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Abstract The paper addresses the issue of stability for re-entrant flow lines, pro-
ducing multiple products, with capacitated machines, random demand and random
yield. The policies of interest are multi-echelon base stock policies, combined with
a set of static and dynamic management rules of the availablecapacity. We introduce
three classes of capacitated echelon base stock policies:Π0, the pure multi-echelon
base stock;Π1, like Π0 with a possibly finite upper bound on the admission of
raw materials; andΠ2, like Π1 with a possibly finite upper bound on the utilization
of intermediate inventories. The order of business is: establishing conditions for
the stability of the shortfall echelon process when demandsare stationary and er-
godic; examining the regenerative structure of the shortfall process when demands
are given by an i.i.d. sequence. The regenerative properties are valuable in estab-
lishing the convergence of costs and also simulation estimators, which enables the
utilization of Infinitesimal Perturbation Analysis to optimize the policy parameters.
We use a coupling argument for shortfalls while establishing the stability conditions,
which will, by itself, render the Harris ergodicity of the shortfall process. We show
that the stability condition suffices to ensure that the shortfall process possesses the
regenerative structure of a Harris ergodic Markov chain. Under a stronger condition,
we establish that the vector of shortfalls returns to the origin infinitely often, with
probability one. We show that the necessary stability condition is also sufficient for
any sort of re-entrant system, in the presence of random yield, provided the control
policy is in Π2.
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1 Introduction

A framework to manage re-entrant flow lines producing multiple products was pro-
posed in [6]. The work focused the analysis on a simple set of capacity managing
schemes and production rules as a first step towards understanding broader classes
of systems and policies. The re-entrant lines were modeled as discrete time capaci-
tated multi-product production/inventory systems, subject to random demand, oper-
ating under multi-echelon base stock policies. Several capacity sharing mechanisms
were discussed and some production rules were proposed to both statically and dy-
namically manage capacity.

An Infinitesimal Perturbation Analysis (IPA) approach was proposed and vali-
dated, in order to compute the optimal values of the parameters describing the con-
trol policies. In order to validate the infinite horizon measures and derivatives, one
has to rigorously establish the stability conditions for the systems being addressed.
The main objective of this paper is exclusively address thisproblem for re-entrant
flow lines.

Fig. 1 Schematic of the default re-entrant system.

The first set of systems under consideration has a series ofM machines (stages),
and each of theP products has to cycleK times (levels) through each of theM
stages. At any given period, each machine may process different parts belonging
to different levels (see Figure 1). The total production perperiod is limited by the
machine capacity and feeding inventory. After being processed by a machine, parts
are placed in intermediate buffers where they wait their turn to be processed by the
next machine or until they are depleted by external demand.

Each level and stage operates on a base stock policy for echelon inventory. The
capacity is managed both from a static and a dynamic approach. In what con-
cerns the static capacity management, the capacity of each machine,Cm, with m =
1,2, . . .M, may be split intoK×P slots,Ckmp, with k = 1,2, . . .K andp = 1,2, . . .P,
each assigned to a specific level/product pair (NS – no sharing). Alternatively, the
capacity may be split intoK slots,Ckm, each assigned to a specific level and shared
by all products at that level (PS – partial sharing). Anotherpossibility is to consider
the available capacity as being simultaneously shared by all products and levels (TS
– total sharing). As to the dynamic capacity management, whenever there is some
degree of capacity sharing, a set of production rules may be defined. Examples are
Linear Scaling, Priority, and Equalize Shortfall.
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1.1 Literature Review

We start by reviewing the relevant literature on stability for production systems.
The review covers three main modeling paradigms: differential equations, queuing
networks, and difference equations. These are among the main tools used to model
production systems and all of them have provided contributions and relevant insights
to this of paper.

When approaching the problem of production control by meansof formulating an
optimal control problem, stability questions are trivially answered in the following
sense: if there is one stable policy, the optimal policy willalso be stable, provided
the performance measure is adequate, and it will be found through the optimization
procedure. However, when the approach is to choose a class ofpolicies a priori,
stability has to be addressed explicitly, in order to determine whether or not the
given class ensures it.

