Stability of re-entrant flow lines*
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Abstract The paper addresses the issue of stability for re-entrantlftees, pro-
ducing multiple products, with capacitated machines, camdemand and random
yield. The policies of interest are multi-echelon baselsfaicies, combined with
a set of static and dynamic management rules of the avaitabplacity. We introduce
three classes of capacitated echelon base stock poligiethe pure multi-echelon
base stockj11, like My with a possibly finite upper bound on the admission of
raw materials; andl,, like 1 with a possibly finite upper bound on the utilization
of intermediate inventories. The order of business is:bdistsing conditions for
the stability of the shortfall echelon process when demamdsstationary and er-
godic; examining the regenerative structure of the shibgfacess when demands
are given by an i.i.d. sequence. The regenerative propat® valuable in estab-
lishing the convergence of costs and also simulation estirsawhich enables the
utilization of Infinitesimal Perturbation Analysis to opiize the policy parameters.
We use a coupling argument for shortfalls while establigliire stability conditions,
which will, by itself, render the Harris ergodicity of theattfall process. We show
that the stability condition suffices to ensure that the galbprocess possesses the
regenerative structure of a Harris ergodic Markov chairdéfra stronger condition,
we establish that the vector of shortfalls returns to thgiorinfinitely often, with
probability one. We show that the necessary stability ciolis also sufficient for
any sort of re-entrant system, in the presence of randord,ypebvided the control
policy is in IT.
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1 Introduction

A framework to manage re-entrant flow lines producing midtjroducts was pro-
posed in [6]. The work focused the analysis on a simple seapécity managing
schemes and production rules as a first step towards unaéirggebroader classes
of systems and policies. The re-entrant lines were modelefisarete time capaci-
tated multi-product production/inventory systems, sattje random demand, oper-
ating under multi-echelon base stock policies. Severacigpsharing mechanisms
were discussed and some production rules were proposedtistatically and dy-
namically manage capacity.

An Infinitesimal Perturbation Analysis (IPA) approach waegmsed and vali-
dated, in order to compute the optimal values of the paramdtscribing the con-
trol policies. In order to validate the infinite horizon meees and derivatives, one
has to rigorously establish the stability conditions far #ystems being addressed.
The main objective of this paper is exclusively addresshidlem for re-entrant
flow lines.

Fig. 1 Schematic of the default re-entrant system.

The first set of systems under consideration has a serldsméchines (stages),
and each of thé products has to cycl& times (levels) through each of thé
stages. At any given period, each machine may processadiff@arts belonging
to different levels (see Figure 1). The total production period is limited by the
machine capacity and feeding inventory. After being preeds$y a machine, parts
are placed in intermediate buffers where they wait thein tarbe processed by the
next machine or until they are depleted by external demand.

Each level and stage operates on a base stock policy forcechelentory. The
capacity is managed both from a static and a dynamic apprdacivhat con-
cerns the static capacity management, the capacity of eachine C™, with m=
1,2,...M, may be splitintK x P slots,C™, withk=1,2,...K andp=1,2,...P,
each assigned to a specific level/product pair (NS — no shariternatively, the
capacity may be split int& slots,C™, each assigned to a specific level and shared
by all products at that level (PS — partial sharing). Anothessibility is to consider
the available capacity as being simultaneously shared lpyaucts and levels (TS
— total sharing). As to the dynamic capacity managementnesar there is some
degree of capacity sharing, a set of production rules mayefieetl. Examples are
Linear Scaling, Priority, and Equalize Shortfall.
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1.1 Literature Review

We start by reviewing the relevant literature on stabilidy production systems.
The review covers three main modeling paradigms: difféaéetjuations, queuing
networks, and difference equations. These are among thetows used to model
production systems and all of them have provided contidmstand relevant insights
to this of paper.

When approaching the problem of production control by meafermulating an
optimal control problem, stability questions are triwadinswered in the following
sense: if there is one stable policy, the optimal policy ailo be stable, provided
the performance measure is adequate, and it will be foulod ¢t the optimization
procedure. However, when the approach is to choose a clgssliofes a priori,
stability has to be addressed explicitly, in order to deteenwhether or not the
given class ensures it.

In the optimal control formulation of [19], there is no exgliconsideration of
stability. Demand for each product is assumed to be a detéstici constant rate,
processing times are deterministic, and machines aregubjendom failures. The
inventory dynamics are described by differential equatiand the failure process
is modeled through a Markov process. Even though the apprisaapplied to re-
entrant systems in [2] or to generic job shops [12], the reargsstability condition
is assumed to be sufficient. In fact, stability was neverestsird explicitly by the au-
thors who have done work on flow rate control, except for [Tie &uthors explicitly
state and prove that as long as the demand vector is an inpeiitt of the expected
capacity set, then there exists a flow control policy thatiltesn a stable system.
Stability is taken in the sense that the expected end praakettory is finite for all
products. The proof does not rely on any specific assumptiothe flow patterns
inside the production system and it only accounts for endyebinventories.

When modeling production systems by means of queueing mk$vemd propos-
ing specific scheduling rules, it often has been the casesthbility becomes a hard
question to answer. Also, to establish the heavy traffictlth@orems of [15, 16], it
is necessary to establish the stability of the queueing arésvconsidered. Exam-
ples of networks for which the Brownian approximation does mold have been
presented, as [10] is one example. Usually, the issue oflistalh networks of
queues is established by explicitly determining an invaristribution. The classes
of queueing networks for which such invariant distributisrknown are very lim-
ited. Typically, networks of queues operated under lochkdaling policies are
among those for which little is known about their invariargtdbution or even if
one exists. They fall outside the classes for which thergaryduct form solutions.
Product form solutions exist for the generalized Jacksdwarks: single class net-
works with exponential inter arrival and service times, véhgueues are served in
a First come First serve order, [17]. For some schedulinglises in multiclass
networks, with special distributional assumptions onriateival and service times,
the stationary distributions were explicitly determinad4, 18]. One example of
open queueing networks where addressing the stabilitylgmois highly relevant
for this paper is the work of [23]. Their distributed CAF pods for local schedul-
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ing are ensured to be stable for acyclic systems as long asettessary stability
condition holds — traffic intensity being less than one fdisatvers. However, the
authors were unable to show similar properties for nondarggstems and had to
propose a modification of the original policies to stabirg/ such system. One of
the central statements of the present paper is that thetusteuaf the modification
proposed holds the key to the problem of stability. Alsos théems to have been
overlooked by other authors. Their original distributedfogolicies are non-idling,
or work-conserving as some authors prefer to call them. Tablem addressed in
[23] was one of reducing the number of set-ups as much asippessince a set-up
is a waste of capacity. Nevertheless, when the authors ftherdselves unable to
prove their policies to be stable for non-acyclic systermsytproposed a modifi-
cation that basically increases the number of set-ups,itfowsring more waste of
capacity. Besides this, they also allowed each server taireidle, when not in a
set-up — distributed CAF policies with backoff —, even ifth@ould be other jobs
in the queue. Idling policies are simpler to model in the eahbf flow rate control,
as the two boundary policy of [24] is an example. For a systetin two machines
in tandem, when the production trails demand by a large mattye policy imposes
a bound on the amount of inventory between machine 1 and ma&hithus pre-
venting the first machine to work at its maximum rate. In thatest of queueing
networks, similar ideas could be applied. The work of [224 isontribution along
these lines. However, this type of ideas has not been puessiedensively as one
would expect, taking into account what is known from the dateistic scheduling
theory, [3, 11]. One recent example where idling policiesetplicitly used is [9].

In [23], the inability to prove stability for the original fioies could be thought
of as a problem that would be solved in due time, since theoasittid not show that
in fact instability could occur. This question ended up geamswered through an
example not much later. In [20], also for open queueing systéhe authors intro-
duce an example of a re-entrant system for which there exists-idling control
policy that yields unbounded trajectories for the buffeesi although the workload
imposed by demand is below the available capacity. In thentegears many other
such examples were presented. For the sake of brevity wethefeeader to the re-
view presented in [8], which constitutes a good synthesik@fesearch on queuing
systems, concerning the particular issue of stability.

For our purposes, suffices to say that the great majorityeéfforts in the area
of modeling production systems through networks of quew@ssdoncentrated on
idling policies and on determining sufficient conditions $tability which are more
restrictive than the traffic condition.

In [14], the validation of the Infinitesimal Perturbation @&lgsis approach for
infinite horizon costs relies on the proof of stability foetkingle-product, multiple-
machine, and non re-entrant system presented in [13]. Tleelehthe production
systems by means of difference equations, with deterngraapacity and random
demand. The authors show that it suffices to have the expéetednd below the ca-
pacity of the machine with the lowest output in order to easheir control policies
to be stable. Although dealing with a non re-entrant systemyhich the stability
issue is trivial, the discussion on stability is useful aedessary to identify renewal
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points of the stochastic processes considered, which haations on the valida-
tion of the approach to estimate values and gradients ofti@fiorizon performance
measures.

