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t. The analysis and design of hybrid systems must exploit theirhierar
hi
al and 
ompositional nature of in order to ta
kle 
omplexity.In previous work, we presented a hierar
hi
al abstra
tion framework forhybrid 
ontrol systems based on the notions of simulation and bisimula-tion. In this paper, we build upon our previous work and investigate the
ompositionality of our abstra
tion framework. We present a 
omposi-tion operator that allows syn
hronization on inputs and states of hybridsystems. We then show that the 
omposition operator is 
ompatible withour abstra
tion framework in the sense that abstra
ting subsystems willthe result in an abstra
tion of the overall system.1 Introdu
tionThe 
omplexity of hybrid systems analysis and design motivate the developmentof methods and tools that s
ale well with dimension and exploit system stru
ture.Hierar
hi
al de
ompositions model hybrid systems using a hierar
hy of modelsat di�erent layers of abstra
tion. Analysis tasks are then performed on simpler,abstra
ted models that are equivalent with respe
t to the relevant properties.Design also bene�ts from this approa
h sin
e the design starts at the top of thehierar
hy on a simple model and is then su

essively re�ned by in
orporatingthe modeling detail of ea
h layer.In addition, as systems are usually 
ompositions of subsystems, one must takeadvantage of the 
ompositional stru
ture of hybrid systems. We seek, therefore,to take advantage of this 
ompositional stru
ture of hybrid systems to simplifythe 
omputation of abstra
tions. This simpli�
ation 
omes from the fa
t that itis mu
h simpler to abstra
t subsystems individually and then inter
onne
t themin order to obtain an abstra
tion, rather than to extra
t an abstra
tion of thesystem as a whole. In order to a

omplish this, 
ompositional operators need tobe 
ompatible with abstra
tion operators.The notions of 
omposition and abstra
tion are mature in theoreti
al 
om-puter s
ien
e, and, in parti
ular, in the areas of 
on
urren
y theory [10℄, [19℄,and 
omputer aided veri�
ation [9℄. Notions of abstra
tion su
h as language in-
lusion, simulation relations, and bisimulation relations have been 
onsidered inthe 
ontext of hybrid systems. A formal model for hybrid systems allowing 
om-position was proposed in [8℄, 
ompositional re�nements in a hierar
hi
al settingare dis
ussed in [2℄, and assume guarantee proof rules are presented in [4℄.



For purely 
ontinuous systems, the notions of simulation, and bisimulationhad not re
eived mu
h attention [18℄. Re
ently, similar notions were introdu
edin [11, 12℄ whi
h has resulted in 
onstru
tions of abstra
tions for linear 
ontrolsystems [11℄, and nonlinear 
ontrol systems [12℄ while 
hara
terizing abstra
t-ing maps that preserve properties of interest su
h as 
ontrollability. Based onthese results, in [16℄, we took the �rst steps towards 
onstru
ting abstra
tions ofhybrid systems while preserving timed languages. This allowed us to introdu
ein [17℄ an abstra
t notion of 
ontrol systems 
omprising dis
rete, 
ontinuous andhybrid systems. This abstra
t framework was the natural setting to understandabstra
tions of hybrid 
ontrol systems.In this paper, we extend the hierar
hi
al approa
h des
ribed in [17℄ towards
ompositionality. Following the approa
h des
ribed in [19℄, we introdu
e a gen-eral 
omposition operator modeling the inter
onne
tion of subsystems and relate
ompositionality with abstra
tions. We prove that simulations and bisimulationsof hybrid systems are 
ompositional, and we also give ne
essary and suÆ
ient
onditions for bisimulations to be 
ompositional.This paper is stru
tured as follows. In Se
tion 2 we review the abstra
t 
ontrolsystems framework introdu
ed in [17℄ and introdu
e the notions of simulation andbisimulation. In Se
tion 3 we introdu
e a 
omposition operator based on [19℄,modeling the inter
onne
tion of subsystems and relate 
ompositionality withabstra
tions. We prove the main results of the paper showing that abstra
tionsare 
ompositional. We 
on
lude at Se
tion 4 by providing some topi
s for futureresear
h. In Appendix A we 
olle
t some mathemati
al fa
ts and notationalissues, and Appendix B 
ontains the proofs of all the results.2 Abstra
t Control SystemsIn [17℄, we presented an abstra
t 
ontrol systems framework whi
h allows thetreatment of dis
rete, 
ontinuous, and hybrid 
ontrol systems in a uni�ed way.This approa
h di�ers from other attempts of uni�
ation [7, 14℄ by regarding sys-tems as 
ontrol systems. We start by looking at dis
rete and 
ontinuous systemsto gain some motivation for the general 
ase.Dis
rete Control Systems: Let (Q;�; Æ) be a dis
rete labeled transitionsystem, where Q is a �nite set of states, � is a �nite set of input symbols, and Æ :Q�� �! Q is the next-state fun
tion. For simpli
ity, we restri
t to deterministi
transition systems, and note that Æ is in general a partial fun
tion. Let us denoteby �� the set of all �nite strings obtained by 
on
atenating elements in �. Inparti
ular the empty string " also belongs to ��. Regarding 
on
atenation ofstrings as a map from ����� to �� we 
an give �� the stru
ture of a monoid.Furthermore, it is well known from automata theory [5℄, that the transitionfun
tion Æ de�nes a unique partial map from Q��� to Q satisfying the followingproperties: Æ�(q; ") = q (1)Æ�(q; �1�2) = Æ�(Æ�(q; �1); �2) (2)