In the optimal control formulation of [19], there is no explicit consideration of
stability. Demand for each product is assumed to be a deterministic constant rate,
processing times are deterministic, and machines are subject to random failures. The
inventory dynamics are described by differential equations and the failure process
is modeled through a Markov process. Even though the approach is applied to re-
entrant systems in [2] or to generic job shops [12], the necessary stability condition
is assumed to be sufficient. In fact, stability was never addressed explicitly by the au-
thors who have done work on flow rate control, except for [7]. The authors explicitly
state and prove that as long as the demand vector is an interior point of the expected
capacity set, then there exists a flow control policy that results in a stable system.
Stability is taken in the sense that the expected end productinventory is finite for all
products. The proof does not rely on any specific assumption on the flow patterns
inside the production system and it only accounts for end product inventories.

When modeling production systems by means of queueing networks and propos-
ing specific scheduling rules, it often has been the case thatstability becomes a hard
question to answer. Also, to establish the heavy traffic limit theorems of [15, 16], it
is necessary to establish the stability of the queueing networks considered. Exam-
ples of networks for which the Brownian approximation does not hold have been
presented, as [10] is one example. Usually, the issue of stability in networks of
queues is established by explicitly determining an invariant distribution. The classes
of queueing networks for which such invariant distributionis known are very lim-
ited. Typically, networks of queues operated under local scheduling policies are
among those for which little is known about their invariant distribution or even if
one exists. They fall outside the classes for which there areproduct form solutions.
Product form solutions exist for the generalized Jackson networks: single class net-
works with exponential inter arrival and service times, where queues are served in
a First come First serve order, [17]. For some scheduling disciplines in multiclass
networks, with special distributional assumptions on inter arrival and service times,
the stationary distributions were explicitly determined in [4, 18]. One example of
open queueing networks where addressing the stability problem is highly relevant
for this paper is the work of [23]. Their distributed CAF policies for local schedul-
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ing are ensured to be stable for acyclic systems as long as thenecessary stability
condition holds – traffic intensity being less than one for all servers. However, the
authors were unable to show similar properties for non-acyclic systems and had to
propose a modification of the original policies to stabilizeany such system. One of
the central statements of the present paper is that the structure of the modification
proposed holds the key to the problem of stability. Also, this seems to have been
overlooked by other authors. Their original distributed CAF policies are non-idling,
or work-conserving as some authors prefer to call them. The problem addressed in
[23] was one of reducing the number of set-ups as much as possible, since a set-up
is a waste of capacity. Nevertheless, when the authors foundthemselves unable to
prove their policies to be stable for non-acyclic systems, they proposed a modifi-
cation that basically increases the number of set-ups, thusincurring more waste of
capacity. Besides this, they also allowed each server to remain idle, when not in a
set-up – distributed CAF policies with backoff –, even if there would be other jobs
in the queue. Idling policies are simpler to model in the context of flow rate control,
as the two boundary policy of [24] is an example. For a system with two machines
in tandem, when the production trails demand by a large margin, the policy imposes
a bound on the amount of inventory between machine 1 and machine 2, thus pre-
venting the first machine to work at its maximum rate. In the context of queueing
networks, similar ideas could be applied. The work of [22] isa contribution along
these lines. However, this type of ideas has not been pursuedas intensively as one
would expect, taking into account what is known from the deterministic scheduling
theory, [3, 11]. One recent example where idling policies are explicitly used is [9].

In [23], the inability to prove stability for the original policies could be thought
of as a problem that would be solved in due time, since the authors did not show that
in fact instability could occur. This question ended up being answered through an
example not much later. In [20], also for open queueing systems, the authors intro-
duce an example of a re-entrant system for which there existsa non-idling control
policy that yields unbounded trajectories for the buffer sizes, although the workload
imposed by demand is below the available capacity. In the recent years many other
such examples were presented. For the sake of brevity we refer the reader to the re-
view presented in [8], which constitutes a good synthesis ofthe research on queuing
systems, concerning the particular issue of stability.

