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Abstract— Employing a swarm of independently controlled
flying micro air vehicles (MAVs) for aerial coverage missions,
instead of a single flying robot, increases the robustness and
efficiency of the missions. Designing a swarm of MAVs re-
quires addressing new challenges, such as inter-robot collision
avoidance and formation control, where individual’s knowledge
about the relative location of their local swarm members is
essential. A relative positioning system for a MAV needs to
satisfy severe constraints in terms of size, weight, processing
power, power consumption, three-dimensional coverage and
price. In this paper we present an on-board audio based system
that is capable of providing individuals with relative positioning
information of their neighbouring sound emitting MAVs. We
propose a method based on coherence testing among signals of
a small onboard microphone array to obtain relative bearing
measurements; and a particle filter estimator to fuse these
measurements with information about the motion of robots
throughout time to obtain the desired relative location estimates.
A method based on fractional Fourier transform (FrFT) is used
to identify and extract sounds of simultaneous chirping robots
in the neighbourhood. Furthermore, we evaluate our proposed
method in a real world experiment with three simultaneously
flying micro air vehicles.

I. INTRODUCTION

There has been a growing interest in the field of robotics
in using multiple autonomous robots for achieving tasks in a
collaborative manner. Teams of flying robots can accomplish
aerial coverage tasks more robustly and more efficiently com-
pared to a single flying robot. Possible applications include
rapidly-deployable communication networks [1], environ-
mental monitoring, aerial surveillance and mapping, traffic
monitoring and search and rescue [2]. However, additional
challenges are imposed on the design of MAV swarms that
have so far prevented their use in real missions. Robots
within an aerial swarm are required to interact with each
other and to work together towards the achievement of a
desired goal. This introduces new problems, such as inter-
robot collisions and formation control. A common idea that
has been addressed throughout both the natural and artificial
swarms literature is that individual’s knowledge about the
relative location of other swarm members is essential for
achieving successful swarming [3]-[5] . For example, aware-
ness about the relative range and/or bearing of neighbouring
robots can allow a robot to maintain formations [6] [7],
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and decrease the risk of collisions [8], with other swarm
members.

A relative positioning system for a MAV needs to satisfy
severe constraints in terms of size, weight, processing power,
power consumption, three-dimensional coverage and price.
These constraints prevent the current relative positioning
systems designed for ground robots and large aerial vehicles
to be used in MAVs. Inspired by the sense of hearing in
animals, which provides them the ability of using sound for
communication and localization; we propose an audio based
positioning system for MAVs to allow them to obtain infor-
mation about the position of their local swarm neighbours.
Such a system could also possibly be used for perceiving
other non-cooperative noise emitting aerial platforms. This
paper is organized as follows: Section II describes the related
works on relative positioning systems for MAVs. Section
IIT describes the proposed method for our audio based
relative positioning system and in Section IV results of real
experiments with the proposed method is provided, where
three flying MAVs are used in the experiment.

II. STATE OF THE ART

Two main approaches for obtaining relative positioning
information in multi-robot systems exist in the literature.

1) Using an absolute positioning system alongside a com-
munication network, allowing robots to obtain relative
positioning information by communicating their abso-
lute locations with each other [9] [10]

2) Directly measuring the relative location of other robots
using on-board exteroceptive sensors [11] [4]

A drawback with solutions based on the former approach,
for relative positioning in MAV swarms, is that an external
infrastructure, such as wireless positioning beacons or global
positioning system (GPS) satellites, is required for acquiring
the absolute positioning information. GPS technologies are
vulnerable to jamming and interferences, have low resolu-
tion, and are impossible to use in cluttered terrains where
there is no direct line of sight with the transmitting satellites
[12]. Also, deployment of wireless positioning beacons in
the environment in advance of each mission is both costly
and time-consuming.

Due to disadvantages of the first approach, much effort has
been put into the design of onboard relative positioning sys-
tems. In this approach, every individual robot measures the
relative position of other robots using onboard exteroceptive
sensors. Most current onboard relative positioning systems
are developed for ground robots and mainly rely on sensors
such as laser range finders, infrared sensors and cameras.



