Ground-plane based indoor mobile robot localization using RGB-D sensor!
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Abstract

This paper addresses the problem of absolute localization in an indoor envi-
ronment using a RGB-Depth camera. The approach is based on the use of the
ground region perceived by the RGB camera to detect and decode its position
and edges. The localization system uses this data to match it with a known
on-board map. The ground plane detection algorithm is designed to be robust
to vibration or disturbances during the robot motion. The localization system
is based on the particle filter, fusing odometry with ground region matching
where each particle’s weight is proportional to the quality of correspondence
between the ground edge estimation and the nearest walls. Promising results
were obtained and are presented in this article.

1 Introduction

In the past years, several publications have addressed the localization prob-
lem based on wall detection methods [1]. These systems have some limi-
tation, especially in unstructured environments where walls are sometimes
difficult to detect (hidden by furniture or not present). Another issue is that
this algorithm can be mislead by a planar obstacle. We tackled the local-
ization problem using the RGB-Depth camera and the Particle filter method.
The data acquired by the RGB-Depth camera form a point cloud, which con-
sists in a set of 3D points (x¢,yc,2) in the camera frame. Each 3D point
of the set is associated to one pixel on the image plane of the camera. In
this work we used the Microsoft Kinect sensor. Since the localization system
is based on the ground observation, we assumed that the camera is always
pointing down with the floor on a big part of the FOV. First we detected the
ground point cloud based on a pre-calibrated ground plane and on a dynamic
threshold filter. The filter point cloud edges are then estimated and used to
calculate the particle weight on the Particle filter algorithm [5]. The weight
of each particle is inversely proportional to the distance of the edges from the
nearest wall, as seen by the particle position. While the localization system
developed by Biswas and Veloso [1] is based on wall detection and random
sampling of the depth images for plane detection, our approach uses ground
detection algorithms that are less sensible to planar obstacles and usable in
unstructured environments.

2 Floor Detection

2.1 Floor detection

The floor is modeled as a plane and parametrized according to the following
normalized equation [4]:

ax+by+cz+d =0, (D

where [a, b, c] is the normal vector, d the distance to the origin and (x,y,z) are
the coordinates of a point on the ground in the camera frame (X.,Y.,Z.). Be-
fore starting the localization system we performed a calibration of the floor.
This calibration setup is shown in Fig. 1 where a chess board pattern is placed
inside the camera’s FOV, maintaining the robot still. A corner detection al-
gorithm [6] is used on the colored image to estimate the pixel coordinates
of the board’s inner corners. With the obtained data and the corresponding
depths provided by the camera, we estimated the 3D coordinates of the chess
corners.

The calibrated floor parameters [a’,b',c’,d’] are estimated by applying
the Least Squares on the estimated 3D inner corners position, providing an
approximated ground model. A new frame defined by the orthonormal basis
(Xep>Yep,Zep) is associated to the calibrated ground plane as shown in Figs.
1 and 3, where X, axis is the normalization of the Z. axis’ projection and
the Z,, axis is the normal vector of the plane. The Y., axis results from the
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tion with FOV planes (red).

external product of X., with Z.,. This definition assumes that the Z. axis
points forward the robot.

To estimate the ground model during the robot’s movements, a dynamic
threshold function is defined to remove from the complete point cloud the
points that are further away from the calibrated ground plane. The threshold
function is defined as two planes, one down and the other one up symmet-
rical along a pre-calibrated ground plane model. The function value grows
while we walk away from the robot, as one can see in Fig. 2 where in black
we have the pre-determined ground plane position, in orange the true posi-
tion of the plane and in dashed yellow the value of the threshold function.
Therefore a point which distance from the calibrated plane is bigger then its
corresponding threshold value is discarded (like point P; in Fig. 2).
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Figure 2: Threshold dynamic filter. Its values depends on the point distance
to the floor frame.

The resulting filtered point cloud is formed by the points of the ground
and by some outliers, in particular from the obstacles that are further from
the robot. To remove these outliers a random sample consensus (RANSAC)
algorithm [3] is applied. The result is a point cloud formed just by the floor
point cloud and the real ground plane parameters. An example of such point
cloud is illustrated in Fig. 3.

We developed this floor detection algorithm because the calibration pro-
cess by itself is not enough to detect the floor point cloud on-line in a robust
way because of the vibration during the robot’s motion. This makes the floor
parameters change significantly comparing with the calibrated parameters.

2.2 Edges estimation

After the floor detection, an edges estimator was designed to detect the edges
of the ground seen by the robot. For that we applied the concave hull algo-
rithm [2]. The result is a list of points forming the polygon of the ground seen
in the camera FOV that includes the edges created by the end of the FOV. A
filter is then applied to remove them. As one can see in Fig. 1, the intersec-
tion of the FOV planes (green lines) with the ground plane is estimated (red
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Figure 3: Result of the ground point cloud estimation (red points). The cam-
era frame (named /kinect_rgb_optical_frame) and the camera pro-
jection frame (named /viewpoint_projection).

lines). Then we filtered the points of the polygon that are near the intersection
of the two planes.

2.3 Cost function

A cost function is defined as the L' norm of the distances between the ground
edges and the nearest walls according with a determined particle, as shown
in the following equation:
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where L is the list of edge points, (x;,y;,8;) are the coordinates of the particle
J» D(.) is the distance from a point to the nearest occupied pixel and Pi(xj 27:87)
is the i point in the edges list L transformed to the (x},y;, ;) coordinates,
i.e. the edges as seen in the j particle position.

As an illustration, for the list L obtained looking at a wall’s corner and
fixing the robot orientation, one can see the function value for a wide area
near the true position of the robot
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Figure 4: Cost function defined, fixing the orientation, in the red area in Fig.
5 for the blues edges detected (wall corner).

If one tries to estimate the robot position by the minimum of the function,
we find that it is consistent with the robot true position as one can see in the
Fig. 5 by the good correspondence of the walls (black points) with the edges
detected (blue points) at the position estimated by the minimum (magenta
Cross).

3 Robot Localization System

The localization system is formed by the particle filter [5] where the parti-
cles’ weight is inversely proportional to the particle cost. The particle cost is
estimated according to the previous defined cost function. This way, the sys-
tem at the predict step moves the particles according to the odometry readings
and adds zero mean Gaussian noise. At the update step, the system gets the
point cloud from Kinect, estimates the floor point cloud, performs the edges
detection and calculates each particle’s cost value. Then the resulting particle
set of the resampling based on the particle weight, i.e inverse of the cost, is
used on the next iteration of the particle filter.
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Figure 5: Area where the cost function was calculated (red lines), the position
of less cost value (magenta cross) and the measurements in the global frame
as seen in the minimum cost position (blue lines).

4 Results

As a preliminary result, we ran the particle filter with the robot in a fixed
position with a start particle set of 300 uniformly distributed around the real
pose of the robot in a 4 by 4 square meter and with +-10° of orientation range.
The system successfully managed to convert to the real position as one can
see in Fig. 6.
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Figure 6: Result of the particle filter algorithm with the ground detection (red
points) and edges estimation (blue lines).

5 Conclusions and Future Work

In this paper we described a localization system based on a RGB-Depth cam-
era on an indoor environment. The proposed implemented system appears
to converge with small errors for the scenario specification used in the ex-
periment. As a future work, we would like to perform further tests on the
system in different scenarios and carry out a deeper analysis of the errors in
the system including during robot motion.
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