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Abstract—In this paper, we propose a cooperative perception
framework for multi-robot real-time 3D high dynamic target
estimation in outdoor scenarios based on monocular camera
available on each robot. The relative position and orientation
between robots establishes a flexible and dynamic stereo baseline.
Overlap views subject to geometric constraints emerged from the
stereo formulation, which allowed us to obtain a decentralized
cooperative perception layer. Epipolar constraints related to the
global frame are applied both in image feature matching and
to feature searching and detection optimization in the image
processing of robots with low computational capabilities. In
contrast to classic stereo, the proposed framework considers
all sources of uncertainty (in localization, attitude and image
detection from both robots) in the determination of the objects
best 3D localization and its uncertainty. The proposed framework
can be later integrated in a decentralized data fusion (DDF)
multi-target tracking approach where it can contribute to reduce
rumor propagation data association and track initialization issues.
We demonstrate the advantages of this approach in real outdoor
scenario. This is done by comparing a stereo rigid baseline stan-
dalone target tracking with the proposed multi-robot cooperative
stereo between a micro aerial vehicle (MAV) and an autonomous
ground vehicle (AGV).

I. INTRODUCTION

In recent years, we have seen a growing research effort on
novel multi-robot cooperative tasks for heterogeneous mobile
robotics applications. This ongoing development is driven by
a significant number of potential end-user applications, where
is necessary to reduce the human in the loop interaction
which includes large-scale sensing operations[12], cooperative
search and rescue tasks[5], surveillance[7], recognition recon-
naissance and border control[8]. Currently, mobile robots em-
ployed on these high-end user applications are equipped with
state-of-the art sensing equipment allowing them to navigate
and perceive their surrounding environment. One of the most
common and versatile means of perception in mobile robotics
applications is visual sensing with one or more cameras which
are able to acquire visual information[13] based on cooperative
approaches. Taking this a step further, here we address an
outdoor multi-robot scenario without localization issues, with
the surveillance task goal of detecting and estimating 3D high
dynamic targets positions behavior in a cooperative vision
flexible and dynamic stereo baseline framework.

State of art approaches to enumerated end-user applications
can be organized according to cooperative tasks emerged from
local or cooperative perception.

In local perception approach, each robot is capable of
detecting and locating targets, sharing that information over
some communication middleware that can be later used to
some cooperative mechanism for task allocations[10].

Considering the proposal scenario, those approaches present
several limitations in any possible vision setups: monocular
or stereo rig baseline. In monocular vision, we have the
intrinsic difficulty in estimating depth and absolute scale[1],
so 3D target estimation without target known size is a re-
search challenge. Techniques like SFM(struture-from-motion)
or SLAM(Simultaneous localization and mapping) are able
to estimate depth from a monocular camera[6][3], but the
scene must have a large field of view and motion must not
occur along the optical axis and preferably parallax motion
to allow a fast uncertainty map convergence[1]. SLAM tech-
niques are able to obtain good results in depth estimation for
indoor and even in outdoor map building scenarios although
with constraints such as high computational requirements (not
available in most of the robots with low payload), lower
camera dynamic, preferably with features loop closing and
large field of view, but unable to track targets with high
dynamic behavior. Still with monocular vision and for a
particularly case of aerial vehicles depth estimation can be
obtained based on flat earth assumption[2]. Although it is
simple, its application is limited to tracking objects on the
ground with low accuracy and not applied to our addresses
scenario. Regarding stereo rig baseline, 3D target estimation
is a well known solution due to its relatively simple image
scale and depth estimation although with limited application
when the goal is to track targets whose depth distance greatly
exceeds the available stereo rig baseline, therefore reducing the
stereo setup to a bearing-only sensor[15]. The estimation error
grows quadratically with the depth[15][4], becoming even
more relevant this limitation when the robot majority tends to
decrease its scale factor and consequently smaller rig baseline.
The enumerated limitations strengthens our proposal by having
a multi-robot monocular approach with a flexible and dynamic
baseline between robots able estimate 3D information from
correlated detected targets.

Focusing now in cooperative perception approaches, char-
acterized by each robot, available at the multi-robot forma-
tion, builds its own local partial representation of the world,
described by the belief state and share in order to improve



their knowledge. Some of this methods are: Decentralized
Data Fusion(DDF)[11] by incorporating 2D measures possible
to be represented by Gaussian Mixture Model(GMM)[9],
Cooperative SLAM[14] and for the special case of indoor sce-
narios a decentralized EKF monocular camera inertial sensor
fusion method[1] to recover the relative configuration between
monocular cameras. Common to all enumerated methods is
the requirement translation of the information received from
other robots to the same local representation. This step is
critical in order to avoid rumor propagation that could lead
to overoptimistic estimations. In Cooperative SLAM[14] this
problem was considered and solved thought the epipolar
geometric constraint between cameras. This is part of your
proposal in which we detail in section II-C.