However, a relative positioning system for a MAV needs to
satisfy constraints in terms of size, weight, processing power,
power consumption, three-dimensional coverage and price.
This prevents some of the successful sensor technologies
implemented for relative positioning of ground robots to be
used in MAVs. Despite this, some effort has been done in
transferring these solutions from ground robots to MAVS.
Mini laser range finders have been used [13] for detection of
large static obstacles (trees and buildings) located in front of
a MAV. These sensors provide accurate range measurements
of obstacles directly located in front of the laser beam up
to a few hundreds of meters away. A major drawback of
such sensors is their single point/planar detection ability,
which makes them a bad candidate for measuring the position
of other MAVs in three-dimensional spaces. Few works
also investigate the use of optical sensors for detecting the
motion of other aircraft relative to the background scene,
computing the relative azimuth and elevation [14]. Systems
based on such sensors have a limited field of view and are
highly dependent on light conditions and visual contrast.
Furthermore, these systems greatly suffer from missed or
false detections when the target is located on non-uniform or
cluttered backgrounds and also in the presence of vibrations
and adverse weather conditions. Small scale Doppler radar
transducers are the basis of the sensor suite proposed in [15]
for allowing a MAV to detect the presence and measure the
relative bearing of colliding obstacles. The sensor suite has
a small weight of about 300g and power consumption of 3.7
watts. However, small field of view (30deg), low resolution
(15deg) and small range (10m) are some of the major
drawbacks of this system. Infrared/ultrasound-based sensor
suites have been shown in [11] [16] provide accurate relative
range and bearing estimation in indoor flying platforms.
However, they are not suitable sensors for outdoor MAVs
due to their short working range.

Hearing has always been one of the key senses among
humans and animals allowing them to use sound for at-
tracting attention, communication and localization purposes.
Despite this, audition in robotics has not received great
attention compared to vision, and most studies on this focus
on speech recognition and localization of talkers for home,
office, and humanoid robots [17] In most works, a technique
inspired by animal hearing called Inter-aural Time Difference
(ITD) (also known as Time Difference of Arrival TDOA) is
used for localizing sound sources. This method measures the
time delay caused by the finite speed of sound between the
signals received by two microphones. While the complex
hearing capabilities of animals achieve good performance
with only one pair of acoustic sensors, technical systems of-
ten use arrays of microphones for assisting robots in locating
broadband sound sources in the environment [18]. Audio-
based relative positioning for ground robots has not been
favoured so far, due to the success of other available sensor
technologies and because of the existing challenges in sound
source localization inside reverberant and noisy domestic
environments. In the case of underwater robotic swarms, the
effectiveness of audio based relative positioning compared to

other methods have been shown by some researchers [19]. In
these systems, a pair of hydrophone sensors onboard a small
submarine is used for measuring the relative bearing of other
sound emitting submarines. Audio-based relative positioning
for miniature aerial robots has not been addressed so far.
However, existing natural swarms clearly show the success
of such a system for achieving swarm behaviours. Flight calls
of nocturnal migratory birds used for collision avoidance
and coordinated migration during night [20], and phonotaxis
behaviour among insect swarms for mating and predator
avoidance [21] [22] are some of the many existing examples.
Furthermore, in a recent work, an acoustic source localization
system for MAVs was shown to be effective in locating
the source of distress signals on the ground [2].Design of
new acoustic sensors suitable for use on MAVs have been
investigated in some recent works [23] [24].

An audio-based relative positioning system for swarm
of MAVs will have several advantages. First of all, this
system will be based on cheap, small size, passive and
omnidirectional sensors which clearly satisfy the constraints
of MAVs. The passivity of the sensors will result in low
power consumption of the overall system, which is an
important parameter for having longer swarm endurance.
Also, this system will be independent of illumination and
weather conditions, such as fog, dust and rain and will not
require direct line-of-sight between robots for its operation.
Such a system will also be potentially less computationally
expensive compared to vision-based systems, as it will
mainly rely on the available phase information in the sound
waves rather than the need for extraction of features from
sequence of images.

III. PROPOSED METHOD

This section explains our method for relative positioning
in a group of MAVs. Figure 1 presents the schematic diagram
of this system. The overall system is divided in to two main
parts of ’Target’ and ’Perceiving robots’ to illustrate the
main units of the system involved at each state. In the target
robot state, the robot generates chirps of predefined rate and
frequency. In the perceiving state, sound waves are picked
up by an on-board microphone array and are continuously
checked by the Chirp Detection and Separation unit for
existence of chirps in the sound mixture. When a full chirp
is detected, it is filtered out from the sound mixture and is
then passed to the coherence measuring unit. This unit cross
correlates the signals from every microphone pair and obtains
a measure of similarity between the signals as a function of
time lag applied to one of them. This measure reflects the
chirp’s time difference of arrival (TDOA) likelihood for all
possible time delays. This information along with knowledge
of the microphone array’s geometry is then used by the
Relative Bearing Measurement unit to estimate a measure
of the target’s direction. Finally, a particle filtering unit is
used to estimate more robustly the relative location of the
target robot by fusing the noisy bearing measurements with
information about the relative motion of robots throughout
time. The relative motion between robots are computed using
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Fig. 1. Schematic diagram of the proposed relative positioning system
illustrating main parts of the system