For our purposes, suffices to say that the great majority of the efforts in the area
of modeling production systems through networks of queues has concentrated on
idling policies and on determining sufficient conditions for stability which are more
restrictive than the traffic condition.

In [14], the validation of the Infinitesimal Perturbation Analysis approach for
infinite horizon costs relies on the proof of stability for the single-product, multiple-
machine, and non re-entrant system presented in [13]. They model the production
systems by means of difference equations, with deterministic capacity and random
demand. The authors show that it suffices to have the expecteddemand below the ca-
pacity of the machine with the lowest output in order to ensure their control policies
to be stable. Although dealing with a non re-entrant system,for which the stability
issue is trivial, the discussion on stability is useful and necessary to identify renewal
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points of the stochastic processes considered, which has implications on the valida-
tion of the approach to estimate values and gradients of infinite horizon performance
measures.

From the perspective of the present paper, the concern regarding stability is
twofold: one the one hand, there is a need similar to that of [13] regarding the val-
idation of the Infinitesimal Perturbation Analysis to bringformal closure to [6]; on
the other hand, it is necessary to verify if the control policies proposed at that time
ensure stability, given the fact that they are applied to systems with more complex
flow patterns.

We also have the purpose of contributing to the stability discussion for non-
acyclic systems. In the remaining of this paper, we show thatit is necessary to
depart from non idling policies. Given the modeling paradigm adopted, it will be
easy to define a class of policies containing both idling and non-idling policies as
sub-classes.

1.2 Brief model review

We review the essentials of the base model. We refer interested readers to the more
extensive discussion in [6]. Let the echelon inventory of productp at machinem and
levelk for periodn be given by

Ekmp
n = Ikmp

n +E(km)−p
n , (1)

where(km)− designates the level and stage that fed by levelk at stagem; Ikmp
n is the

amount of inventory of productp, levelk, and stagem; andEn(11)−p = 0 for all p.
The echelon shortfall is given by

Y kmp
n = zkmp −Ekmp

n , (2)

wherezkmp are the echelon base stock parameters. The dynamic equations for the
echelon shortfall are

Y kmp
n+1 =Y kmp

n + d p
n −Pkmp

n , (3)

with d p
n denoting the external demand for the end productp on periodn andPkmp

n de-
noting the production decision. An instance of the production decision, for a system
being operated with PS and the Linear Scaling rule, would be

Pkmp
n = f kmp

n gkm
n (4)

where f kmp
n , the net production request of productp, levelk for stagem, is given by

f kmp
n = min

{

(zkmp + d p
n −Ekmp

n )+, I(km)+ p
n

}

, (5)
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with (x)+ = max{0,x} and(km)+ the level and stage which feedsIkmp
n , with the raw

materialI(KM)+ p
n = ∞. The termgkm

n is given by

gkm
n = min

{

Ckm

∑p f kmp
n

,1

}

, (6)

whereCkm is the slot ofCm assigned to levelk. The expression above assumes that
each product, irrespective of the level, will require the same amount of machine
capacity per unit – uniform load assumption. The non-uniform load situation takes
asτkmp the capacity needs of a single unit of productp, on machinem and levelk.
Therefore, the above expression would be written as

gkm
n = min

{

Ckm

∑p τkmp f kmp
n

,1

}

. (7)

In this paper we generalize this model to include different machine loads for each
product and level, the presence of random yield, and consider that the re-entrant flow
may have no restrictions with alternative routs of different lengths for each of the
products.

We now introduce three classes of policies.

Definition 1. Capacitated, Echelon Base Stock Policy: Let Y kmp
n be the shortfall at

periodn for product p, level k, and stagem, with p = 1,2, . . .P, k = 1,2, . . . ,K,
and m = 1,2, . . . ,M. We define asΠ0 the class of policies that use equation (5)
to determine the net production requests and use some combination of static and
dynamic capacity allocation to distribute capacity among all the requests.

Definition 2. Π0 with external bound: Under the conditions of Definition 1, we de-
fine asΠ1 the set of policies where there is a, possibly finite and constant, input

bound of raw material. That is,I(KM)+ p
n = I p

b ≤ ∞ for all p = 1,2, . . . ,P.