From the perspective of the present paper, the concerndiegastability is
twofold: one the one hand, there is a need similar to that 8ff {@garding the val-
idation of the Infinitesimal Perturbation Analysis to briftgmal closure to [6]; on
the other hand, it is necessary to verify if the control gegoroposed at that time
ensure stability, given the fact that they are applied tdesys with more complex
flow patterns.

We also have the purpose of contributing to the stabilitycuision for non-
acyclic systems. In the remaining of this paper, we show ithist necessary to
depart from non idling policies. Given the modeling paradigdopted, it will be
easy to define a class of policies containing both idling amwtidling policies as
sub-classes.

1.2 Brief model review

We review the essentials of the base model. We refer inestestders to the more
extensive discussion in [6]. Let the echelon inventory ofductp at machinenand
levelk for periodn be given by

EXTP = 1K™+ ERT P, (1)
where(km)~ designates the level and stage that fed by lkwetistagen; Iﬁmp is the
amount of inventory of produgg, levelk, and stagen; andE,(11)~p = 0 for all p.

The echelon shortfall is given by
ykmp _ o _ gkamp (2)
whereZ™ are the echelon base stock parameters. The dynamic ecgiftioie
echelon shortfall are

ki
Yot = Yo+ df — P, (3)

with df denoting the external demand for the end progumt periodh andPi™ de-
noting the production decision. An instance of the produrctiecision, for a system
being operated with PS and the Linear Scaling rule, would be

PP = fa™Pgy" @)
wherefX™ the net production request of prody;tievelk for stagem, is given by

£A7P — min { (2P 4 op — EXTP) 1P (5)
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with (x)* = max{0,x} and(km)* the level and stage which feef€", with the raw
materiall,gK'v')+p = . The termg{™ is given by

K ) Ckm
gn = min W’l ) (6)

P n

whereCK™ is the slot ofC™ assigned to levet. The expression above assumes that
each product, irrespective of the level, will require thensaamount of machine
capacity per unit — uniform load assumption. The non-uniftmad situation takes
asT™ the capacity needs of a single unit of prodpebn machinem and levelk.
Therefore, the above expression would be written as

K™ — min _em 1 (7)
gn - szkmpfrl'fmp’ .

In this paper we generalize this model to include differeathine loads for each
productand level, the presence of random yield, and contdidethe re-entrant flow
may have no restrictions with alternative routs of différeemgths for each of the
products.

We now introduce three classes of policies.

Definition 1. Capacitated, Echelon Base Stock Policy: Let YA™ be the shortfall at
periodn for productp, level k, and stagen, with p=12,...P, k=1,2,... K,
andm= 12 ... M. We define ad1y the class of policies that use equation (5)
to determine the net production requests and use some catiapirof static and
dynamic capacity allocation to distribute capacity amolhtha requests.

Definition 2. Iy with external bound: Under the conditions of Definition 1, we de-
fine asll; the set of policies where there is a, possibly finite and @misinput

bound of raw material. That i$r(.KM)+p = Ilf <oforalp=12,...,P.

Definition 3. Iy with internal bounds: Define aslT, the class of policies that act
like My with the addition of bounds on the amount of material allo@dnter
production for each product at each machine on any giveogarid level. That is,

the policies for which¥™ P — Iékm>+p < oo,

It should be self-evident thadiiy C 11 C 5. It should also be clear that all poli-
cies in clas$lp are non-idling, whereas the other two classes contairggiaiicies.

p (km)*p -
The valued, andl, are user defined parameters, as are the paran®térs
and therefore also subject to optimization when lookinglierbest performance.
The order of business is: establishing conditions for tlabikty of the short-
fall echelon process when demands are stationary and ergodimining the re-
generative structure dfYn,n > 0} when{Dy, = [d},d?,...,dF)",n > 0} is an i.i.d.
sequence. The regenerative properties are valuable iblishiag convergence of
costs and also simulation estimators.



Stability of re-entrant flow lines 7

We show that the stability condition suffices to ensure {iatn > 0} possesses
the regenerative structure oHarris ergodic Markov chain. Under a stronger con-
dition, we establish that the vector of shortfalls retumghe origin infinitely often,
with probability one.

A powerful tool in the analysis of Harris ergodic Markov chgis a connection
with coupling. The main result is this: a Markov chain withiawariant probability
measure admits coupling if and only if it is Harris ergodie Wée a coupling argu-
ment for shortfalls while establishing the stability caimhs, which will, by itself,
render the Harris ergodicity of the shortfall process.

2 Harris recurrence and explicit regeneration points

An extensive coverage of key definitions and results of laisyework can be found
in [1] and [21]; the treatment in [25] is particularly relewdo this application. We
review the essentials here. The general setting for Hagdgarrence is a Markov
chainX = {X,,n > 0} on a state spacgwith Borel sets#. Let P denote the law
of X whenXgy = x. Then,X is Harris recurrent if there existsafinite measure on
(S, &), not identically zero, such that, for s#lle %,

YA >0= Px(il{xneA}_oo)_1foral|xeS.

Thus, every set of positivgy-measure is visited infinitely often from all ini-
tial states. Every Harris recurrent Markov chain has anriam measurer that
is unique up to a multiplication by a constant. The sets oftpesm-measure are
precisely those that are visited infinitely often from alitied states. Ifrtis finite
(hence a probability, without loss of generality), théns called positive Harris
recurrent. If, in additionX is aperiodic, then it is Harris ergodic.

The connection with regeneration enters as followX. i§ Harris recurrent, then
there exists a (discrete-time) renewal procfzsk > 1} and an integer > 1 such
that

{(Xsn,n>0), (Thyks1 — Tiekn > 0) 1,

has the same distribution for &> 1 and is independent of

{Tl,...,Tk,(Xn,OS n< rk—r)}.

Whenr > 1, there may be dependence between consecutive cjéles, 1 <
n < 14}, in contrast to the classical case of independent cycleb ttas is indeed
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the case in this model). However)Xfis positive Harris recurrent and ff: S— [J
is r-integrable, then the regenerative ratio formula

ElFrn , f ()]
Enlf(Xo)] = T E[h—td

remains valid, as does the associated central limit thedueer second-moment
assumptions). Moreover, X is Harris ergodic then for all initial conditions the
distribution ofX, converges tarin total variation, that is,

sup|R(Xn € A) — i(A)| — 0,
Ace A

asn — oo, for all x € S. Indeed, this total variation convergence to a probability
measure completely characterizes Harris ergodicity. Agréwtool in the analysis

of Harris ergodic Markov chains is a connection with cougjisee for example [26]
and [25] for background. The main result is this: a Markovichgith an invariant
probability measure admits coupling if and only if it is Harergodic. We use a
coupling argument for shortfalls while establishing thabdity conditions, which
will by itself render the Harris ergodicity of the shortfaliocess.

While Harris recurrence ensures the existence of (wideseygregeneration times
T,k > 1, it does not provide a means of identifying these timesliExpegenera-
tion times are not needed for convergence results, but tleeyseful in, for exam-
ple, computing confidence intervals from simulation estora At the end of each
section we give a sufficient condition fdiv,,n > 0} to have readily identifiable
regeneration times.

In what follows, we will establish stability for all sharingodes, multiple prod-
ucts, in the presence of random yield, and non-uniform lo@te no sharing (NS)
case has been established in [13] for perfect yield and tmifoads. The detailed
analysis will be made for the case with uniform loads andgmifield, as that con-
stitutes the formal closure of [6]. Then, the random yieldecaith uniform loads
will be established. This later is sufficiently general o tvand and allows an easy
generalization for the case of non-uniform loads. The Btalionditions for the
other cases will be simply stated without proof at the endhefaper.

3 Uniform loads and perfect yield

There are two settings for which to investigate the stabidnditions: when capac-
ity is partially shared (PS); and when capacity is totallsugld (TS). The no sharing
(NS) case has been established in [13]. Under adequateetiahg same technique
will be used to prove stability for the PS mode. Then, usintpatsastic dominance
argument, the conditions under which the TS case is stallldevestablished. We
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assume that the production decisions are taken with the fue d.inear Scaling
Rule. It is a trivial exercise to show that all other shottfased production rules
will produce the same stability results.