information from the on-board proprioceptive sensors and
a communication network. A more detailed explanation of
each unit is presented in the following sections.

A. Chirp Generator

Piezo transducers are simple, inexpensive and lightweight
devices that are suitable to be used on MAVs. These de-
vices generate sound by converting electrical pulses into
mechanical vibrations. The resulting sound can be very loud
if the frequency of the vibrations are close to the resonance
frequency of the piezo element. Hence, in order to generate
a loud sound wave that is required here, narrowband sounds
such as a pure tone or a band-limited chirp with frequencies
close to the resonance frequency should be used. To avoid the
problem of ambiguous bearing measurements, caused due to
the repetitive nature of pure tone sounds, a band-limited chirp
is used for the sound of the targets. The chirp generating unit
of every target robot generates periodical linear chirps with
a predefined and unique chirp rate. Figure 2 illustrates the
sound wave and spectrogram of an in-flight sound recording
involving one perceiving robot and two chirping MAVs.

B. Chirp Detection and Extraction

This unit is responsible for the detection and extraction of
a chirp in the perceived sound wave. Presence of a desired
chirp in the sound mixture is initially detected by template
matching technique, where a cross correlation of the sound
mixture with a template of the desired chirp is used to find
the existence and the time segment containing the chirp.
After a chirp is detected, the Fractional Fourier transform
(FRFT) [25] of the time window containing the entire chirp is
computed with an FRFT order of « obtained by the following
equation.

a= gta]rf1 (ax fs) (D
™

where f; is the sampling frequency and a is the chirp rate.
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Fig. 2. Sound wave .and spectrogram of an in—ﬂig}.lt sound recording

involving one perceiving robot and two chirping MAVs. The two linear
chirps are in the same frequency band and have a different chirp rate.

First proposed by Namias [25], FRFT has been recently
favoured in the field of signal processing [26], especially
when dealing with chirp signals. The FRFT provides a
compact representation of the chirp signal allowing us to
extract the chirp corresponding to a desired target robot
from other sounds. Figure 3 illustrate a comparison between
the time, frequency and Fractional domain of a linear chirp
signal.

The FRFT, computed by the Chirp detection unit, contains
an Impulse shaped peak that corresponds to the desired chirp.
This chirp is filtered out from other sounds by only retaining
the bin with the highest peak along with its nearby bins
and setting all other bins to zero. Furthermore, the filtered
chirp in the FRFT domain is transformed back to the time
domain by computing the inverse FRFT. The ratio of the
peak value and the mean value of all zeroed bins prior to
zeroing provides a good measure of the signal to noise ratio
and is recorded and used later as a measure for the reliability
of the bearing measurement.
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Fig. 3. A comparison between the time, frequency and Fractional domain
of a linear chirp



C. Coherence measuring

This unit compares the filtered chirp signals of all channels
with each other and hence estimates a similarity degree for
every pair of signals as a function of time-lag applied to one
of them. Cross correlation is a commonly used technique
for measuring the coherence between two signals. Cross
correlation of two microphone signals each having a length
of N samples can be computed by

Zm

where p; [n] is the signal perceived by microphone ¢ and 7
is the correlation lag in samples in the range expressed by

n]p; [n— 7]

dm, dm,
o< 2 )
C C

where d,, is the distance between the microphones and ¢
is the speed of sound. In order to reduce the computation
time, the cross correlation function can be approximated
in the frequency domain by computing the inverse Fourier
transform of the cross spectrum:

N-—1 -
= B[] P} [Ke™R" 3)
k=0

where P;(k) is the discrete Fourier transform of p;(n) and
P? denotes the complex conjugate of P;. This results in
a reductlon of complexity from O(Nz) to O(NlogN),
hence making it more suitable for real time computations.
A weighting function was introduced into equation (3) by
[27] in order to solve the problem of wide cross correlation
peaks.