Definition 3. Π1 with internal bounds: Define asΠ2 the class of policies that act
like Π1 with the addition of bounds on the amount of material allowedto enter
production for each product at each machine on any given period and level. That is,

the policies for whichI(km)+ p
n = I(km)+ p

b ≤ ∞.

It should be self-evident thatΠ0 ⊂ Π1 ⊂ Π2. It should also be clear that all poli-
cies in classΠ0 are non-idling, whereas the other two classes contain idling policies.

The valuesI p
b andI(km)+ p

b are user defined parameters, as are the parameterszkmp,
and therefore also subject to optimization when looking forthe best performance.

The order of business is: establishing conditions for the stability of the short-
fall echelon process when demands are stationary and ergodic; examining the re-
generative structure of{Yn,n ≥ 0} when{Dn = [d1

n ,d
2
n , . . . ,d

P
n ]

′,n ≥ 0} is an i.i.d.
sequence. The regenerative properties are valuable in establishing convergence of
costs and also simulation estimators.
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We show that the stability condition suffices to ensure that{Yn,n ≥ 0} possesses
the regenerative structure of aHarris ergodic Markov chain. Under a stronger con-
dition, we establish that the vector of shortfalls returns to the origin infinitely often,
with probability one.

A powerful tool in the analysis of Harris ergodic Markov chains is a connection
with coupling. The main result is this: a Markov chain with aninvariant probability
measure admits coupling if and only if it is Harris ergodic. We use a coupling argu-
ment for shortfalls while establishing the stability conditions, which will, by itself,
render the Harris ergodicity of the shortfall process.

2 Harris recurrence and explicit regeneration points

An extensive coverage of key definitions and results of this framework can be found
in [1] and [21]; the treatment in [25] is particularly relevant to this application. We
review the essentials here. The general setting for Harris recurrence is a Markov
chainX = {Xn,n ≥ 0} on a state spaceS with Borel setsB. Let Px denote the law
of X whenX0 = x. Then,X is Harris recurrent if there exists aσ -finite measure on
(S, B), not identically zero, such that, for allA ∈ B,

ψ(A)> 0⇒ Px(
∞

∑
n=0

1{Xn ∈ A}= ∞) = 1 for all x ∈ S.

Thus, every set of positiveψ-measure is visited infinitely often from all ini-
tial states. Every Harris recurrent Markov chain has an invariant measureπ that
is unique up to a multiplication by a constant. The sets of positive π-measure are
precisely those that are visited infinitely often from all initial states. Ifπ is finite
(hence a probability, without loss of generality), thenX is calledpositive Harris
recurrent. If, in addition,X is aperiodic, then it is Harris ergodic.

The connection with regeneration enters as follows. IfX is Harris recurrent, then
there exists a (discrete-time) renewal process{τk,k ≥ 1} and an integerr ≥ 1 such
that

{(Xk+n,n ≥ 0),(τn+k+1− τn+kn ≥ 0)},

has the same distribution for allk ≥ 1 and is independent of

{τ1, . . . ,τk,(Xn,0≤ n ≤ τk − r)}.

Whenr > 1, there may be dependence between consecutive cycles{Xn,τk−1 ≤
n ≤ τk}, in contrast to the classical case of independent cycles (and this is indeed
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the case in this model). However, ifX is positive Harris recurrent and iff : S→ ℜ
is π-integrable, then the regenerative ratio formula

Eπ [ f (X0)] =
E[∑τk−1

n=τk−1
f (Xn)]

E[τk − τk−1]
,

remains valid, as does the associated central limit theorem(under second-moment
assumptions). Moreover, ifX is Harris ergodic then for all initial conditions the
distribution ofXn converges toπ in total variation, that is,

sup
A∈B

|Px(Xn ∈ A)−π(A)| → 0,

as n → ∞, for all x ∈ S. Indeed, this total variation convergence to a probability
measure completely characterizes Harris ergodicity. A powerful tool in the analysis
of Harris ergodic Markov chains is a connection with coupling; see for example [26]
and [25] for background. The main result is this: a Markov chain with an invariant
probability measure admits coupling if and only if it is Harris ergodic. We use a
coupling argument for shortfalls while establishing the stability conditions, which
will by itself render the Harris ergodicity of the shortfallprocess.