A similar des
ription of 
ontrol system 
an also be given.Continuous Control Systems: Let U be the spa
e of admissible 
ontrolinputs. De�ne the set U t as:U t = fu : [0; t[�! U j [0; t[� R+0 g (3)An element of U t is denoted by ut, and represents a map from [0; t[ to U . Considernow the set U� whi
h is the disjoint union of all U t for t 2 R+0 :U� = at2R+0 U t (4)The set U� 
an be regarded as a monoid under the operation of 
on
atenation,that is, if ut1 2 U t1 � U� and ut2 2 U t2 � U� then ut1ut2 = ut1+t2 2 U t1+t2 �U� with 
on
atenation given by:ut1ut2(t) = �ut1(t) if 0 � t < t1ut2(t� t1) if t1 � t < t1 + t2 (5)The identity element is given by the empty input, that is " = u0. Let _x = f(x; u)be a smooth 
ontrol system, where x 2 M , a smooth manifold and u 2 U , theset of admissible inputs. Choosing an admissible input traje
tory ut, f(x; ut)is a well de�ned ve
tor �eld and as su
h it indu
es a 
ow whi
h we denote by
x : [0; t[�!M , su
h that 
x(0) = x. We thus see that a smooth 
ontrol systemde�nes a partial map: � :M � U� �!M(x; ut) 7! 
x(t) (6)satisfying: �(x; ") = �(x; u0) = 
x(0) = x (7)�(x; ut1ut2) = 
x(t1 + t2) = 

x(t1)(t2) = �(�(x; ut1); ut2) (8)We think of the monoid as the set of 
ontrol a
tions available to in
uen
e theevolution of the system. In many 
ases, however, these available a
tions 
hangefrom state to state. This dependen
e of the available a
tions on the states for
esus to work with generalized monoids, see Appendix A for the 
orre
t de�nition.De�nition 1 (Abstra
t Control System). Let S be a set and M a gener-alized monoid over S. An abstra
t 
ontrol system over S is a map � : M �! Srespe
ting the monoid stru
ture, that is:1. Identity: �(s; ") = s2. Semi-group: �(s; a1a2) = �(�(s; a1); a2)We now show how this de�nition is general enough to 
over also hybrid 
ontrolsystems.



Hybrid Control Systems: The state spa
e of an hybrid 
ontrol system is aset of smooth manifolds Xq parameterized by the dis
rete states q 2 Q, denotedby X = fXqgq2Q. A point in X is represented by the pair (q; x). The set ofavailable a
tions at ea
h point is des
ribed by a subset of the following monoid:M = an2N0(U� [��)n (9)assuming that U� \ �� = f"g and regarding U� and �� simply as sets. Let uselaborate on the produ
t operation onM. This operation is de�ned as the usual
on
atenation and therefore it requires �nite length strings. To a