N-—1 z P* [k]
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This weighting function whitens the cross-spectrum of the
signals allowing equal contribution of all frequencies in es-
timating the cross correlation and resulting in sharper peaks.
This is only suitable when the desired sound is broadband,
but for narrowband sounds it amplifies the background noise.
Therefore, a modified version of equation (4) was used here
instead to solve this problem.

: }eNk 5)
where

otherwise

X:{é fmin<f<fmax

and fiin and fiax are the minimum and maximum frequen-
cies of the chirp.

D. Relative Bearing measurement

After obtaining R;; () from (5) for all microphone pairs
i, the Relative Bearing Measurement unit searches for the
most likely sound source direction b ,,

->
by, = arg_;nax Z R;; (Tgij) (6)
i,

where time delay 7;; corresponding to direction E) and is
computed from the coordinates of microphones ¢ and j in the
body fixed coordinate system. In this work a full direction
grid search for all directions b around the robot is used for
finding b,, . Other search methods exist in the literature that
can reduces the cost of this search if necessary [28].

E. Farticle Filtering

The previous sections described methods of providing an
instantaneous noisy information about the relative bearing
of a target robot in the neighbourhood. It is now required
to estimate more reliably this relative bearing and also
obtain some information about the relative range of the
target robot. This can be achieved by fusing all the available
information together. Information from the on-board sensors
reflecting the relative motion between the perceiving and
the target MAVs throughout time along with all direction
measurements available up to the current time could all be
employed. For this purpose, we will use the particle filtering
technique to recursively estimate the probability density of
the target location. Using this method, all of the hypotheses
about the target’s position are represented as a set of particles
with individual weights.

At time instant ¢, the direction to a target robot is modelled
using a set of IV particles of vectors p; and weight w;, where
Di = (Dwis Dyi, Pzi) is a vector in the body-fixed coordinate
system that starts at the origin and ends at a point in space. p;
can also be described in the body-fixed spherical coordinate
system (Z¢, /0, ) by:

wi = (¢4, 05, 73)

where ¢; is the relative azimuth defined in the range
[-7, 7] , 0; is the relative elevation defined in the range
[-7/2,7/2] and r; is the relative range defined in the
range [Rpin, Rmaz)- Bmin and Ry, are dependant on
the platform size and the sound power respectively. For the
MAVs and the piezos that are used in this work the ranges
are found approximately to be [1,250] meters.

A three dimensional state vector is specified for every

particle:
Sit) = [¢a(t) 0i(t) ri(t)] (®)

The algorithm starts by forming an initial set of particles
{S;(0),i = 1 : N}. Particles either could be generated
uniformly over the entire state space, or only over a desired
part of the state space if some prior knowledge about the
possible location of the target is available. In the proposed
problem the initial state space is reduced to all vectors in the
space having a small deviation from the first reliable bearing
measurement.

i=1,2,.N 7)



Fig. 4. Illustration of the motions of two robots in two successive time
steps showing the vectors and coordinate systems

1) Prediction: In this work, we measure the change in
roll and pitch of the MAVs using on-board gyroscopes and
the airspeed and altitude using an absolute and a differential
pressure sensor. As no compass is present on the MAYV,
the heading information is obtained from an on-board GPS
sensor. The sensor readings of the target robot is communi-
cated to the perceiving robot via a wireless communication
network.

We use a simple model for the prediction step which
assumes that the robot has only forward motion (i.e. along
the = axis on the body-fixed coordinate system). Figure 4
illustrates the motions of two robots for two successive time
steps. From this figure and using linear algebra the following
relationship between vectors can be described.

Tr—Rpa-(Rep PB) — Ran . Tho1+RaaTa=0

)
where R;; is a rotation matrix that rotates a vector from
the coordinate system I to the coordinate system .J. This
equation is used in the prediction step of the particle filter to
predict the particles p ;; from there previous values ?(k,l)i.
For this, the vectors ? 4 and ? p are initially predicted from
the speed sensor readings V4, _1) and Vp(_1) at time k—1

R (Vage—1) +&v)dt (VB(k—1) +&v)dt
Pa= 0 B= 0
0 0

where dt is the time interval between the two time steps
and £y = N(0,0v) is a random number generated with a
normal distribution of mean zero and standard deviation oy .
The value of oy is chosen in relation with the reliability
in the speed sensor reading measurements. Furthermore, the
yaw (), pitch (8) and roll («) readings from the on-board
sensors at times (k — 1) and (k) are used to predict the
rotation matrices R(A + &y, 8 + &3, + £3) needed for
the equation (9) with £, = N(0,0), {g = N(0,03) and
¢« = N(0,0,). Finally, equation (9) can be solved for the
prediction p ,; of particle 7.