3.1 The partial sharing mode

For the PS mode, we first define a dynamic equation for a linearbnation of
shortfalls such that the theoretical framework of [13] iadity applicable. The dy-
namic equation for the shortfall quantities is given by (@) .simplify the analysis
we can define a vectorial dynamic equation for each stagesantlly definindd, =
[d1d2 ... dP|T, PkM = [pkml pkm2  pkmP|T ‘gngykm — [ykml ykm2 — ykmP1T
Therefore, the vectorial dynamic equation will assume thenf

YKT, =YK D, — PK™ for all k andm.

Let ||x|| be defined as the sum of all componentxdfx|| is not a norm and it
verifies the following

Xyl = (X[ + [yl
|lax|| = al|x| (8)

Now, since level and stag&, M) draws raw material from an infinite source, we
have

CKM

YKM — max 0, YKM+D 1-—F——
n+1 { ( n n)( ||YﬁM+Dn||

)} )
Due to the structure of the above the following operatioreigv

IYRYI] = max{o, [[Y3"[| + ||Dq|| - C*V} (10)

which is a Lindley equation. Note the use of (8).
For the remaining cases we will have

CKmin{ Y™+ D, 1M}
[ min{Y*™ D 15 )

YET, = max{Y{"+ D —

(11)
0,Y<m D, — 1™y
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From this equation it is possible to compth|té‘r<,+l|| as follows

VAT = max{0, |[YA™| +[|Dy| —C*™,
(12)

P +
Z (Yn(kmﬁp_’_ dp — (Z(km)+p _ imp)) } _
p=1

The scalar equations (10) and (12) are the multiple proder¢alizations of the
dynamic equations for shortfalls presented in [13] for Bmyoduct systems.

3.1.1 The Stationary Regime

Let us now introduce the framework and notation correspamth Lemmas 1
and 2 of [13] which help establishing the stability condito

Lemma 1. The echelon shortfalls satisfyn 1 = @(Yn,Dp) where @ : R(MP
R” — RKMP s defined by (9, 11). Also, the total shortfall satisfi¥n.1|| =
@®(Yn,Dn) = ||@(Yn,Dp)|| whereg : REMP x R — REM s defined by (10, 12).
In particular,@ is increasing and continuous.

Supposing that the demands form a stationary process, wtiiss of generality,
we can assume thBX, is defined for all integem with {Dp, —00 < n < oo} stationary.
In what follows We will use= to denote convergence in distribution. Some of the
proofs will be omitted here to avoid excessive clutter. Sahthem are relatively
trivial extensions of similar results published. Some aihere exactly the same.
Some of the former will be presented in Appendix 7 for the saflk@mpleteness of
the present document.

Lemma 2. Let {Dn, — < n < oo} be stationary. There exists a (possibly infinite)
stationary procesgYy, —o < n< w} satisfying| ¥ni1]| = @(¥n,Dp) for all n, such
that if |[Yo|| = 0, a.s., them|Yy|| = ||Yol|.

Proof: See Appendix 7.

With the support of the above two Lemmas it is now easy to éstathe stability
condition for this model.

Theorem 1.Suppose the demand®,, —~ < n < «} are ergodic as well as sta-
tionary. If

P
E[[[Doll] = ¥ E[d§] <min{C*":k=1,....Kim=1,...,M}, (13)
p=1
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then||Yo| is almost surely finite. If for somgk, m), E[||Do||] > C¥™, then||Yq || =
0, a.s., for all(g,r) corresponding to levels and stages coming dfan).

Proof: See Appendix 7.

This result for the scalar dynamic equations implies thbikty of the vectorial
process.

Corollary 1. Under the assumptions of Theorem¥§™ is almost surely finite for
all p, where¥<™ denotes componemtof vEm,

Proof: The result follows trivially due to the non negativity of thkortfalls.
QED

The above results show that the proc€¥s,n > 0} converges to a stationary
distribution only ifYo = 0. The following theorem establishes that the convergence
occurs for any initial point, that is, the process admitsgdiog.

Theorem 2.Under the stability conditiorE[||Do||] < mingm{C ™}, the echelon
shortfall process admits coupling. Consequently, itsestaty distribution is unique,
andY, =Yg for all Yo.

Proof: See Appendix 7.

3.1.2 Regeneration and Explicit Regeneration Times

Recall that a Markov chain with an invariant probability reege admits coupling
if and only if it is Harris ergodic. In the previous subseatiwe used a coupling
argument folY, therefore it is now easy to show that,

Theorem 3.Let demand$§Dy,,n > 0} be i.i.d. withE[||Dol|] < ming m{C™}. Then
{Yn,n> 0} is a Harris ergodic Markov chain.

Proof: SinceYn.1 = ®(Yn,Dn), n>0,Y is a Markov chain whe is i.i.d. We
established in Theorem 1 and Corollary 1 tNahas an invariant (i.e., stationary)
distribution and in Theorem 2 th¥tadmits coupling. Thug is Harris ergodic.

QED

As a result of Theorem ¥ inherits the regenerative structure of Harris ergodic
Markov chains, the attendant ratio formula, and convergeesults. The same holds
for the inventory levels:

Corollary 2. The inventory procesg(I%%,...,1XM) n> 0}, under the conditions of
Theorem 3, is a Harris ergodic Markov chain.
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Proof: There is a one-to-one correspondence between shortfallsye@ntories for
all n as defined by

i e
(14)
kP (Zkmp _ Akm)py |y (k)P ykmpy
Consequentlyl, = {I,,n > 0} is Markov if Y is, andl is Harris ergodic ifY is.

QED

It is now possible to give the characterization of the regatien times.

Theorem 4.Let demands be i.i.d. witE[||Do|[] < minm{C™}. DefinezY™ =0
and suppose that

P <2 _ZkW7P) 5 0 k=1,....K;m=1,...,M; p=1,...,P.  (15)
ThenY returns to the origin infinitely often, with probability one

Proof: See Appendix 7.
Corollary 3. The inventory proces$(I13,...,1XM) n > 0}, under the conditions
of Theorem 4, returns t(z't, 210" — 211 . ZKM _ 2KM)™y infinitely often, with
probability one.
Proof: Consequence of the relationship between shortfalls arahtovies.

QED

The conclusion of Theorem 4 is not in general true withou) @Sfurther dis-
tributional assumptions on demands. This is particuldegicwhenzkm P — Zmp
for some value ok, m, andp; that is, stagékm)™ keeps no safety stock for product
p. In this case, the total shortfalY*™|| can never reach zero unled§ = 0 with
positive probability.

3.2 Stability and Regeneration for Totally Shared Systems

Operating on a TS mode with the LSR, the production decisi@iven by

PKmP — fkmpgm. (16)

capacity is shared among all products and levels for eaclhimacandg is given
by (17).
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m H Cm

For this model the shortfall process is governed by the falig

C™"min{Y¥"+ Dy, 111

YK = max{YK"+ D, — ,
i T K| ImingYsm 4 D 1y

(18)
0, D, — 1™}
Due to the structure of the decision process, it is the cade th
CM|| min{Yk™ 1 Dy, 1 <™
VATl = max(, VAT + 1Dy - e Pl L
ke || MIngYR™+ D, 1n ™ 3|
P +
S (W P dp— @ e zm) ", (19

p=1

where it is assumed thla&KN')+ = oo for all n.

As in the previous model we were interested on the total &ibper level and
stage, we will now be interested in thetal Shortfall per Sage. Thus, the following
expression is of importance in what follows

K
z IYAT | = max{0, 3 [[YKM | +K|[Dyl| —C™,
k=1

(20)
S T (ykm* )+ +
S (Yn Py dp— (Zkm p—iﬂmp)) }
k=1p=1
3.2.1 The Stationary Regime
Lemma 3. The total echelon shortfall per stage satisfies
K
z IYAP1ll = @(Yn,Dn) = 3 0¥n.Dn). (21)

whereg : R{MP x RP — REM is defined by (19) angy : REMP x R° — RM is defined
by (20). In particular is continuous and increasing.

Itis easily possible to establish a result similar to thdteima 2 for this second
model and to prove stability we will make use of Theorem 1.
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Theorem 5.Under the assumptions of Theorem 1, the system operated threde
TS mode is stable, in the sense that the shortfalls are aboosly finite, if

KE[||Dol|]] < min{C™:m=1,...,M}. (22)

Proof: Assumerznthat the capacity of each machine is divided ints slbequal size,
that isCk™ = % Assume the system operates as if capacity was not shared, Th
according to Theorem 1, the system would be stable iff

E[||Do||] < min{C"":k=1,...,.K,m=1,...,M}

= %min{cm: m=1....,M}

Now we have to evaluate how does the system behave under thaseSvhen
compared with its performance under the PS case. To showtttatity of the PS
case implies stability of the TS case we will investigateragia path.