ommodatethis requirement and still be able to have an in�nite number of 
on
atenationsof elements in U� we pro
eed as follows. Suppose that we want to show that�1ut1ut2 : : : utk : : : �2 belongs to M, where tk is a 
onvergent series. Instead ofregarding ea
h element in the string as an element inM (whi
h would not allowus to de�ne the last 
on
atenation sin
e it would happen after 1) we regard�1 and �2 as elements of M and ut1ut2 : : : utk : : : = ut0 as an element of U�and 
onsequently as an element of M, where t0 = limk�!1 tk. This string is thenregarded as the map m : f1; 2; 3g �! M de�ned by m(1) = �1, m(2) = ut0and m(3) = �3. The produ
t in M is then the usual 
on
atenation on redu
edstrings, that is, strings where all 
onsequent sequen
es of elements of U� or ��have been repla
ed by their produ
t in U� or ��, respe
tively. Hybrid 
ontrolsystems are now 
ast into the abstra
t 
ontrol systems framework as:De�nition 2 (Hybrid Control System). An hybrid 
ontrol system H =(X;MX ; �X) 
onsists of:{ The state spa
e X = fXqgq2Q.{ A generalized monoid MX over X.{ A map �X :MX �! X respe
ting the monoid stru
ture and su
h that for allq 2 Q, there is a set Inv(q) � Xq and for all x 2 Inv(q), MX(q; x) \ U� 6=f"g and �((q; x); ut0 ) 2 Inv(q) for every pre�x ut0 of every ut 2 MX(q; x).The semanti
s asso
iated with the evolution from (q; x) governed by � and
ontrolled by a 2 M(q;x) is the standard transition semanti
s of hybrid au-tomata [3℄. Suppose that a = ut1�1�2ut2 , then �((q; x); a) = (q0; x0) means thatthe system starting at (q; x) evolves during t1 units of time under 
ontinuousinput ut1 , jumps under input �1 and them jumps again under �2. After the two
onse
utive jumps, the system evolves under the 
ontinuous 
ontrol input ut2rea
hing (q0; x0), t2 units of time after the last jump.2.1 Control System Abstra
tionsWe now review the notions of simulation and bisimulation in the 
ontext ofabstra
t 
ontrol systems while referring the reader to Appendix A for the relevantnotation.



De�nition 3 (Simulations of Abstra
t Control Systems). Let �X and �Ybe two abstra
t 
ontrol systems over X and Y with generalized monoids MX andMY , respe
tively and F �MX �MY a generalized monoid respe
ting relation.Then �Y is a simulation of �X with respe
t to F or a F -simulation i� for anyx 2 X:y 2 FB(x) ) 8(x;ax)2dom(F ) 9(y;ay)2F (x;ax) �Y (y; ay) 2 FB(�X (x; ax))The above de�nition slightly generalizes the usual notions of morphisms betweentransition systems in [19℄, sin
e the inputs inMY , if obtained from F , depend onthe inputs onMX as well as the state. It is straightforward to see that abstra
t
ontrol systems and relations satisfying the above 
ondition form a 
ategory,that we 
all the abstra
t 
ontrol systems 
ategory. The notion of bisimulation isde�ned as a symmetri
 simulation:De�nition 4. Let �X and �Y be abstra
t 
ontrol systems over X and Y withgeneralized monoids MX and MY respe
tively. If F � MX �MY is a gener-alized monoid respe
ting relation we say that �X is F -bisimilar to �Y i� �Y isa F -simulation of �X and �X is a F�1-simulation of �Y .Although we used relations to de�ne simulations and bisimulations we will as-sume through the remaining paper that F is the relation indu
ed by a mapf : MX �!MY . The approa
h taken to de�ne bisimulation is similar in spiritto the one in [10℄, however instead of preserving inputs between bisimulations,we relate them through the map f . If one 
hooses a map f whi
h is the identityon inputs we re
over the notion of bisimulation in [10℄. Several other approa
hesto bisimulation are reported in the literature and we point the reader to the
omparative study in [13℄ and the referen
es therein.The notion of simulation allows to de�ne several di�erent types of abstra
tionsin
e when f : MX �! MY de�nes a simulation from �X to �Y , the map fBtakes state traje
tories of �X to state traje
tories of �Y [15℄. This shows, in par-ti
ular, that f(L(�X )) � L(�Y ), where L(�) denotes the language generated byabstra
t 
ontrol system �. When f is simply the in
lusion ofMX intoMY , thatis f(x; a) = (x; a) 2 MY for every (x; a) 2 MX we re
over the popular notionof abstra
tion based on language in
lusion sin
e L(�X ) = f(L(�X )) � L(�Y ).Under 
ertain 
onditions on the relation F the 
omputation of a simulation 
anbe done algorithmi
ally as des
ribed in [17℄.3 Compositional Abstra
tionsIn this se
tion, we follow the 
ategori
al des
ription of 
omposition of transitionsystems as des
ribed in [19℄. A variety of 
omposition operations 
an be modeledas the produ
t operation followed by a restri
tion operation.3.1 Parallel Composition with Syn
hronizationThe �rst step of 
omposition 
ombines two abstra
t 
ontrol systems into a sin-gle one by forming their produ
t. Given two abstra
t 
ontrol systems �X :MX