Fig. 5. Picture of the MAV platform [29] used for experimenting the
proposed algorithm. Four microphones and an on-board digital sound
recorder is used for recording sounds during flight.

2) Update: As previously explained, an audio based
relative bearing measurement is obtained at every time-
step. In the update step, the likelihood of obtaining these
measurements is investigated for every particle and particles
are weighted based on this measure. For this investigation,
we propose the likelihood function:

OmV 2T (19)
where - 5
€i = L(bmks D) (11

is the angle between the measured bearing ?mk at time k
and the predicted vector p ., of particle . The value of o,,
reflects the confidence of the bearing measurements and is
found empirically.

3) Relative Position Estimation: The relative range and
bearing of the target can be estimated at each time step from
the probability density function represented by a particle set.
For this, a weighted mean of all particles’ positions could
be employed. However, to avoid inaccurate estimations for
situations with multi-modal distributions, a weighted mean
of particles located in a local neighbourhood of the particle
with the highest weight is used instead:

K
ST = ZwlSl : V|SZ —Smam‘ <£

i=1

12)

IV. EXPERIMENTS AND RESULTS

To test and verify the proposed algorithm, multiple real
experiments were performed with three similar MAV plat-
forms such as the one shown in figure 5. A microphone
array consisting of four microphones is mounted on one of
the robots along with a digital sound recorder for recording
the microphone signals. The microphones are positioned in
a way to form a regular tetrahedron of edge length 10 cm.
The other two robots are equipped with a piezo and a micro
controller programmed to generate chirps of different rate
as shown in figure 2. All MAVs are equipped with an au-
topilot that allows it to fly fully autonomously to predefined
way points. The orientation, altitude, air-speed and global
positioning information of the MAVs are measured using
on-board sensors and are transmitted and recorded on a
ground station. The MAVs were controlled to fly within the
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Fig. 6. The motion path of robots recorded by onboard GPS sensors, for
25 seconds of flight time in an experiment involving one perceiving robot
and two target robots

visual range of a safety pilot while the engine power of the
perceiving robot was occasionally reduced or even turned
off to increase the detection range by increasing the signal
to noise ratio. This reduction in the engine power is achieved
automatically whenever the MAV is descending.

Figure 6 shows the path of all three robots, recorded by
the GPS sensors, for 25 seconds duration of flight time.
The relative azimuth estimations for this duration of time
is shown in figure 7. These estimates are compared against
the relative azimuth values that are computed from the
GPS positions and the onboard IMU data and show a good
correspondence at all times. Furthermore, the relative range
estimations along with the particle distributions and GPS
based range estimates are shown in figure 8. It can be seen
that the particles gradually converge towards the correct
relative range and furthermore track it with an acceptable
accuracy. As expected, the speed of convergence and the
accuracy in the relative range estimation is highly dependant
on the motion and positions of the robots, as for some type of
relative motions the inaccurate particles are eliminated faster
than the others. Figure 8 shows that in the first few seconds
where the perceiving robot is further away from the target
robots and robots are moving towards each other, particles
are still widely spread in relative range although they have
converged to the correct bearing. As the robots get close and
pass each other the disparity of particles is reduced.

V. CONCLUSION AND FUTURE WORK

This paper presents a solution to the problem of relative
positioning for a group of micro air vehicles. The solution
provided in this paper requires MAVs to be equipped with an
on-board microphone array to measure the relative bearing to
other sound emitting MAVs and on-board sensors to obtain
information about the state of the MAVs. The particle filter-
ing technique used in this paper was shown to be well-suited
for fusing the relative bearing measurements with relative
motion of the MAVs in order to achieve robust estimation of
the relative range and bearing. In this work a communication
network between the robots was needed for sharing sensor
informations and computing the relative motion between the
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robots. Removing the need of a communication network,
by considering some prior knowledge about the behaviours
of robots, is an area of work we are currently pursuing.
In this work a piezoelectric transducer was used on the
robots as the target source. However as the engine of nearly
all flying platforms generate sound when flying, this sound
could possibly be used in the future for detecting other non-
cooperative robots and aerial platforms.
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