Assume we have two identical systems subject to the samelsaaih. One is
operated under the PS mode w@l" = (f(—m and the other is operated under the TS
mode. In particular, one is interested in the process defigelle total shortfall for
each stage. Assume that both systems start from the originist

K K
S IYEM [t =S [[YE"|* =0 for all k,m. (23)
k=1 k=1

Comparing equation (19) with (10) and (12) it is obvious twatle there is no
bound in capacity for any of the two systems they remain aadidletn* denote
the first period for which at least one of the two systems hasuathin capacity for
some level and/or stage. Therefore, we have fok athdm

[[YKM|L = |[YK™| |2 for all n=0,...,n" (24)
which implies that
K K
S Y[t = S [[YK"|[? for all n=0,...,n". (25)
k=1 k=1

The first time one of these two systems has at least one piodudécision
bounded by capacity there is a possibility for decouplirgg.us take system 1 as the
reference. Whenever there is at least a level and stage fohwsiistem 1 is bound
by capacity, one of two things can happen to system 2:

i) Bound in capacity for system 1 and no bound for system 2.
For this case there exists at leagt‘and anm* such that

cm

I mingYK™ + Dy 15 > = (26)
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but

K s + s
3 [Imin{Ys™ 4+ Dy 1™y < C 27)
k=1

if) Bound in capacity for both systems
In this case we have at leaskaand anm* such that

s

. e *m* Cm
(| min{yKm +Dn*,|§,5’“>*}||>7, (28)
and
€ ' (k)
S [Imin{YK™ +Dpe, 1™ 3| > €™ (29)
k=1

We are interested on knowing how ddg , ||YK"|| (the total shortfall for stage
m) behave for both cases. In case i) since system 2 has no bogagacity it must
be the case that not all the levels of stagehave a bound in capacity for system 1.
Therefore,

K P

% km*)+ + % +
SNl =3 3 (Y™ P e dp - (TP 2mR)) Ty
K=1 KZk* p=1

k* (11 cm
+ 3 (YK I+ 1D [ = =)
k=Kk*
2 (km*)*p , 4p (km*)*p mpy) "
>3y (Yn* +dP. —(Z £ ))
k=1p=1
E o vkm (2
= 3 (VKT (30)
K=1

because there is a bound in capacity for all lei&ls system 1 and there is no such
bound in system 2 and using equations (12) and’(19)

For case ii), when both systems are capacity bounded for stegen”, there
are two possibilities: there is a bound in capacity for aléls of stagen* in system
1; not all levels of stagen* are capacity bounded for system 1.

For the first situation it will be the case that

< km* 111 € km* |1 cm
Ykl = > (¥R 74D [ = =)
kzl " kzl " K

2 Note that equation (10) can be made equal to (12) by defingfﬂﬂ)+ = o0 and making the
adequate change fa™M".
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~

=3 [[YET,]%, (31)
k=1

k k
because f, [YK™ |1 = 5K [YK™|2.
In the second situation we will have

K P

5 km*)+ o\ - 5 +
S IVl = 5 5 (e P - @me-2m)
k=1 k#£k* p=1

km* 11 Cm*
+ 3 (YK I+ D [ = =)
k=Kk*
K km* 11 "
> 5 YT [+ K|[Dye || - C™
k=1
K km* (12
= ||Yn£n+1|| (32)
k=1

because the change in total shortfall for stagjén system 1 is smaller tha®™ .

Thus, we have that for periat 4 1 the total shortfall for each stage of system 2
is bounded above by the total shortfall for each stage okgy4t, with probability
one.

Now it remains to see what happens aftér- 1 (the first decoupling period).
Assume, there is a third system that starts operating in a ®&enas system 2
with the state variables of system 1, that is, coupled toesyst. System 1 and
system 3 will remain coupled until a capacity bound occursoae other period.
By the above discussion we know that a bound in capacity isréble to system
3, when compared with system 1. Due to Lemma 3 the total siloptér stage of
system 2 will remain dominated by that of system 3. So we hilaaeuntil the first
decoupling between system 1 and system 3, system 1 will damsystem 2, due
to transitivity. If we force system 3 to receive the stateysftem 1 whenever there
is a decoupling between the two the process repeats itselfieuer there is a new
bound in capacity and it follows then that the total shor{felr stage for system 2
will remain dominated by that of system 1, with probabilityeo

QED

In order to establish the uniqueness of the distributios @l$o possible to show
that the total shortfall per stage process admits coupling.

Theorem 6.Under the stability conditioiKE[||Dol|] < minm{C™}, the total short-
fall per stage admits coupling and so does the shortfallgg®as a consequence.
Therefore, its stationary distribution is unique af= Y for all Yo.

Proof: According to the proof of Theorem 5 the total shortfall prexeer stage of
the PS case dominates that of the TS case. Therefore, if shadimits coupling, so
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does the second because the shortfalls are always nonveed®tiTheorem 2, it is
the case that the first admits coupling.
Thus, the result follows.

QED

3.2.2 Regeneration and Explicit Regeneration Times

Since in the previous subsection a coupling argument was fos¢, it is now
easy to show the following.

Theorem 7.Let demandgDy,n > 0} be i.i.d. withKE[||Dol|] < minp{C™}. Then
{Yn,n> 0} is a Harris ergodic Markov chain.

Proof: Since¥ X 1 ||YK™ || = ¢(Yn,Dn), n>0,Y is a Markov chain wheD is
i.i.d. Theorem 5 established théthas an invariant (i.e., stationary) distribution and
Theorem 6 established thétadmits coupling. Thug( is Harris ergodic.

QED

Corollary 4. The inventory procesg(I%?, ..., 1XM) n> 0}, under the conditions of
Theorem 3, is a Harris ergodic Markov chain.

Proof: There is a one-to-one correspondence between shortfallsye@ntories for
all n. Consequentiyl = {l,,n > 0} is Markov if Y is, andl is Harris ergodic ifY
is.

QED
The regeneration times can now be characterized.

Theorem 8.Let demands be i.i.d. witK E[||Do||] < minm{C™}. Definez*Y™ =0
and suppose that

Pd) <2 _ZKW7Py 5 0 k=1,....K;m=1,...,M; p=1,...,P.  (33)

ThenY returns to the origin infinitely often, with probability one

Proof: The proof follows from the fact that the same system operateter a PS
mode withCK™ = C™ /K will have a shortfall process that dominates that of a system
operated on a TS mode. Since for the PS mode Theorem 4 isaplplicis the case
that if Y returns to origin infinitely often under the PS mode so it dimeshe TS
mode due to the dominance earlier discussed.

QED

Corollary 5. The inventory proces$(I13t,... 1XM) n > 0}, under the conditions
of Theorem 4, returns t(g'!, 210" — 211 . ZKM _ z2(KM)7 infinitely often, with
probability one.
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Proof: Consequence of the relationship between shortfall vagaéhd inventories.
QED

4 Non Uniform Loads and Perfect Yield

We review the models presented in Section 1 to accommodatextra feature.
The recursions for inventory, echelon inventory, and gathdo not change. What
changes are the specifics of the production decisions. Ribedlthe production
expression for the LSR operated in the PS mode is

PP = frmPgm, (34)

Since the net production requesﬁf,mp, only depend on shortfalls and feeding
inventories their expressions do not change when inclutfiaghon uniform loads.
What changes is the expression §§f", because it accounts for the impact of the
net request over the available capacity. Let us assumeubat productp on level
k and stagem needst“™ units of capacity per unit of material produced. In the
analysis so far it was assumed thitP = 1 for all k, m, p. Given the inclusion of
the 7K™ constants, not necessarily all equal to 1, the expressiogfftbecomes:

KM — min _er 1 (35)
gn - zprkmpf,!,(mp7

Whereasf,‘fmp expresses the net production request in terms of partsethe t
TkmP (TP oy hresses that request in terms of machine capacity.

As before, let us first address the discussion of stabilitgife PS mode.
4.1 Stability and Regeneration for Partially Shared Systems

For this setting there is no substantial change relativeagtrtially shared sys-
tems with perfect yield and uniform loads by replaci™|| with |[YK™||;, defined
as

P
YR =5 TPV, (36)
p=1

With this change, equation (10) becomes
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CKM
YEM || = max{0, [[YKM + Dy (1— —r———)
IVl = max(o, IV + Dl (1 o5 )
= max{0, |[Y3" || + ||Dn||s —C*M} (37)

and equation (12) becomes

[IVETlr = max{ o, Y™l + ||Dp | — €™,
(38)

P
5 7 (Yrskm>*p+dg_<z<km>+p_zkmp>)*}.
p=1

These dynamic equations, for theighted shortfall sums, fall exactly into the
framework described in Section 3.1. Therefore, the adegstability condition be-
comes the following.