While Harris recurrence ensures the existence of (wide-sense) regeneration times
τk,k ≥ 1, it does not provide a means of identifying these times. Explicit regenera-
tion times are not needed for convergence results, but they are useful in, for exam-
ple, computing confidence intervals from simulation estimators. At the end of each
section we give a sufficient condition for{Yn,n ≥ 0} to have readily identifiable
regeneration times.

In what follows, we will establish stability for all sharingmodes, multiple prod-
ucts, in the presence of random yield, and non-uniform loads. The no sharing (NS)
case has been established in [13] for perfect yield and uniform loads. The detailed
analysis will be made for the case with uniform loads and perfect yield, as that con-
stitutes the formal closure of [6]. Then, the random yield case with uniform loads
will be established. This later is sufficiently general on one hand and allows an easy
generalization for the case of non-uniform loads. The stability conditions for the
other cases will be simply stated without proof at the end of the paper.

3 Uniform loads and perfect yield

There are two settings for which to investigate the stability conditions: when capac-
ity is partially shared (PS); and when capacity is totally shared (TS). The no sharing
(NS) case has been established in [13]. Under adequate changes, the same technique
will be used to prove stability for the PS mode. Then, using a stochastic dominance
argument, the conditions under which the TS case is stable will be established. We
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assume that the production decisions are taken with the use of the Linear Scaling
Rule. It is a trivial exercise to show that all other shortfall based production rules
will produce the same stability results.

3.1 The partial sharing mode

For the PS mode, we first define a dynamic equation for a linear combination of
shortfalls such that the theoretical framework of [13] is readily applicable. The dy-
namic equation for the shortfall quantities is given by (4).To simplify the analysis
we can define a vectorial dynamic equation for each stage and level by definingDDDn =
[d1

n d2
n . . . dP

n ]
T , PPPkm

n = [Pkm1
n Pkm2

n . . . PkmP
n ]T , andYYY km

n = [Y km1
n Y km2

n . . . Y kmP
n ]T .

Therefore, the vectorial dynamic equation will assume the form

YYY km
n+1 = YYY km

n +DDDn −PPPkm
n for all k andm.

Let ||x|| be defined as the sum of all components ofx. ||x|| is not a norm and it
verifies the following

||x+ y|| = ||x||+ ||y||

||ax|| = a||x|| (8)

Now, since level and stage(K,M) draws raw material from an infinite source, we
have

YYY KM
n+1 = max{0,(YYY KM

n +DDDn)(1−
CKM

||YYY KM
n +DDDn||

)} (9)

Due to the structure of the above the following operation is valid

||YYY KM
n+1|| = max{0, ||YYY KM

n ||+ ||DDDn||−CKM} (10)

which is a Lindley equation. Note the use of (8).
For the remaining cases we will have

YYY km
n+1 = max{YYY km

n +DDDn −
Ckm min{YYY km

n +DDDn, III
(km)+

n }

||min{YYY km
n +DDDn, III

(km)+
n }||

,

(11)

0,YYY km
n +DDDn − III(km)+

n }
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From this equation it is possible to compute||YYY km
n+1|| as follows

||YYY km
n+1|| = max

{

0, ||YYY km
n ||+ ||DDDn||−Ckm,

(12)
P

∑
p=1

(

Y (km)+ p
n + d p

n − (z(km)+ p − zkmp)
)+
}

.

The scalar equations (10) and (12) are the multiple product generalizations of the
dynamic equations for shortfalls presented in [13] for single product systems.

3.1.1 The Stationary Regime

Let us now introduce the framework and notation corresponding to Lemmas 1
and 2 of [13] which help establishing the stability conditions.