�! X and �Y : MY �! Y we de�ne their produ
t to be the abstra
t 
on-trol system �X � �Y : (MX �MY ) �! (X � Y ), �X � �Y ((x; y); (ax; ay)) =(�X (x; ax); �Y (y; ay)), where the a
tions available at ea
h (x; y) 2 X � Y aresubsets of the dire
t produ
t monoidMX
MY . The traje
tories of the produ
t
ontrol system 
onsist of all possible 
ombinations of the initial 
ontrol systemstraje
tories. The produ
t 
an also be de�ned in a 
ategori
al manner.De�nition 5 (Produ
t of abstra
t 
ontrol systems). Let �X :MX �! Xand �Y :MY �! Y be two abstra
t 
ontrol systems. The produ
t of these abstra
t
ontrol systems is a triple (�X � �Y ; �X ; �Y ) where �X � �Y is an abstra
t
ontrol system and �X � (X � Y ) � X and �Y � (X � Y ) � Y are proje
tionrelations su
h that �X is a �X -simulation of �X � �Y , �Y is a �Y -simulationof �X � �Y , and for any other triple (�Z ; pX ; pY ) of this type there is one andonly one relation � � Z � (X � Y ) su
h that �X � �Y is a �-simulation of �Z ,and the following diagram 
ommutes:
�ZpX ����I�X �X � �Y��X �Y-�Y6� pY����� (10)The relations �X and �Y are in fa
t those indu
ed by the 
anoni
al proje
tionmaps �X : X � Y �! X , �Y : X � Y �! Y and the relation � is easily seento be given by � = (pX ; pY ). This de�nition of produ
t may seem unne
essarilyabstra
t and 
ompli
ated at the �rst 
onta
t, it will, however, render the proofof the main result on the 
ompatibility of parallel 
omposition with respe
t tosimulations a mu
h simpler task.Example 1. Consider the transition systems inspired from [19℄ and displayed onthe left of Figure 1 where the " evolutions are not represented. The produ
t ofthese transitions systems will 
onsist of all possible evolutions of both systemsas displayed on the right of Figure 1.

�X�� Y�	 �X�� Y�	

�X�� Y�	

�X�� Y�	

��� B	

��� B	

�A� �	

�A� �	

��� C	

��� C	C
Y� Y�

X� X�

A

B
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Fig. 1. Two transition systems on the left and the 
orresponding produ
t transitionsystem on the right.In the produ
t abstra
t 
ontrol system, the behavior of one system does not in
u-en
e the behavior of the other system. Sin
e in general the behavior of a system
omposed of several subsystems depends strongly on the intera
tion between the