Theorem 9. Suppose the demand®,, —o < n < o} are ergodic as well as sta-
tionary. If

P
E[||Dolls] = § T“"E[d] <C*" forallk,m. (39)
p=1

then the shortfall process is stable when the system is tgakirathe PS mode.

Proof: After performing the changes above indicated, the prodiéssame as that
of Theorem 1.

QED

All the results presented for the PS mode in Section 3.1 die fiea this setting
without change.

4.2 Stability and Regeneration for Totally Shared Systems

A simple observation of equations (37) and (38) helps to tstded why we
cannot resort to the technique used in Section 3.2, whenimgatability for to-
tally shared systems with perfect yield and uniform loadsteNthat the stochastic
dominance may be destroyed when production is bound by ioseiWhen loads
are uniform, all values of ™ = 1 and stochastic dominance follows trivially. This

dominance would be maintained if the vali&™ P would be multiplied byr k™ P
in the expressions above, but it is multiplied BYP. In generatrkmP £ g(km"p,

For totally shared capacity systems there is a need to inte@dome changes on
the structure of the control policies. The stability will bstablished by presenting
a particular choice of parameters for the new control potitat yields a stable
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system. Given the proposed choice of parameters is feamiltlénduces stability,
it necessarily constitutes an upper bound on the cost. Thmalparameters will
have to incur lower costs. Therefore, by providing an upmem which is stable
the stability of the system will be asserted.

The main structural change on the control policies propa@stte addition of an
input bound. That is, there is a need to impose a maximum anodumew material
entering the production system for each product per peAtiiough some bound
exists already, given that machines have finite capacityjsmot enough to estab-
lish stability. It is necessary to define tighter bounds.@hthe PR performs quite
poorly when the entering level has priority over the oth&tso, it was shown that
the degradation of the LSR when switching from the PS modédolS mode is
due to the fact that the potential input of new material jurfipsn CXM to a total
of CM per period, distorting the proportions between the sevevals in favor of
the input of new material. This preference is given at thecasp of a slower travel
speed along the production line. Moreover, it was shownithtite PS mode a sys-
tem withK =2, M = P = 1, andC?! > C!! improves its performance if we chop
the excess capacity of level 2, maki@g' = C'*. Then it was argued that having a
higher capacity on level 2 only increases the speed at whigniory moves to the
buffer feeding level 1, but does not make it move faster towdhe output buffer,
since level 1 is the bottleneck.

Although stability is not at risk for the cases discussedél) the fact that we
could benefit from the existence of an input bound in suchsesastitutes strong
evidence favoring the definition of this richer class of cohpolicies. Besides hav-
ing the base stock variables as the control parameters, mieasee the input bound
as an additional control variable, thus defining a widersctaismulti-echelon base
stock policies. The existence of such bounds is crucialt@bdéish stability.

Therefore, we resort to clag$;, policies and define a set of parameters that sta-
bilizes any of our re-entrant systems for any of the propg@seduction rules. Let

p
AP = min{ — PE[dO,] ——C"} forallp=1,....P (40)
km =3t 1Y -1 TME[dy]

and defind KM)"P = AP as the bound for the input of produptinto the system.
Thatis,| KM)"P is the feeding inventory of stadé and levelK. SetAk™P = AP for
all k andm, except forAP that may assume any positive value.

Assume that the system is operated using any productiorirrdiee TS mode.
With this set of delta variables all inventory variablesce;xtl%lp, will always be
AP for each product. At any level and stage, the amount

o

TKmPAP <C™, (41)
1

M=

k

1p

by the definition ofAP. Therefore, there is never a bound in capacity and the system
behaves as if there is no capacity sharing, thus being ke if there exisP
different and decoupled production systems with no reagrie. The only bound in
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capacity occurs for the equality between net productionestiand capacity which
can be seen as a no capacity bound situation, since the rsgielféct.

We know that for no sharing of capacity a system is stableragast™PE|[d]] <
Ck™P_ This conclusion is easily derived from the stability régat partially shared
systems with single product, discussed before (Theore@l@)ng the capacity of
machinem into k x p slots and calling each or@™, fork=1,...,K andp =
1,...,Pand adding over all products and levels we get

K P K P
3 S TPE[d] < Sy CP=C™, (42)
K=1p=1 K=1p=1

which is the stability condition for totally shared systemish non uniform loads
and perfect yield. This condition holds E{d}] < AP forall p=1,...,P.

Having provided a set of parameters which stabilizes theyrtion system for
any production rule in the TS mode it should now be evidertttti@optimal set of
parameters will have to incur lower costs than the costsriedby the parameters
just defined. The optimal set of parameters cannot, thexefoduce an unstable
system as long a&P > E[dg]. The following result has been proven.

Theorem 10.Suppose the demandB,, —o < n < o} are ergodic as well as sta-
tionary. If (42) holds, then the shortfall process is statien the system is operated
in the TS mode, using clag$;.

The regeneration and explicit regeneration times discusadier carry through
trivially for this setting.

4.2.1 Remarks on the Clas$ly

For the system to be stable, the minimum amount of each ptddatcan get
through the system at any period has to be above the averaggndeThis is the
same as saying that the bottleneck machine, the machinénfoh\{#1) holds in the
equality, has capacity above the load imposed by the demae gs.

Note that one can use any of the production rules and, in thepiar case of
the priority rule, one can use any arbitrary priority listlgut risking stability. This
constitutes a strength of the class of policies introducecH(l the literature review
on stability).

Moreover, the argument here used for stability allows ugtp@ne of the main
constraints of the present model: the re-entrant struadopted. This technique
extends easily to more complex re-entrant systems wheralhtite products are
processed by the same number of levels and not all the podisit all the ma-
chines in the same order. Such was not the case of the stalitiof for systems
with uniform loads, since the stochastic dominance argumaties on the fact that
the shortfalls added belong to the output buffers of the saaehines.

The optimal policy does not necessarily have the above béamithe entering
inventory. It may be the case that, during the optimizattbe,solution converges
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to values ofl *M)"P which are equal or abov@M for all p=1,...,P. If such is

the case we may drop the explicit bound on input inventongesbeing aboveM

has no physical significance. The cases where the optimizptbcedure converges
to values ofl (KM)"P belowCM, can be clearly identified as systems that may need
such bound for the input inventory in order to remain stablaturally, it is not
necessarily the case that all the systems for which the aptW>+p is undercM

are only stabilized by policies from clag#;, since cost considerations are taken
into account when determining such values. Note also thdewgblicies inl are
nonidling in terms of the shortfalls, such is no longer theector policies inT;.

5 Uniform Loads and Random Yield

To accommodate random yield we simply change the dynamiatems for in-
ventories and for shortfalls. The multiplicative randorslgii af™  is assumed to
be independent for each level, stage, and product. Alss,a@ssumed that the ran-
dom yield is continuous and i.i.d. for each period takingueal in the sef0,1].
Demands are assumed continuous, independent across tsaghati.i.d. for each
product along time. Both sets of random variables, demadd/eed, are assumed
independent.

The shortfall dynamic equation in the presence of randortd yassumes the
following form:

q,r=11
YATP = Y 4 df — akTPRA™P 4 S (1 aP)RY, (43)
ar=(km)~

where the additional summation accounts for the parts tote downstream ma-
chines due to the presence of random yield.

For the randomyield case it is easy to show stability forl&ipgoduct, NS mode,
with uniform or non uniform loads. To prove stability for theultiple product cases
and other sharing schemes we follow the approach of Section 4

5.1 Stability and Regeneration for Partially Shared Systems

The presence of random yield in the context of uniform loagissthot change
the basics of the formal result. The main difference is th@iei stability condition.
Aside from that, we can repeat the same steps as in SectioBetefore, the
stability condition proof will be presented and the natwraiension of previous
results to this situation will be listed.

Assume a system operating in the PS mode with the LSR and:amﬁ'ap inthe
dynamic equation for the shortfall variables.
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kmp _ \/k = KMp ind Fkmp_ gk c
Yol =WdRt S (- af?)RIP - o mind ™, i )
or=TTan) - p= 1
qr=11
_ maX{le](mp +dP+ z (1— a¥P)pIP_ arh(mp frifmp’
ar=(km)~
qr=11 ckm
A L e S T
qr=(km)~ 2p-1 fn

whereff™ = min{Y<™ + df, |£"”‘>+p}.

The above dynamic equation for the shortfall variables tsas@asy to deal with
as it was for previous settings. Because of this, one hatepd differently. First,
the stability condition for single product systems with Beemtrance is established.
Later, by the approach of Section 4, stability for the PS nfodenultiple products
will be defined. We show that the stability condition for th® Rode is

p E[dg] m=1....M
— 0 <C"" for (45)
=K,
Tl 1 K
The indexes irﬂg::j‘;'fh(q, r) signify that the factors are taken up the production

line fromh(1,1) to h(k,m). It does not mean that the iteration is taken from kto
and from 1 tomindependently of each other.