Lemma 1. The echelon shortfalls satisfyYYY n+1 = Φ(YYY n,DDDn) whereΦ : RKMP
+ ×

RP → RKMP
+ is defined by (9, 11). Also, the total shortfall satisfy||YYY n+1|| =

φ(YYY n,DDDn) = ||Φ(YYY n,DDDn)|| whereφ : RKMP
+ × RP → RKM

+ is defined by (10, 12).
In particular,φ is increasing and continuous.

Supposing that the demands form a stationary process, without loss of generality,
we can assume thatDDDn is defined for all integern with {DDDn,−∞< n<∞} stationary.
In what follows We will use⇒ to denote convergence in distribution. Some of the
proofs will be omitted here to avoid excessive clutter. Someof them are relatively
trivial extensions of similar results published. Some others are exactly the same.
Some of the former will be presented in Appendix 7 for the sakeof completeness of
the present document.

Lemma 2. Let {DDDn,−∞ < n < ∞} be stationary. There exists a (possibly infinite)
stationary process{ỸYY n,−∞ < n < ∞} satisfying||ỸYY n+1||= φ(ỸYY n,DDDn) for all n, such
that if ||YYY 0||= 0, a.s., then||YYY n|| ⇒ ||ỸYY 0||.

Proof: See Appendix 7.

With the support of the above two Lemmas it is now easy to establish the stability
condition for this model.

Theorem 1.Suppose the demands{DDDn,−∞ < n < ∞} are ergodic as well as sta-
tionary. If

E[||DDD0||] =
P

∑
p=1

E[d p
0 ]< min{Ckm : k = 1, . . . ,K;m = 1, . . . ,M}, (13)
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then||ỸYY 0|| is almost surely finite. If for some(k,m), E[||DDD0||]>Ckm, then||ỸYY
qr
0 ||=

∞, a.s., for all(q,r) corresponding to levels and stages coming after(k,m).

Proof: See Appendix 7.

This result for the scalar dynamic equations implies the stability of the vectorial
process.

Corollary 1. Under the assumptions of Theorem 1,Ỹ kmp
0 is almost surely finite for

all p, whereỸ kmp
0 denotes componentp of ỸYY

km
0 .

Proof: The result follows trivially due to the non negativity of theshortfalls.

QED

The above results show that the process{YYY n,n ≥ 0} converges to a stationary
distribution only ifYYY 0 = 0. The following theorem establishes that the convergence
occurs for any initial point, that is, the process admits coupling.

Theorem 2.Under the stability conditionE[||DDD0||] < mink,m{Ckm}, the echelon
shortfall process admits coupling. Consequently, its stationary distribution is unique,
andYYY n ⇒ ỸYY 0 for all YYY 0.

Proof: See Appendix 7.

3.1.2 Regeneration and Explicit Regeneration Times

Recall that a Markov chain with an invariant probability measure admits coupling
if and only if it is Harris ergodic. In the previous subsection we used a coupling
argument forYYY , therefore it is now easy to show that,

Theorem 3.Let demands{DDDn,n ≥ 0} be i.i.d. withE[||DDD0||]< mink,m{Ckm}. Then
{YYY n,n ≥ 0} is a Harris ergodic Markov chain.

Proof: SinceYYY n+1 = Φ(YYY n,DDDn), n ≥ 0, YYY is a Markov chain whenDDD is i.i.d. We
established in Theorem 1 and Corollary 1 thatYYY has an invariant (i.e., stationary)
distribution and in Theorem 2 thatYYY admits coupling. Thus,YYY is Harris ergodic.

QED

As a result of Theorem 3,YYY inherits the regenerative structure of Harris ergodic
Markov chains, the attendant ratio formula, and convergence results. The same holds
for the inventory levels:

Corollary 2. The inventory process{(III11
n , . . . , IIIKM

n ),n ≥ 0}, under the conditions of
Theorem 3, is a Harris ergodic Markov chain.
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Proof: There is a one-to-one correspondence between shortfalls and inventories for
all n as defined by

I11p
n = z11p −Y11p

n

(14)

Ikmp
n = (zkmp − z(km)− p)+ (Y (km)− p

n −Y kmp
n ).

Consequently,III = {IIIn,n ≥ 0} is Markov if YYY is, andIII is Harris ergodic ifYYY is.