subsystems, one tries to 
apture this intera
tion by removing undesired evolu-tions from the produ
t system �X � �Y through the operation of restri
tion.Given a generalized submonoid ML �MW we de�ne the restri
tion of 
ontrolsystem �W : MW �! W to ML as a new 
ontrol system �W jML : ML �! Lwhi
h is given by �W jML(x; a) = �W (x; a) i� (x; a) 2 ML and �W (x; a0) be-longs to L for any pre�x a0 of a. In general the domain of �W jML , ML, may bestri
tly 
ontained in ML sin
e restri
ting the base spa
e implies also restri
tingthe available inputs to those that do not for
e the abstra
t 
ontrol system toleave the restri
ted base. If the generalized submonoid ML has the same statespa
e as MW but \less" 
ontrol inputs available at ea
h state, then restri
tionis modeling syn
hronization of both systems on the 
ontrol inputs. If on theother hand the available 
ontrol inputs are equal but the state spa
e of ML is\smaller" then the state spa
e ofMW then both systems are being syn
hronizedon the state spa
e. Syn
hronization on inputs and states is also 
aptured by theoperation of restri
tion by 
hoosing a generalized submonoid with \less" avail-able inputs and \smaller" state spa
e. This operation also admits a 
ategori
al
hara
terization.De�nition 6 (Restri
tion of abstra
t 
ontrol systems). Let �W : MW�! W be an abstra
t 
ontrol system, ML a generalized submonoid of MW andg and h two simulation relations su
h that ML = f(w; aw) 2 MW j g(w; aw) =h(w; aw)g. The restri
tion of �W to ML is a pair (�W jML ; iML) where �W jMLis an abstra
t 
ontrol system and iML � ML �MW is an in
lusion relationsu
h that �W is a iML-simulation of �W jML satisfying g Æ iML = h Æ iML andfor any other pair (�Z ; iMZ ) of this type there is one and only one relation �su
h that �W jML is a �-simulation of �Z , and the following diagram 
ommutes:�W jML �W-iML�Z6� iMZ����� �V-g -h (11)It is not diÆ
ult to see that the relation iML is simply the in
lusion iML(al) =al 2 MW for every al 2 ML. With the notions of produ
t and restri
tionat hand, we 
an now de�ne a general operation of parallel 
omposition withsyn
hronization.De�nition 7 (Parallel Composition with syn
hronization). Let �X :MX �! X and �Y : MY �! Y be two abstra
t 
ontrol systems and 
onsider ageneralized submonoid ML � MX �MY . The parallel 
omposition of �X and�Y with syn
hronization over ML is the abstra
t 
ontrol system de�ned as:�X kML �Y = (�X � �Y )jML (12)



Example 2. Consider the transition systems displayed on the left of Figure 1.By spe
ifying the generalized submonoid:ML = f((x1; y1); (a; b)); ((x1; y1); ("; 
))((x1; y1); ("; ")); ((x2; y1); ("; 
));((x2; y1); ("; ")); ((x2; y2); ("; ")); ((x1; y2); ("; "))g (13)it is possible to syn
hronize the event a with the event b on the parallel 
omposi-tion of these systems, while the remaining evolutions not 
ontrolled by a neitherby b remain un
hanged. The resulting transition system is displayed in Figure 2.
�X�� Y�	 �X�� Y�	 �X�� Y�	

�A� B	 ��� C	

�X�� Y�	

��� C	Fig. 2. Parallel 
omposition with syn
hronization of the transition systems displayedon the left of Figure 1.3.2 Compositionality of SimulationsWe now determine if 
omposition of subsystems is 
ompatible with abstra
tion.A positive answer to this question is given by the next theorem whi
h des
ribeshow the pro
ess of 
omputing abstra
tions 
an be rendered more eÆ
ient byexploring the inter
onne
tion stru
ture of hybrid systems.Theorem 1 (Compositionality of Simulations). Given abstra
t 
ontrol sys-tems �X , �Z (whi
h is a F -simulation of �X), �Y , �W (whi
h is a G-simulationof �Y ) and the generalized submonoid ML � MX �MY , the parallel 
ompo-sition of the simulations �Z and �W with syn
hronization over (F � G)(ML)is a (F � G)jML -simulation of the parallel 
omposition of �X with �Y withsyn
hronization over ML.The above result was stated for parallel 
omposition of two abstra
t 
ontrolsystems but it 
an be easily extended to any �nite number of abstra
t 
ontrolsystems. The relevan
e of the result lies in the fa
t that, in general, it is mu
heasier to abstra
t ea
h individual subsystem and by parallel 
omposition obtainan abstra
tion of the overall system.Example 3. To illustrate the use of Theorem 1 we shall make use of the 
ele-brated water tank system from [1℄. Consider two water tanks that 
an be �lledby water 
oming from a pipe as displayed on the left of Figure 3. The waterlevel at tank A is measured by x1 while the water level at tank B is measured byx2. Ea
h tank has also an out
ow that 
auses a de
rease in the water level. Theout
ow rate at tank A is v1 while at tank B is v2. This out
ow 
an be 
ompen-sated by a water in
ow 
oming from the pipe on top of the tanks. This pipe hasan in
ow rate of w whi
h 
an be dire
ted to tank A or to tank B by means of avalve lo
ated in the pipe. Contrary to [1℄, we expli
itly in
orporate a �rst ordermodel of the valve in the hybrid automaton des
ribing this hybrid 
ontrol sys-tem, displayed on the right of Figure 3. We now seek to abstra
t away the valve
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W W ZW