To simplify the notation, consider a system with single pretdand no re-
entrance in the presence of random yield and composéd ofachines. Except
for random yield, this is addressed by [13, 14]; we add rangl@id here. For this
simplified version, we have

Theorem 11.Suppose the demanfdl,, —o < n < o} is ergodic as well as sta-
tionary. Additionally, suppose the random yigld?", —c0 < n < «} is ergodic and
stationary. The shortfall process is stable iff
_ Eldo]
Mi=1'Elag)
holds for the single product system.

<C™ forallm=1,...,M, (46)

Proof: The dynamic equation for shortfalls will be

1 S
Yoo = max{(Yy"+dh+ Y (1—an)Py— o'ty
i=m-1
1 o
Ya'+dnt Y (1-ap)P—agC™} (47)

i=m-1
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which, by direct comparison with the equation for perfeelgieads to the follow-
ing necessary and sufficient stability condition

E[do+ i (1—ab)P'] < E[af'C™). (48)

i=m-1

In the perfect yield situation, it holds thzartﬁmp =1 and it is the case that the
system is stable ifE[d, — C™ < 0. A similar reasoning is applied here to propose
the above condition: this condition ensures the existefi@gereegative drift when
production is bound by capacity. We need only to establisbranection between
(46) and (48). To do so, we first establish a relationship betwproduction amounts
in consecutive machines.

The production of machineis conditioned by what is effectively produced by
maching(i 4 1). What is effectively produced by machifie- 1) during perioch is
al*RiFL. If production starts at a point whetg ! = Ai+! = Z2+1 — 7 it turns out
that

NN
S P<aAt Y ot (49)
= =1

since machinécannot engage more material in production than the availatbén-
tory.
Dividing the above byN and taking the limit afl — oo we get

E[P'] < E[a} Y E[P™Y. (50)

Given thata!*! is independent oP!,"%, the yield process is i.i.d., and the ma-
chines are capacitated, the limit exists and equals thectagh@alue.

Assume now that the inequality above holds strictly. If isdahe case, the inven-
tory sitting in front of machiné, I'*1, grows to infinity because

n

|+1 A|+1 Z |+1P|+1 ij)7 (51)

and taking the limit ag — o we get

|‘I)o+l _ AI+1+r|]im Z I+1PI+1 PJI)

n n
_ Al R i+1pi+1 R i
=A +rl]m}glaj P —rl]mogle
= A" 4 lim nE[a™YE[P'*Y — lim nE[P']
n—oo n—oo

by the law of large numbers and because of the assumptioreatribt inequality.
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If the value of the feeding inventory for any machine growsfity the system
is unstable. Also, if the value of the feeding inventory gsdw infinity, it must be
the case that production of that machine is being bound bgaigpan the long run.
Thus, it is established that on a stable system it must beabe that (50) holds at
equality for all machines. It is also easy to show that

E[P|<C fori=1,...,M. (53)

The expected production of any machine is either boundetidegxpected pro-
duction of the preceding machine as presented in (50) orusded by the avail-
able capacity as presented in (53). That is, only one of thmesgualities will hold
at equality. If at least for one machine the bound occurs dwapacity, then the
system is unstable, implying[ad]E[P!] < E[do] and the value of! grows to—oo.
For a system to track demar,a}]E[P!] has to be equal t&[do).

Now, observe that if alin— 1 stages are stable, ea€fP'], fori =1,...,m—1,
can be written as a function &fP?] as follows":

i E[PY]
E[P]= —L 1 54
Pl ﬂ'j:ZE[a(J,] &9

andE[PY] = Ell

~ Elad]”
Proceeding by backward induction, consider first the casm ef 1. Expres-
sion (48) will reduce to

E[do] < E[ad]C?, (55)

which is exactly the same as (46) for= 1. To prove the stability condition for stage
m, let us assume that ath— 1 downstream stages are stable. That is, assume that
instability cannot be caused by the last- 1 machines. Therefore, (48) becomes

E[PY
M5 Elal]

—~E[a))

E[adC™ > E[d] + E[1—a™ ] +...E[1-alE[PY

== d 1 S p——
S e e

1
= E[d] + E[d](m -1
1

, 56
r]?];llE[aJ] ( )

= E[d]

showing that if (48) holds, so does (46). It remains to seetWwhppens when (48)
does not hold.

3 Using (50) with the equality sign.
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Let us assume that (48) does not hold for at least one machiven that this is a
necessary and sufficient condition for stability, it follotinat the system is unstable.
Therefore, it must be the case tfPY] < E[do]|/E[ad].

Given that there is at least one machine violating (48)ebe the bottleneck
machine of the line. That is, the machine that is furthestyafsam the stability
region. For this machine it is the case tE4P™ | = C™ and for all the machines
downstream it is the case that (50) holds at equality. Theeefori =1,....m
E[P'] can be expressed as a functiordP'| as described in (54), since there is no
instability caused by machines following the bottlenealeduality (48) for machine
m* does not hold, so

Elad"|C™ < E[do+ i (1—ap)P']
i=mF—1
m*—1 ) .
= E[do] + ; E[(1— ag)|E[P]
m-1 E[1-al

E[do] + E[PY] _—
Zl I_lj 2E ao]
m*—1 EN
E[do] <1+ Zl 7[ o) )
ﬂj 1E ao]
1
= Eldo] == (57)
MLy Elag)
showing that (46) does not hold for machimé Thus, the equivalence between (46)
and (48) is established and the result for single produlzil.

QED

It remains to generalize the above to the multiple produogson. By using a
class of policies that imposé&sunds on production quantities it will be possible to
provide a set of parameters that ensure no sharing of cgpaleén the system is
operated in the PS mode.

To simplify the notation, assume we are dealing with a flow lbonstituted by
M machines and with no re-entrance. In the PS modeyisetK M. DefineQ™ as
the long run expected amount of work imposed on machify all products. This
amount is given by

P E[d)] .
szziojp foralm=1,...,M. (58)
p= 1|_IJ 1E[a ]
Define the long run average load of machingor allm=1,...,M, as
m
pLI (59)

Cm
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It is not difficult to see that it is necessary for all values\dt to be below unity
in order for the system to be stable.

Now, define as the long run bottleneck machine the one whishtea highest
long run average load. So, we haweé as the machine for which

m*

*_Q _ m
A _C—m*_mn?x{/\ }. (60)

Define the share of each machine that can be used by each piodie long
run as

o E198)/ M4 Elog”
- =M=,

and set the values fa&t™P that constitute the control variables for this problem as

(61)

CMPT 1 Elagd?] i1 <m<im,
Am*p —{ cmp if m=m, (62)
C™ P/ MM 11 Elad?] if M > m> .

Note thatA™ P is the nominal inventory of produgtthat sits in front of machine
m. That is why there is no need to defidéP, which remains free as befdtelThe
other control variables are the bounds on the input of nevenztper period for
each product, which are

MP=c™P/ T Elag?). (63)
j=mr41

Given the fact that each value af™ P < C™, it is the case that, as long as

Irﬂﬁp < A™P, there is never a situation where the capacity of machimas to be
shared in the PS mode. This would always be the case if yielddize deterministic
and exactly equal to its average value for all periods. SinageneralPr(an® >
E[ag™]) > 0, we cannot ensure that the available inventory for all potelsitting in
front of a given machine is always such that its summatiorelew the machine’s
capacity. Thus, in the PS mode, there will be periods wheagirsth does indeed
occur and equation (44) would have to be used explicitly tatdish stability. It
was said earlier that such dynamic equation is too cumbe¥sorbe tackled. This
implies that it is not possible to derive stability just bygosing a bound on the
new material entering the system as it was done in Sectianginecessary to add
further features to the control policies in order to obtairirsstance that ensures no
sharing in the PS mode and which can constitute an upper boartde optimal
cost, while maintaining stability.

4 The same is true of the non negativity constraint.
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The natural extension of clagg;, furthers the extension proposed in Section 4
by adding a new set of variables. These new variables impmseds on the amount
of material allowed to enter production for each productvarg machine on any
given period. This way, one imposes a maximum share that gachuct can take
from each machine, even if there is available inventory talpce more. This class
of control policies, which will be calledl,, turns out to be the sensible thing to do
from the practitioners’ point of view as well

With this broader class of base stock policies in mind, théals instance which
ensures stability and constitutes an upper bound on theo€tst optimal solution
is such that all the new variables are equaAfE‘Tp as well. That is, the additional
bound for machinen to produce producp is the nominal value of the associated
delta variable.