QED

It is now possible to give the characterization of the regeneration times.

Theorem 4.Let demands be i.i.d. withE[||DDD0||]< mink,m{Ckm}. Definezzz(11)− ≡ 0
and suppose that

P(d p
0 ≤ zkmp − z(km)−p)> 0, k = 1, . . . ,K; m = 1, . . . ,M; p = 1, . . . ,P. (15)

ThenYYY returns to the origin infinitely often, with probability one.

Proof: See Appendix 7.

Corollary 3. The inventory process{(III11
n , . . . , IIIKM

n ),n ≥ 0}, under the conditions
of Theorem 4, returns to(zzz11,zzz(11)+ − zzz11, . . . ,zzzKM − zzz(KM)−) infinitely often, with
probability one.

Proof: Consequence of the relationship between shortfalls and inventories.

QED

The conclusion of Theorem 4 is not in general true without (15) or further dis-
tributional assumptions on demands. This is particularly clear whenz(km)+ p = zkmp

for some value ofk, m, andp; that is, stage(km)+ keeps no safety stock for product
p. In this case, the total shortfall||YYY km|| can never reach zero unlessd p

0 = 0 with
positive probability.

3.2 Stability and Regeneration for Totally Shared Systems

Operating on a TS mode with the LSR, the production decision is given by

Pkmp
n = f kmp

n gm
n , (16)

capacity is shared among all products and levels for each machine, andgm
n is given

by (17).
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gm
n = min

{

Cm

∑K
k=1 ∑P

p=1 f kmp
n

,1

}

. (17)

For this model the shortfall process is governed by the following

YYY km
n+1 = max{YYY km

n +DDDn −
Cm min{YYY km

n +DDDn, III
(km)+
n }

∑K
k=1 ||min{YYY km

n +DDDn, III
(km)+
n }||

,

(18)

0,YYY km
n +DDDn − III(km)+

n }

Due to the structure of the decision process, it is the case that

||YYY km
n+1|| = max{0, ||YYY km

n ||+ ||DDDn||−
Cm||min{YYY km

n +DDDn, III
(km)+

n }||

∑K
k=1 ||min{YYY km

n +DDDn, III
(km)+
n }||

,

P

∑
p=1

(

Y (km)+ p
n + d p

n − (z(km)+ p − zkmp)
)+

}, (19)

where it is assumed thatIII(KM)+

n = ∞ for all n.
As in the previous model we were interested on the total shortfall per level and

stage, we will now be interested in theTotal Shortfall per Stage. Thus, the following
expression is of importance in what follows

K

∑
k=1

||YYY km
n+1|| = max{0,

K

∑
k=1

||YYY km
n ||+K||DDDn||−Cm,

(20)
K

∑
k=1

P

∑
p=1

(

Y (km)+ p
n + d p

n − (z(km)+ p − zkmp)
)+

}

3.2.1 The Stationary Regime

Lemma 3. The total echelon shortfall per stage satisfies

K

∑
k=1

||YYY km
n+1||= ψ(YYY n,DDDn) =

K

∑
k=1

φ(YYY n,DDDn), (21)

whereφ : RKMP
+ ×RP → RKM

+ is defined by (19) andψ : RKMP
+ ×RP → RM

+ is defined
by (20). In particular,ψ is continuous and increasing.

It is easily possible to establish a result similar to that ofLemma 2 for this second
model and to prove stability we will make use of Theorem 1.
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Theorem 5.Under the assumptions of Theorem 1, the system operated under the
TS mode is stable, in the sense that the shortfalls are almostsurely finite, if

KE[||DDD0||]< min{Cm : m = 1, . . . ,M}. (22)

Proof: Assume that the capacity of each machine is divided into slots of equal size,
that isCkm = Cm

K . Assume the system operates as if capacity was not shared. Then,
according to Theorem 1, the system would be stable iff

E[||DDD0||] < min{Ckm : k = 1, . . . ,K,m = 1, . . . ,M}

=
1
K

min{Cm : m = 1, . . . ,M}

Now we have to evaluate how does the system behave under the TScase when
compared with its performance under the PS case. To show thatstability of the PS
case implies stability of the TS case we will investigate a sample path.