A. The Aim of this Work
We propose a method to estimate the 3D target information

based on multi-robot vision bearing-only measurements in
outdoor scenarios.

Fig. 1. Multi-Robot Cooperative Stereo

The relative positions and orientations between monocular
cameras are allowed to change over time, which means that
we are able to form a flexible stereo baseline and establish
overlap views based on geometric constraints emerged from
the multi-robot collaborative stereo formulation and provide a
3D outdoor localization for multi-targets with high dynamic
behavior (see figure 1). The envisioned multi-robot cooperative
stereo framework can combine monocular vision information
from heterogeneous vision sensors included , but is not limited
to, infrared thermographic camera, visible camera and multi-
spectral cameras which means that we can have multiple
robots cooperating in the same environment and combining
the information provided by each vision sensor. As regards
DDF target tracking approaches the framework can be applied
as layer able to support data association and avoid rumor
propagation between robots and in the initialization process
of new targets.

The paper is organized as follows: in section II we present
the multi-robot cooperative stereo framework and detail the
developed blocks. Section III describes the outdoor scenario
and the vehicles used to obtain the results detailed in section
IV, followed by conclusions and future work in Section V.

II. MULTI-ROBOT COOPERATIVE STEREO FRAMEWORK

The general scheme for the multi-robot cooperative stereo
framework is presented and detail in this section.

A. Notation

Considering the fact that the proposal framework is applied
to multiple robots n with different coordinates frames and dur-
ing the formulation we will require coordinate transformation
matrix from one coordinate (designated by from) to another
coordinate frame ( designated by to), we use the following
notation: tofromSn.To represent the coordinate transformation,
we label {C} for camera frame, {B} for body frame, {N}
for navigation expressed in ENU (earth-fixed east-north-up)
and {W} for global frame expressed in ECEF (earth-centered,
earth-fixed) coordinate. The upper bold case notation represent
matrix, lower bold case vectors and lower case scalar variables.

B. System Overview

The proposed cooperative stereo framework architecture is
outlined in figure 2.

Fig. 2. Multi-Robot Cooperative Stereo Architecture

The architecture is composed by a localization layer re-
sponsible for providing to the local state layer the attitude and
global frame position of the robot. Although in the current im-
plementation this information came from INS/GPS fusion but
could be in the future come from any other localization system.
For each camera available in the robot, a image processing
block provide the {Mi} with the detected target measurement
and the correspond uncertainty. For each image processed the
robot share over a middleware communication, with the robot
that is sharing the same overlap view, the position Wpi and
orientation of camera W

C Ri as well as a list of possible targets
measurements {Wdi}. The information provided from other
robots is then used by a features correspond block (section
II-C). The position and attitude of both robots cameras will
estabilish the essential matrix Ei,j that will define epipolar
restrictions between targets pairs. Finally the target pairs are
applied to obtain the 3D target measurement WTarget3D and
uncertainty Σ3D as detailed in algorithm 1. Before present the
proposed algorithm we will describe for robot i the variables
and inputs depicted in figure 3.

The camera position in the global frame is obtained:

Wpi =W
N Ti.

N
BTi.

Bpi (1)

where Bpi is the camera position in body frame as:

Bpi =B
C Ri.(−ti) (2)



Fig. 3. System setup between robot i and j

being B
CRi and ti achieved from the camera extrinsic cal-

ibration and where the W
N Ti =

[
N
BR W

robotP
]

and N
BTi =[

N
BR 0

]
are respectively the transformation matrix from body

to navigation and navigation to world.
The direction vector to the target in world frame is:

Wdi =W
N Ri.

N
BRi.

Bdi (3)

where Bdi is the same vector in body frame equal to
B
CRi.[

xi−uc

fx
, yi−vc

fy
, 1]T , (uc, vc) principal point (that is usually

at the image center), focal lengths (fx, fy) and {Mi} =
(xi, yi) are the detected target measurement.

C. Multi-Robot Stereo Correspondence

The features match between different cameras i, j is
performed though the epipolar geometric line information.
To avoid ambiguous matches, the corresponding points are
searched over the epipolar line in a narrow band within 2σ
distance. In order to obtain the epipolar line, each robot will
share the rotation matrix (4) and the candidate feature position
(1), both related to the global frame.

W
C Ri =W

N Ri.
N
BRi.

B
CRi (4)

With this information we estimate the stereo rotation R ma-
trix and translation t vector 5 and consequently the essencial
matrix Ei,j = t̂.R.

t = (WC Ri)T .(Wpi −W pj)

R = (WC Rj)
T .WC Ri

(5)

D. Stereo Measurement Uncertainty

In order to define uncertainty in 3D target we will first
define the uncertainty associated to each intersection point
Pinti and Pintj . To achieve the Pinti covariance called ΣPinti

,
we need to obtain the jacobian matrix of Pinti in order to input
variables νi,j .