As was remarked at the end of Section 4, it may also be the essdlat the op-
timal values for those bounds are such that sharing will xadly occur. It should
be clear that there is no intention of running these systexRsradependent produc-
tion lines. Doing that would signify losing the flexibilitylawed by the sharing of
resources. For instance, it was discussed in [6] that thiepgeeformance in the TS
mode was always better than the best performance in the PS.mbd greater the
flexibility the better potential use one can make of the aldd resources. However,
it may be the case that such flexibility may need a minimum arhofirestraint to
ensurdairnessfor all the products. Again, the use of the bounds is only &m0
establish stability for infinite horizon systems.

Thus, the above discussion established the following #raor

Theorem 12.Suppose the demar{dy, — < n < «} is ergodic as well as station-
ary. Additionally, suppose the random yie{dﬁmp7—oo < n< o} is ergodic and
stationary. If equation (45) holds, then the shortfall gexis stable for multiple

product systems operated in the PS mode, using €lass

We argued in terms of a flow line composed\dfmachines. When a re-entrant
system withK levels andVl machines is operated in the PS mode it is transformed
into a flow line with no re-entrance, where it is possible tgoreach paifkm) into
a global ordering foM = K x M machines.

Once the stability condition has been established, all theraesults discussed
in Section 3.1 are trivially derived. Theorem 4 and the aisged corollary are the
exceptions. In order to characterize the regenerationstiveneed one additional
assumption, due to the presence of random yield. Additiprtalcondition (15),
the following condition has to hold so that the shortfallgss returns to the origin
infinitely often, with probability one

Pr(@“™=1)>0, k=1,....K;m=1,... M;p=1,...,P. (64)

If this does not hold, then the convergence of the shortfalero can only occur
in infinite time, since it will be accomplished through a gesdrit series.

5 Clearly, Mo c My C M.
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5.2 Stability and Regeneration for Totally Shared Systems

The stability condition for the TS mode is the natural extem®f the previous
condition for random yield in the PS mode.

Theorem 13.Suppose the demar{dy, — < n < «} is ergodic as well as station-
ary. Additionally, suppose the random yie{dﬁmp7—oo < n< o} is ergodic and

stationary. If

£ E[dg)
kZ Z I_Iq,r:k,mE[

m _
TP <C" form=1,...,M, (65)
1p=1|lgr=11 ]

Qo
then the shortfall process is stable for multiple produstems operated in the TS
mode, using clasHly.

Proof: To establish this result we only need to produce an instaficéass 15,
defined in the earlier subsection. The instantiated paensef/T1, follow the same
reasoning just presented at the end of the previous subsedthat is, compute
the average work on each machine; define the machine withigfedt average
load; determine the average share that each product at eaehdemands from
the bottleneck machine; and use that share to determineathes/ofAK™ and the
values for the bounds on the production for all the levetgyss, and products. Given
those, the system operated in the TS mode never shares tyaperciss products
and levels. Also, every share allocated is never below tleeage work imposed.
This implies that theé® decoupled systems are all stable and the cost incurred by
such control variables constitutes an upper bound on tHenpesince of the optimal
control variables.

Therefore, the optimal values of these same control vagablll have to incur a
lower cost and have to necessarily maintain stability. Alse optimal values of the
control variables may be such that sharing of capacity dug#eeid occur and the TS
mode really allows a flexible use of all the available cape&i#tintended.

QED

Taking into account the discussion on the regeneratiorstimade at the end of
the previous subsection, all the results discussed for thendde in Section 3.2
carry through trivially for this setting.

5.2.1 Remarks on the Clas$1,

The clasdT, of modified base stock policies constitutes a similar qaglié step
from Iy as this latter constituted froifig. It may be the case that while optimizing
relative to the base stock levels and production boundsytimal values are such
that no sharing really occurs either in the PS or the TS mobis.dnly means that
such is the optimal thing to do and may have no direct relatiih the fact that
policies from/T1; or Iy may induce instability.
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According to the discussion of results in [5], the existeatproduction bounds
other than the net capacity may be beneficial in terms of nikiing operational
costs, independent of the stability issue.

Modeling the production system by means of a periodic reus@ntory control
turns out to allow the definition of a broad class of policieattcan incorporate
non idling features in a very natural way. The lack of thistdea was one of the
drawbacks of other approaches, as queueing networks isavadigmatic example.

Other modifications can be added to these policies, namelygled to impose
upper bounds on the amount of inventory sitting at each huffilich could be of
advantage due to cost considerations and also to tackleigterece of machine fail-
ures. However, the modifications introducedg to generatdl, are the minimal
needed to establish stability.

Note also that, when controlling systems with random yig&tiding to produce
the exact difference between a target value and the presémnd of inventory is
known to be non-optimal. Other classes of policies wouldeh@avbe proposed in
order to eventually achieve better performances. Nanm@lgting each current pro-
duction decision by the reciprocal of the expected randastdyivould be a good
candidate for a first approximation, although this is alsovim to be non-optimal.
This type of generalizations are outside the scope of theeptavork and are only
here referred to clarify that there is no substantial clamtte clasd7, other than
it may allow lower costs thafl, it ensures stability for the re-entrant systems ad-
dressed here, and even ensures stability for more complertrant systems as
mentioned in Section 4.

6 Non Uniform Loads and Random Yield

Given the discussion of the previous two sections, the Igtabésults for this
setting are

Theorem 14.Suppose the demar{d}, — < n < «} is ergodic as well as station-

ary. Additionally, suppose the random yie{dﬁmp,—oo < n< o} is ergodic and

stationary. If

S TkmP qr:kr[nO] P <CK™ for (66)
p=1 Mar=11 Elag ] k=1,....K

then the shortfall process is stable for multiple produstems operated in the PS
mode, using clasHly.

Theorem 15.Suppose the demar{dy;, — < n < «} is ergodic as well as station-

ary. Additionally, suppose the random yie{d{ﬁmp,—oo < n< w} is ergodic and

stationary. If
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S < E[df]

Z kamp q,r:k,mE arp

E1p=1 Mgr—11E(Q0 ')

then the shortfall process is stable for multiple produstams operated in the TS
mode, using clasHls.

<C™ form=1,...,M, (67)

7 Conclusions

We have established the conditions for stability on mudtiploduct re-entrant flow
lines for a wide range of settings. Our stability resultserosystems with perfect
and random yield, systems with uniform or non uniform loaats] systems with
any type of processing flow. We proposed a class of contratipsifor which the
necessary stability conditions are also sufficient. Thasglof control policies is a
variant of the capacitated multi-echelon base stock pEsjcvhere each production
decision has an explicit upper bound. Our stability distrsplaces the emphasis
on determining stable policies rather than determiningdd@@mns under which a
given policy induces stability. One of the elegances of tiabilty discussion is
that it agrees with some of the insights produced by the éxyatal data of [6] and
works concurrently with them. Therefore, the classes dtjes that ensure stability
provide an important contribution of this paper for futuesearch.

Although some of the features of the richer policies are restigularly new
nor unexpected, their study is still relatively insignifitaThat has to do with the
complexity of those policies in terms of their analyticabkiation. However, as
long as a general tool like IPA can be used, their study besaneesasier task to
undertake.

More than stressing the fact that the necessary stabilitditions are also suffi-
cient, we believe that the reasoning behind the argumesttieith to this property are
the most relevant contributions of the present work, that span to other contexts,
gueueing networks being a possible example.

The main insight provided by the stability discussion, is thct that there is a
definite advantage in controlling production with idlinglipees. Even when back-
logs are high, there should be some restraint on the amofumtswanaterial entering
the system and on the amounts of material allowed to moveetoéit operation.
Much of the research in the past has concentrated on nargigdlicies for intuitive
reasons. This paper clearly challenges that intuition éor acyclic systems, multi-
ple products, non uniform loads, and random yield. The meatifins proposed to
My are the minimal needed to establish sufficiency of the nacgssability condi-
tion.

Future research will have to address the validation of thegproach for these
new classes of policies and investigate their potentisdims of performance.
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Appendix

This appendix includes some of the proofs on auxiliary tssskipped along
the paper that were omitted then to avoid loosing sight oédsentials and because
some of them are relatively trivial extensions of other lissoublished.

Their inclusion here is intended at making this documentribee self contained
possible.