X�
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V�V�Fig. 3. Water tank system: Physi
al setup on the left and hybrid model on the right.dynami
s to obtain the usual model that 
onsiders the swit
hing of the in
owfrom one tank to the other instantaneous1. Instead of 
omputing an abstra
tiondire
tly from this hybrid automaton we start by realizing that this automaton
an be obtained by parallel 
omposition of hybrid 
ontrol systems HX and HYmodeling the pipe and the tanks, respe
tively, as shown in Figure 4. This 
ompo-
Ww � Z KW Ww � Z K �W Z W	

Q� Q�

z�

z�

Xw � � U� Z V�
Xw � � U� Z V�

Q

Fig. 4. Hybrid model of the pipe and water tanks on the left and right, respe
tively.sition is syn
hronized on the generalized submonoid ML �MX �MY de�nedby the equalities u1 = w and u2 = w � w. We now abstra
t the pipe modelby aggregating all the 
ontinuous states in dis
rete state q1 to 0 and all the
ontinuous states in dis
rete state q2 to w. Theorem 1 ensures that 
omposingHY with this abstra
tion will result in an abstra
tion of hybrid 
ontrol systemHX kML HY . The new syn
hronizing generalized monoid is obtained from MLby repla
ing w by 0 on the 
ontinuous inputs in state q1 and repla
ing w by win the 
ontinuous inputs at dis
rete state q2. This is also be des
ribed by theequalities u1 = 0, u2 = w and u1 = w, u2 = 0 valid at dis
rete states q1 andq2, respe
tively. The resulting hybrid 
ontrol system is displayed in Figure 5.This example illustrates the 
lear advantage of exploring 
ompositionality in
omputing hybrid abstra
tions. We have only 
omputed 
ontinuous abstra
tionsof one-dimensional 
ontrol systems (for the pipe automaton), whereas if onewould have pro
eeded dire
tly from hybrid 
ontrol system HX kML HY withoutexploring the 
ompositional stru
ture, one would have 
omputed 
ontinuous ab-stra
tions of the three-dimensional 
ontinuous 
ontrol systems at ea
h dis
retelo
ation.1 We remark that 
onsidering the water swit
hing instantaneous leads to zeno traje
-tories [6℄, however this problem falls beyond the s
ope of the 
urrent paper.