Ji = ∇νi,jPinti(νi,j)
Jj = ∇νi,jPintj (νi,j)

(6)

Algorithm 1 Multi-Robot Cooperative Stereo

Assuming that each robot share a 3-tuple
(Wpi,

W
C Ri, {Wdi}) for robot i and (Wpj,

W
C Rj, {Wdj})

for robot j. For each pair of points received from robots
i, j we will perform the following steps:

Step 1: Evaluate the correspondence between points de-
tected in each camera considering the epipolar constraint
(details in section II-C). If the points are without correspond
with the epipolar constraint, the algorithm proceed to the
next steps otherwise the tuples are label as being targets.

Step 2: Obtain perpendicular vector to Wdi and Wdj (see
figure 4).

dc =⊥ (Wdi,
W dj)

Step 3: Estimate the value of the λi where the ray
(Wpi +λi.

Wdi) intersects the plane πj defined by the other
monocular robot camera j optical center in world frame Wpj

and the direction vector (Wdj,dc) being the intersection
point Pinti =W pj + λj .

Wdj. The same approach for λj .
λi =

(W pj−
W pi)

T .(dc∧W di)
W di

T .(dc∧W di)

λj =
(W pi−

W pi)
T .(dc∧W dj)

W dj
T .(dc∧W dj)

Step 4: Obtain 3D target point in ECEF coordinate frame
(section II-D )

WTarget3D =
ΣPintj

ΣPinti
+ΣPintj

.(Wpi + λi.
Wdi) +

ΣPinti

ΣPinti
+ΣPintj

.(Wpj + λj .
Wdj)

Step 5: Evaluation the Euclidean distance between two
points projected in the global frame in case of λi and λj
are positive . The thr value is a metric physical distance in
mm.

if ||(Wpj + λj .
Wdj)− (Wpi + λi.

Wdi)|| < thr then
return WTarget3D

end if

where the input state vector is defined as:

νi,j =

[
Roboti︷ ︸︸ ︷

Pi,Ri, di,

Robotj︷ ︸︸ ︷
Pj ,Rj , dj

]
(7)

With the jacobian we can combine the uncertainty in the
state variables Ni,j to covariance of Pinti and Pintj .

Ni,j = diag[ΣPi ,ΣRi ,Σdi,ΣPj ,ΣRj ,Σdj ] (8)

ΣPinti
= Ji.Ni,j .JTi

ΣPintj
= Jj .Ni,j .JTj

(9)



As seen in the algorithm the covariance of the both intersec-
tion points is used in the determination of the 3D measurement
by weighting the uncertainty of each of them (see figure 4) in
opposition to classic stereo mid-point triangulation method.

Fig. 4. Snapshot from the covariance 3D ellipse of Pinti and Pintj and
the intersection point obtained from the algorithm. Mid-Point Triangulation
method (blue dot). Triangulation based on the state covariance value (blue
cross). Perpendicular vector W dc to (W di,

W dj) (purple line).

III. EXPERIMENTAL SETUP

A. Outdoor Scenario

To evaluate the proposed multi-robot collaborative stereo
the chosen experimental scenario was a non-urban area with
several landscape elements, e.g., vegetation, water, rocks,
bushes and some semi-urban structures such as gravel paths.

Fig. 5. Experimental Scenario Fig. 6. Static target tracking by
the robot TIGRE

The target tracking used during the experimental tests was
an orange life jacket (see figure 6) with a size of 37cm×67cm
equipped with a RTK GPS Septentrio L1 L2 able to provide
in post-process a centimeter-accuracy lower than 10cm. This
will allow to evaluate the results from the cooperative stereo
and consider the target position as a external ground-truth.

B. Vehicles

The robot TIGRE (see figure 7) is an autonomous ground
robot for exploration and activity in unstructured environ-
ments. The vehicle has electric propulsion and is equipped
with an on board processing Quad Core Intel(R) Core(TM) i5
CPU 750 @ 2.67GHz, 4GB RAM, running a Linux operat-
ing system, wireless communications, infra-red thermographic
camera, laser rangefinder, two visible spectrum cameras in a
rigid stereo baseline (∼ 0.76 meters) with a pixel resolution
of 1278× 958, Novatel GPS receiver and IMU Microstrain.

