these degrees of dif-
ficulty one could, in principle, apply a number of path planning methods
already in existence. The final goal of this project is to develop a con-
troller for the RAPOSA-NG 2, a track wheel robot designed for urban
search & rescue operations, that can be equipped with depth sensors. The
controller will efficiently drive the robot from point A to point B in any
rough terrain.

2 Problem Statement

At this stage we are still at a proof of concept stage where the environ-
ment is all simulated. The map is in a (x,y,z) configuration, is defined in
the inertial frame of reference (i) and is derived from a sinusoidal surface
easily obtainable from the mpl_toolkits package for python. The result-
ing surface has a bump like shape with a smooth slope and a sharp end as
shown in Figure 1. The robot is defined as a 7 point p j,r = (x j,r,y j,r,z j,r)
structure Figure 1, all fixed to its reference frame, the robot’s reference
frame (r) where the origin is set at the center of mass of the robot. Three
points characterize each contact point of a track, one represents its begin-
ning (p1,r, p2,r), another its end (p3,r, p4,r) and another its middle point
(p5,r, p6,r). The last point (p7,r) represents the vehicle’s center of mass,
which, as previously mentioned, was described as the origin of the frame.
The robot’s pose is defined as :

(x7,i,y7,i,z7,i,θ ,β ,γ) (1)

1This work was supported by the FCT project [PEst−OE/EEI/LA0009/2013]
2http://mediawiki.isr.ist.utl.pt/wiki/RAPOSA_robot#RAPOSA_NG

where (x7,i,y7,i,z7,i) are the coordinates of the r in relation to the i and θ

is the angle of rotation of the r around the Zr axis, β the Yr axis and γ the
Xr axis. To determine the coordinates of the points defining the robot on
the i their coordinates in r are multiplied by a rotation matrix:

 cos(β) · cos(θ) cos(θ) · sin(γ) · sin(β)− cos(γ) · sin(θ) cos(γ) · cos(θ) · sin(β)+ sin(γ) · sin(θ)
cos(β) · sin(θ) cos(γ) · cos(θ)+ sin(γ) · sin(β) · sin(θ) −cos(θ) · sin(γ)+ cos(γ) · sin(β) · sin(θ)
−sin(β) cos(β) · sin(γ) cos(γ) · cos(β)


(2)

and then adding the position of the r relative to the i.
The target is to minimize the z coordinate of the robot’s center of

mass, in relation to the i but with the restriction that none of the points that
define the robot can pass through the surface. The vehicle also has pose
limitations, it cannot be upside down and cannot climb hills steeper than
45 degrees (value stipulated for the simulation) so its roll and pitch angle
absolute maximums were set at that same value. These limitations are
translated as constrictions when inserted in an optimization problem, and
so, in order to solve this specific problem one can resort to a constrained
(multivariate) problem solving routine already available and developed.
In order to introduce constraints in the optimization function it is neces-
sary to formulate them as inequalities, functions whose values are always
positive which in this case means, for example, that the z coordinate of
each point defining the robot minus the z coordinate of the point of the
map directly below must be positive, and this condition is respected by
the algorithm. There are 9 constraints to this simple problem, one per
each point that defines the robot, one for the roll and another for pitch an-
gle. More constrictions can and will be added in order to simulate the hull
of the vehicle more accurately simulating it. The task of determining the
robot’s pose can then be defined as a constrained optimization problem in
the following way:

Minimize: z7,i
Variables: z7,i, β , γ

Subject to: z j,i−mapx j,i,y j,i ≥ 0
π

4 −|β | ≥ 0
π

4 −|γ| ≥ 0

(3)

The optimization function minimizes the value of z7,i by manipulation of
the three variables it has access to: (z7,i,β and γ). The constrictions de-
termine that the robot’s pitch (γ) and roll (β) angles don’t reach values
greater than 45◦ (π

4 rad) or smaller than−45◦ (− π

4 rad). Another limita-
tion is that none of the z coordinates of the points defining the robot (z j,i)
can be lower than the elevation of the map directly bellow (mapx j,i,y j,i)
thus z j,i−mapx j,i,y j,i must be grater than 0. The results are as expected,
the robot touches the ground with three or more of the six points defined
as its tracks depending on the surface roughness. All those are valid posi-
tions, but if the function returns that only two or less points are touching
the surface that means that the autonomous system can’t be on that posi-
tion because of pose limitations introduced as constraints and that same
position on the map is considered an obstacle. It is now possible to build
a new map where instead of z coordinates we use a combination of the
pose angles (pitch and roll) provided by the previous routine. For every
cell of the map, i.e., every time the optimization function returns a pose,
the value of γ is stored in the equivalent cell of the cost map. If we were to
keep the absolute value of γ , we would be admitting the cost of moving
uphill or downhill on a slope with equal inclination is the same. It is intu-
itive to say the robot will struggle more going uphill then going downhill
and this is why we kept the information about the sign of γ . We now have
the information about where the map, at a certain θ , is up or downhill. At
the end of the process of calculating the pose of the robot for every map
cell, the lowest cost value is found and added to every cost map cell, this
action prevents the existence of negative cost values. For each possible θ

angle of the robot a different cost map will be produced by the algorithm,
and so there is not just one 2D matrix depicting the new map, but as many

as the possible θ angles the robot can assume. All these matrices can form
a 3D matrix where each layer is a the map for a specific θ angle.