Xw � � Z V�

Xw � � W Z V�

Xw � � W Z V�

Xw � � Z V�

Q� Q�

z�

z�Fig. 5. Abstra
ted hybrid model of the water tank system.3.3 Compositionality of BisimulationsIn this se
tion we extend the previous 
ompatibility results from simulations tobisimulations. Although the produ
t respe
ts bisimulations the same does nothappen with the operation of restri
tion so we need additional assumptions toensure that bisimulations are respe
ted by 
omposition as stated in the nextresult.Theorem 2 (Compositionality of Bisimulations). Given abstra
t 
ontrolsystems �X , �Z (a F -bisimulation of �X), �Y , �W (a G-bisimulation of �Y )and a generalized submonoid ML � MX � MY we have that the parallel
omposition of the bisimulations �Z and �W with syn
hronization over (F �G)(ML) is a (F � G)jML-bisimulation of the parallel 
omposition of �X with�Y with syn
hronization over ML i� (F �G)�1j(F�G)(ML) = (F �G)jML�1where (F �G)(ML) is the domain of �Z k(F�G)(ML) �W .From the previous result we 
on
lude that if we have a means of 
omputingbisimulations and if we 
hoose the syn
hronization generalized submonoid 
are-fully we 
an 
ompute bisimulations by exploring the inter
onne
tion stru
tureof large-s
ale systems.4 Con
lusionsIn this paper, we addressed the interplay between abstra
tions and 
omposi-tionality of hybrid systems. Based on previous work on abstra
tions of hybrid
ontrol systems, we introdu
ed a 
omposition operator, and showed that this
omposition operator is 
ompatible with abstra
tions based on simulations. Fur-thermore, we presented ne
essary and suÆ
ient 
onditions for this operator tobe also 
ompatible with bisimulations. Current resear
h is fo
using on 
lassesof hybrid systems and 
omposition operators for whi
h the abstra
tion pro
ess
an be fully automated. Another important topi
 for future resear
h is to un-derstand whi
h 
onditions guarantee that hybrid systems relevant properties arepreserved by abstra
tions, and spe
ially by 
omposition operators.A
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al Fa
tsA relation is a generalization of a fun
tion in the sense that it assigns to ea
helement in its domain a set of elements in its 
odomain. Mathemati
ally a rela-tion F between the sets S1 and S2 is simply a subset of their Cartesian produ
t,that is F � S1 � S2. Given two relations F � S1 � S2 and G � S2 � S3 we
an de�ne their 
omposition to be the relation G Æ F � S1 � S3 de�ned byG Æ F = f(s1; s3) 2 S1 � S3 : 9s2 2 S2 (s1; s2) 2 F ^ (s2; s3) 2 Gg. Givena relation F � S1 � S2 we 
all F�1 � S2 � S1 given by F�1 = f(s2; s1) 2S2 � S1 : (s1; s2) 2 Fg the inverse relation. An obje
t that we will use fre-quently is the set valued map F : S1 �! 2S2 indu
ed by a relation F and de�nedby F (s1) = fs2 2 S2 : (s1; s2) 2 Fg.We also introdu
e some notation for later use. Given relations F � S1 � S2,G � S3 � S4 and a subset L � S1 � S3 we de�ne the new relations F � G and(F �G)jL as F �G = f((s1; s3); (s2; s4)) 2 (S1 � S3) � (S2 � S4) : (s1; s2) 2F ^ (s3; s4) 2 Gg and (F �G)jL = f((s1; s3); (s2; s4)) 2 F �G : (s1; s3) 2 Lg.As explained in Se
tion 2 we will need to work with generalized monoids.We start by re
alling the notion of monoid. A monoid is a triple (M; �; ") whereM is a set 
losed under the asso
iative operation � : M�M �!M and " is aspe
ial element of M 
alled identity. This element satis�es " � m = m � " = mfor any m 2 M. We will usually denote m1 �m2 simply by m1m2 and refer tothe monoid simply as M. Given two elements m1 and m2 from M we say thatm1 is a pre�x of m2 i� there exists another m 2 M su
h that m1m = m2. Wewill be spe
ially interested in generalized monoids obtained as follows. Let X bea set and M a monoid. Then we 
an regard X �M as a set valued fun
tionF : X �! 2M whi
h assigns to ea
h x 2 X the monoid F (x) =M. However, ingeneral, not all the elements of M will be available at ea
h point in X so thatwe need2 a map G : X �! 2M su
h that G(x) may be a stri
t subset of M withthe property that G(x) is pre�x 
losed for every x 2 X . Su
h a map will be
alled a generalized monoid over the set X and we shall denote it by MX . Wewill, inter
hangeably, regard a generalized monoid as a map from X to 2M or asthe subset of X �M de�ned by (x;m) 2MX i� m 2MX(x). A subset ML ofMX whi
h is also a generalized monoid will be 
alled a generalized submonoid.We now relate generalized monoids through relations. Let F �MX�MY bea relation between generalized monoids. Then F indu
es a relation FB � X�Yby y 2 FB(x) i� (y;m) 2 F (x;m0) for any (y;m) 2 MY and (x;m0) 2MX . Wethen say that the relation F is generalized monoid respe
ting i� satis�es:{ Identity: y 2 FB(x) ) (y; ") 2 F (x; ")2 In general, a generalized monoid over a set X 
an be seen as a small 
ategory withelements of X as obje
ts.