The MAV (Micro Aerial Vehicle) (see figure 8) is a he-
licopter driven by four rotors, symmetric to the center of

Fig. 7. TIGRE - Terrestrial Intel-
ligent Ground Robotic Explorer

Fig. 8. Asctec@ Pelican MAV

mass equipped with a Flight Control Unit (FCU) for data
fusion (GPS and IMU) and flight control, an onboard 1.6 GHz
Intel Atom Based Embedded Computer, 802.11n Wifi and a
monocular camera from IDS UEYe LE with a resolution of
1280 × 1024. Both vehicles are running Linux and the ROS
framework as a middleware for communication, parameters
and monitoring of all processes. It is also crucial for the whole
system to work the accurate time synchronization between all
robots involved in the cooperative stereo.

IV. RESULTS

In this section we describe the results obtained from two
experimental cases that were performed in an outdoor scenario
with a static target. The fact that we are using a static target
was due to the importance of evaluating the quality of results
from stereo triangulation with a rigid baseline (IV-A) and the
paper proposal method with a multi-robot collaborative stereo
(IV-B) in a similar context able to be reproduced.

A. Experiment I: Stereo rigid known baseline

For this experimental case, a stereo rigid baseline available
at TIGRE was used to track the target. This means that the
MAV was not available, so the results will express the quality
of perception from TIGRE that was at a distance of ∼ 35
meters from the static target (see figure 6) and moving towards
with speed of 0.4 m/s.
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Fig. 9. Target estimation error for a stereo rigid known baseline. Left: TIGRE
GPS trajectory (blue triangle), target GPS RTK position (magenta circle).
Estimate position of the target (black cross). Right: Estimation position error
related to the target (black cross) compared with the stereo model error (green,
red and blue lines).

As expected and considering the reference[15], the percep-
tion accuracy of the TIGRE target tracking followed the stereo
model error: εz = z2

b.f .εd where εz is the depth error, z is the



depth, b the baseline, f the focal length in pixels and εd the
matching error in pixels. The stereo model error is expressed
in the lines from figure 9 on the right to different values of εd
and the black crosses the estimation position error related to
the target. Figure 10 presents the stereo vision covariance for
three instances related to the target position. We observe that
the covariance decreases with shortening the distance and the
bearing angle is consistent even for large distances. It became
clear that was not possible to have a good accuracy for target
tracking with local perception due to the normally (∼ 1 m)
available rig baseline.

B. Experiment II: Multi-Robot Cooperative Stereo

Supported by the monocular MAV camera both robots are
able to obtain a flexible stereo baseline using the proposed
multi-robot collaborative stereo framework detail in section
II. The experiment was composed of several steps: TIGRE
detected the target and shared the estimation position to MAV,
MAV moved based on the information provided by TIGRE
to the top of the target and remained on the top based on
local perception, MAV shared a 3-tuple (Wpi,

W
C Ri, {Wdi})

to TIGRE in order to in a cooperative way estimate 3D target
position. Results are showed in figures 11 and 12.
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Fig. 11. Target estimation error with Multi-Robot Cooperative Stereo. Left:
TIGRE GPS trajectory (blue triangle), target GPS RTK position (magenta
circle). Estimate position of the target for each method: Mid-Point Triangu-
lation (black cross) and State Covariance Sigma Value (blue circle). Right:
Estimation position error related to the target with Mid-Point Triangulation
Method (black cross) and State Covariance Sigma Value Method (blue circle)
compared with the stereo model error (green, red and blue lines).

Comparing the results from section IV-A with IV-B, it is
possible to observe that the proposal framework with cooper-
ative dynamic stereo baseline reduced dramatically the target
estimation error. This improvement is even more noticeable if
we compare the results between figures 9 and 11 when applied
the method based on state covariance sigma value (blue circle)
detailed in section II-D. From figure 12 we can observe that
the resulting uncertainty in 3D target is dominated by the MAV
uncertainty mainly caused by the low cost GPS error (∼ 2 m).

V. CONCLUSIONS

In this work we present a framework for multi-robot real-
time 3D high dynamic target estimation in outdoor scenarios.
The proposed framework provides the following functionali-
ties:

• Determination of 3D target measurement and associated
uncertainty from image measurements from two cameras
in robots and robots localization as well as the associated
uncertainties;

• Mechanism to help the target search and identification in
the image processing blocks in robots with low compu-
tational capacities;

• Mechanism to help the matching and association of 2D
targets

• Better understanding of how the several sources of un-
certainty contributes to measurement uncertainty

We demonstrate the advantages of this approach by com-
paring a stereo rigid baseline standalone target tracking with
the proposed multi-robot cooperative stereo between a micro
aerial vehicle (MAV) and an autonomous ground vehicle
(AGV). The Field experimental cases, show that our proposal
framework with cooperative dynamic stereo baseline reduces
dramatically the target estimation error. This novelty will
allow in future to establish an information framework for
the formation control of multi-robot system. Additionally, this
cooperative perception framework when integrated in a multi
target tracking architecture, like a DDF, will endows it with a
fast track initialization and more robust data association layer
in highly dynamic scenarios.
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