Proof of Lemma 2
Define

=0,
®n(Y,Dy1,...,Dp) = @y 1 (P(Y,D1),Dz,...,Dn),

¢ =9,
%(Y,Dl,...,Dn) = ||(Dn(Y,D1,...,Dn)|| = %,1((D(Y,D1),D2,...,Dn),

n=23,..., with ® andg asin Lemma 1. Then

[IYn|| = @& (Yo,Do,...,Dn-1), as. (68)
Eacha, is increasing and continuous.
For integeri, define'Y such that|'Y,|| = 0 and
'Yn|| = @(0,Di_n,...,Di_1), n>1. (69)

Thatis, ||'Yy|| is thenth-period total shortfall for a process starting at the iorig
atimei —n. Therefore, if[Yo|| = O, then||'Y »|| has the distribution offY ||, due to
the stationarity of D, }. Moreover, since is increasing,

||iYn+1|| = ¢h+1(0,Di—n-1,...,Di-1) (70)
= %((p(oa Difn—l)7Di—n,---7Di—l)
> ¢h(0,Dj,...,Di 1)
= |["Yal|-

This means that, for eadh||'Y,|| increases almost surely to a limit as— c.
Denote this limit by||Y;||. Notice that

[F1Yy|| = (0(.(1)”*1(0’ Di_n:1,..-,Di—1),Dj)
= @('"Yn_1,Dy). (71)

Lettingn increase and using the continuity @fwe conclude that
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I¥isall = o(Yi, Di) (72)

for all i. For the last assertion in the lemma, notice (as above)|fh4t|| has the
same distribution ag¥n|| if |[Yo|| = 0, so that if{]|°Ynl|,n > O} increases almost
surely to||Yo||, then the distribution of || Yy||,n > 0} increases to that dfYo|.

QED

Proof of Theorem 1

The proof follows a reasoning similar to the one used in [d3}iove their The-
orem 1 by using here equations (10) and (12).

For levelK and stageM the total shortfall proces§||YKM||,n > 0} follows a
Lindley recursion, (10). It follows from Loynes’ analysiktbe single-server queue
that if E[||Do||] < CKM then ||¥5" || < e, a.s., whereas iE[||Dg||] > CKM then

KM
[I[Yo ||=00,as..

The proof proceeds by induction on the levels and stages ko) down to
11, assuming that (13) holds. Supp¢|§é§m|| is finite, a.s.. To show that the same

must be true 0ﬂ|\~(ékm)7||, we argue that iﬂ|\~(ékm)7|| = oo, then we would have
E[||Do||] > C™ ™. Observe, first, that if[¥\™ || = e, then so is|[ Y& | In
other words, the ever{t |\?§]km>7 || = o} is invariant under a shift in the time index

and must therefore have probability zero or one (by the écifgadf demands).

Now we use the random variablg¥ || defined in Lemma 2. As shown there,
['¥ns1]| > [|'Ynl|, a.s., for alin andi. Moreover,|| 'Yy, 1|| has the same distribution
as|| 1Y, 1/|, SOE[||*1Y s 1|| = ||'Yn|[] > O; this holds, in particular, for thgkm) -
th component:

E[[FAYST - 1YS™ | > (73)

n+1 ||

From (71) we know thaf *1Y,1|| = @('Y,, D). So,||i+1YE]k+ml>7|| — [y
is the increase in the echelgkm) ™ total shortfall due to demarid;, and therefore
cannot exceeflDj||. Thus,

|[FHaykm 'y ™| < ||Di||, for all n> 0. (74)

o =1l

If everyC"is infinite, then the conclusion of the Theorem is immedistigpose
then that som€ ™ is finite. ThenE[||Dj||] < », so a consequence of Fatou’s lemma
and (74) is

[“msupll'“YnH 1= 1'Ye™ ||]>|ImsupE[||'“Y IYR™ Il (75)

n+1 ||

and, by (73), this is non negative. Now[¥.™ " || is infinite while|[Y¢"]| is finite,
then
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limsup{|[ YR | = IYA™ |1} = limsupmax{ 0, |'YR™ ||+ ||py |~
n—rco n—o0

P N+ k-
Z <|Ynkmp+dip_(zkmp_z(km) p)) }_ HIYE] m) I
p=1

= D -t

implying E[||Di||] — C*™" > 0. Thus, if in factE[||D;||] < C*™ ", then||[¥{™ ||

must be finite with probability one.

Conversely, suppose th&f||Do||] > C™ and let(k,m) be the earliest level and
stage for which this holds. From (12) we see théfT, || > ||YK™|| + ||Dy|| — CK™,
and similarly

n+1
1Al > ;(HD%H—C“). (76)
r=
Hence, lettingn increase teo,
ok _ n+1 )
Yo Il > hmsupZ(llDfrll—C ™, (77)
n—oo /=

and this is whenE[||Dol|] — CK™ > 0. Forgr such that levetj and stage occur
after levelk and stagen, notice that

Y& =Y 0 A
Y A S e L L o R AT
_ Yl('l(qr)+>+ _ (Z((qr)ﬂ* _ qu) +|,(-|qr)+ + |ﬂr

(km) -
=Y -Z" -2+ 513

st=q.,r

for all n, which leads to

(km)~
YL = IYVR™ = (12 =120+ 5 (R

St=q,r

> [IYA| = (12— 112711)

because|ld|| > 0 for all n, s, andt.
From this we can conclude tha¥{ || = o if [|Y§"|| = c.
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QED

Proof of Theorem 2

The proof follows exactly the same reasoning as that of Térad in [13].

It suffices to show that for allY||, the procesg||Yn||,n > 0} eventually co-
incides with a copy started at zero when both are driven bystree demands.
Notice that||YK"™|| is always at least as large as the corresponding component of
a copy started at zero. Sin¢gfKM|| follows a Lindley recursion withe negative
drift, it hits zero at a finite timéxu. Subsequently, it coincides with tH&M)—th
component of the process started at zero. Suppose now thalfa > Ny,
(JIYK([,..., [[YKM||) coincides with the corresponding components started at zer
We claim that for some almost-surely finft&y - > Nim,

IVl = max{ 0,y (VA +ap— (2P —Zm ) } . (78)
p=1

this will provide the coupling time fofY ™" || since||Y*™|| has already coupled.
Suppose there is no subly-. Then

YR = (Y™ ||+ ||Da]| —Ckm (79)

n |

for all n > N, implying that liminf, |[Y&™ || = —o, sinceE[||Do|[] < Ckm".
This is impossible, because the shortfalls are always ngative, so (78) must
indeed occur in finite time. Subsequent|y,™" || coincides with the copy started
at zero. We conclude by induction that there id\ag, finite a.s., such that the entire
vector||Yn|| couples with the initially zero process at tirNg;. From th|s it follows
that||Yn|| = [|Yol| 5|nce||Yo|| is the limit in distribution when|Y|| =

Uniqueness follows. IfiYo|| is stationary thef¥ || couples W|th||Yn|| in finite
time, implying that they must have the same distribution.

QED

Proof of Theorem 4

If E[||Dol|] < C™, thenP(||Do|| < C*') > 0. Consequently, under the conditions
of the theorem there exists @with & < min,mC<™ and /P < min m (2™ —
2k P) such thab 2 P(di < &/P,....dP < &/P) > 0. SinceY has a finite stationary
distribution, there exists a constant- 0 such that the s&, € RK*M defined by

Bo={(y*%....y*"M):0<y"™ <b/Pk=1,....K;m=1,....M;p=1,...,P}
(80)
is visited infinitely often byY. We will show that there exists an integer 0 and a
realq such that

P(]Y¢]] =0) >qg>0 forallx e By, (81)

from which it follows thatY visits O infinitely often.
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If df < &/P, then either|YXM|| = 0 or [[YSM]|| < ||[YEM|| — (CKM —¢). Thus,
every time a demand for all products falls @, £/P], the echelon-KM shortfall
is decreased by at leaStM — ¢, until it reaches zero. Starting By, it takes at
mostrgm = [b/(CKM — £)] consecutive such demands to drive that shortfall to zero.

Thus, withgkm = 6™<M, we haveR(|[Y o || = 0) > akwm for all x € By,
k

Suppose now thatY ™" ||.....|[YKM|| = 0 for some(k,m) and thaty ™| <
b/P, for all p=1,...,P. With probability at leas®", shortfalls(km)™, ..., (K,M)
will remain at zero for the next transitions. Moreover, for any, if ||Y§1km)+|| =0

and||[Y™|| > 0, then the inventorif™ " P available for use by stagé, m) is greater

or equal to(zk™ P — Z"P) forall p=1,...,P, being it the case that the inequality
holds for at least one product, because of (14). Thudffi| < /P, stage(k, m)
cannot be constrained by inventory, and eithéf™, || = 0 or [|[YKT,|| < ||YK"|| —
(Ck™ _ ¢). If we setriy, = [b/(CX™ — ¢)] then, with probability at leasfy, = 6"m.
|[YX™|| is driven to zero inrg, steps. We conclude that with probability at least
q=1011"--Okm, ||Yr11+---+rKM || = 0 foranyYy € By,.

QED