3 Results

The process explained above was applied to the already mentioned bump
like surface. This map of 1225 cells takes about 0.013 seconds/cell to be
processed but there is still room for speed improvement as we are still
developing concepts.
As we can see from the contour map on Figure 2 (a) of the bump the
cross sections are almost tear shaped and this explains the behavior of
Figure 2(b). The cost map obtained for θ = 0 from the algorithm is shown
in Figure 2(b), it shows cost values ranging from dark blue to dark red as
shown on the side bar. Higher cost values coincide with steeper uphill
slopes and lower cost figures translate steeper downhill slopes. This cost
map is only applicable to a robot travelling bearing θ = 0, so one could
imagine a robot starting from (0,−30) (bottom of the graph) and trav-
elling to (0,20) or in lines parallel to that. The light green/yellow line
demonstrates the beginning of the slope, until then the cost was constant,
but now the robot is climbing uphill the cost values will increase. The val-
ues go from green/yellow up to red (if the color does not change it means
the map has a constant inclination). Because the surface is rounded in all
edges the transition from uphill to downhill is translated by the green/light
blue line, and as the surfaces becomes steeper (downhill) again the blue
color darkens. At the end of the descent the color goes from light blue
to green and the cost represented by the green color is the same up to
the upper edge of the map indicating, again, a constant slope. The Scipy
package for python includes a function (f min_cobyla) that solves Con-
strained Optimization problems BY Linear Approximation (COBYLA)
[4] and it is one of the possibilities that was used to obtain the results here
shown. The fmin_cobyla respects the constrictions to a user defined error
margin which here was defined as a millimetre (although the authors do
not guarantee 100% accuracy in every constraint, the results for the tested
surfaces were always within the defined error).

4 Conclusions and Future work

Although being a different path planning problem, the presented conun-
drum can be solved with adaptations of technologies already in existence.
Simulating the structure of the robot and using an elevation map it is pos-
sible to create a cost map, by computing the robot’s pose in every map
cell. This cost map is a crucial tool for the task ahead, path planning.
We are still in an early stage of the solution and because of that, some
questions that arise when solving the main problem are not completely
answered yet. The future work will be about the use of the cost map as
an input for an already existing path planning method. It is theoretically
possible to apply a Fast Marching Method (FMM) [2, 5],rapidly explor-
ing random trees (RRT) [1, 3] or other path planning methods and obtain
an efficient path for the robot.

References

[1] S. Garrido, L. Moreno, and D. Blanco. Voronoi diagram and fast
marching applied to path planning. IEEE International Conference
on Robotics and Automation, 2006.

[2] S. Garrido, L. Moreno, D. Blanco, and F. Martin. Smooth path plan-
ning for non-holonomic robots using fast marching. IEEE Interna-
tional Conference on Mechatronics, 2009.

[3] S. M. LaValle and Jr. J. J. Kuffner. Randomized kinodynamic plan-
ning. The International Journal of Robotics Research, pages 378–
400, 2001.

[4] M. J. D. Powell. A view of algorithms for optimization without
derivatives. Technical report, Cambridge University, 2007.

[5] J. A. Sethian. Fast marching methods. SIAM Review, 41(2):199–235,
1999.

[6] Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza. In-
troduction to Autonomous Mobile Robots. The MIT Press, ISBN-13:
978-0262015356, 2011.

[7] Sebastian Thrun, Wolfram Bugard, and Dieter Fox. Probilistic
Robotics. The MIT Press, ISBN-13: 978-0262201629, 2005.

(a) (b)

(c)
Figure 1: Robot representation in (a) by 7 points as seen from the
top. Figure 1 (b) shows the positions of all 7 points in relation to the
r, the blue vector displays the origin and direction of the Zr, Yr and
Xr are represented by the red and green vectors, respectively, (c) show
the relation between the two frames, the robot has a pose defined by
(10,−13,0.659,−0.523,1.188,0.213) (note that the Z axis scale is not
the same as the X’s and Y’s to better visualize the relation between
frames)

(a)

(b)

(c)

(d)
Figure 2: (a) depicts an elevation map of the test surface, each contour
line defines a constant elevation value, dark blue for low values until dark
red for the higher figures. The 7 black dots represent the robot and its
scale. (b) shows a representation of the difficulty the vehicle bearing θ = 0
would have at each point of the test map if it were to pass by it. The
darker the red the harder, the darker the blue, the easier. Figure 2(c) and
(d) represent the same as Figure 2(b) bau for θ = π

4 and θ = π

2 . Note the
graphic representation is qualitative within each θ map.

2