{ Semi-group: (y1;m01) 2 F (x1;m1); (y2;m02) 2 F (x2;m2)and (x1;m1m01) 2 MX ) (y1;m01m02) 2 F (x1;m1m2).B ProofsProof (of Theorem 1). Consider the produ
t system (�Z ��W ; �Z ; �W ) and thetriple (�X � �Y ; F Æ �X ; G Æ �Y ). By de�nition of produ
t we know that thereis one and only one relation � su
h that:
�X � �YF Æ �X ����I�Z �Z � �W��Z �W-�W6� G Æ �Y�����
ommutes and this relation is given by � = (F;G) = F � G, meaning that�Z��W is a F �G-simulation of �X��Y . Consider now the following diagram:(�X � �Y )jML �Z � �W-� Æ iML �V-g -hwhere g and h are equal only on the generalized submonoid �(ML). It is 
learthat g Æ� Æ iML = hÆ� Æ iML sin
eML �ML implies � Æ iML(ML) = �(ML) ��(ML). Therefore, by de�nition of restri
tion there exists one and only onesimulation relation � from �X kML �Y to �Z k�(ML) �W whi
h is given by� = � Æ iML = (F �G) Æ iML = (F �G)jML . utProof (of Theorem 2). We now prove Theorem 2 through a series of results. Westart by showing that produ
t respe
ts bisimulations:Lemma 1. Given abstra
t 
ontrol systems �X , �Z (a F -bisimulation of �X),�Y and �W (a G-bisimulation of �Y ) the produ
t abstra
t 
ontrol system �Z ��W is a F �G-bisimulation of �X � �Y .Proof. Consider the following 
ommutative diagrams:�X �Y�X � �Y�X ��	 �Y��R�Z �W�Z � �W�Z ��I �W���?F ?G?�1 �X �Y�X � �Y�X ��	 �Y��R�Z �W�Z � �W�Z ��I �W���6F�1 6G�16�2By de�nition of produ
t there exists one and only one relation �1 and one andonly one relation �2 su
h that the diagrams 
ommute. In fa
t, �1 is the relation�1 = (F Æ �X ; G Æ �Y ) = F � G and �2 = (F�1 Æ �Z ; G�1 Æ �W ) = (F � G)�1meaning that �X � �Y is F �G-bisimilar to �Z � �W . ut



Under the proper assumptions the operation of restri
tion is also 
ompatiblewith bisimulations:Proposition 1. Let �X be an abstra
t 
ontrol system, �Y a F -bisimulation of�X andML a generalized submonoid ofMX su
h that F�1jF (ML) = (F jML)�1.The restri
tion �X jML is a F jML-bisimulation of �Y jF (ML).Proof. A similar argument to the proof of Proposition 1 shows that �Y is aF jML-simulation of �X so that we will only show that �X is a F j�1ML-simulationof �Y . Consider the following diagram:
�X jML �X-iMLF�1 Æ iF (ML)����R�Y jF (ML) �V-g -h (17)where g and h are equal only on the generalized submonoid ML. We will showthat (17) 
ommutes by proving the only nontrivial equality, g Æ F�1 Æ iF (ML) =h Æ F�1 Æ iF (ML). Re
all that the equality F�1jF (ML) = F jML�1 implies thatthe domains of the relations are the same, that is F (ML) = F (ML). This allowsto 
on
lude that:F�1 Æ iF (ML)(F (ML)) = F�1jF (ML) Æ F (ML)= F jML�1 Æ F jML(ML) =ML �MLSin
e (17) 
ommutes we 
an invoke the de�nition of restri
tion to ensure theexisten
e of a unique simulation relation from �Y jF (ML) to �X jML whi
h is givenby � = F�1 Æ iF (ML) = F�1jF (ML) = F jML�1 thereby showing bisimilarity. utThe 
ondition of the previous result is in fa
t also a ne
essary one as we nowshow:Proposition 2. Let �X be an abstra
t 
ontrol system, �Y a F -bisimulation of�X and ML a generalized submonoid of MX . If the restri
tion �X jML is aF jML-bisimulation of �Y jF (ML) then F�1jF (ML) = (F jML)�1.Proof. The following 
ommutative diagram is a 
onsequen
e of bisimilarity:�Y jF (ML) �Y-iF (ML)?F jML�1 ?F�1�X jML �X-iML (18)from whi
h we get the following equality:iML Æ F jML�1 = F�1 Æ iF (ML) (19)from whi
h follows the desired equality F jML�1 = F�1jF (ML). utTheorem 2 is just a restatement of Lemma 1 and Propositions 1 and 2 and istherefore proved. ut