Assume we have two identical systems subject to the same sample path. One is
operated under the PS mode withCkm = Cm

K and the other is operated under the TS
mode. In particular, one is interested in the process definedby the total shortfall for
each stage. Assume that both systems start from the origin, that is

K

∑
k=1

||YYY km
0 ||1 =

K

∑
k=1

||YYY km
0 ||2 = 0 for all k,m. (23)

Comparing equation (19) with (10) and (12) it is obvious thatwhile there is no
bound in capacity for any of the two systems they remain coupled. Letn∗ denote
the first period for which at least one of the two systems has a bound in capacity for
some level and/or stage. Therefore, we have for allk andm

||YYY km
n ||1 = ||YYY km

n ||2 for all n = 0, . . . ,n∗, (24)

which implies that

K

∑
k=1

||YYY km
n ||1 =

K

∑
k=1

||YYY km
n ||2 for all n = 0, . . . ,n∗. (25)

The first time one of these two systems has at least one production decision
bounded by capacity there is a possibility for decoupling. Let us take system 1 as the
reference. Whenever there is at least a level and stage for which system 1 is bound
by capacity, one of two things can happen to system 2:

i) Bound in capacity for system 1 and no bound for system 2.
For this case there exists at least ak∗ and anm∗ such that

||min{YYY k∗m∗

n∗ +DDDn∗ , III
(k∗m∗)+

n∗ }||>
Cm∗

K
, (26)
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but

K

∑
k=1

||min{Y km∗

n∗ +Dn∗ , I
(km∗)+

n∗ }||<Cm∗
. (27)

ii) Bound in capacity for both systems
In this case we have at least ak∗ and anm∗ such that

||min{YYY k∗m∗

n∗ +DDDn∗ , III
(k∗m∗)+

n∗ }||>
Cm∗

K
, (28)

and

K

∑
k=1

||min{YYY km∗

n∗ +DDDn∗ , III
(km∗)+

n∗ }||>Cm∗
. (29)

We are interested on knowing how does∑K
k=1 ||YYY

km
n || (the total shortfall for stage

m) behave for both cases. In case i) since system 2 has no bound in capacity it must
be the case that not all the levels of stagem∗ have a bound in capacity for system 1.
Therefore,

K

∑
k=1

||YYY km∗

n∗+1||
1 = ∑

k 6=k∗

P

∑
p=1

(

Y (km∗)+ p
n∗ + d p

n∗ − (z(km∗)+p − zkm∗p)
)+

+

+ ∑
k=k∗

(||YYY km∗

n∗ ||1+ ||DDDn∗ ||−
Cm∗

K
)

>
K

∑
k=1

P

∑
p=1

(

Y (km∗)+ p
n∗ + d p

n∗ − (z(km∗)+ p − zkm∗p)
)+

=
K

∑
k=1

||YYY km∗

n∗+1||
2 (30)

because there is a bound in capacity for all levelsk∗ in system 1 and there is no such
bound in system 2 and using equations (12) and (19)2.

For case ii), when both systems are capacity bounded for somestagem∗, there
are two possibilities: there is a bound in capacity for all levels of stagem∗ in system
1; not all levels of stagem∗ are capacity bounded for system 1.

For the first situation it will be the case that

K

∑
k=1

||YYY km∗

n∗+1||
1 =

K

∑
k=1

(||YYY km∗

n∗ ||1+ ||DDDn∗ ||−
Cm∗

K
)

2 Note that equation (10) can be made equal to (12) by definingI(KM)+

n = ∞ and making the
adequate change forz(KM)+ .
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=
K

∑
k=1

||YYY km∗

n∗+1||
2, (31)

because∑K
k=1 ||YYY

km∗
n∗ ||1 = ∑K

k=1 ||YYY
km∗
n∗ ||2.

In the second situation we will have

K

∑
k=1

||YYY km∗

n∗+1||
1 = ∑

k 6=k∗

P

∑
p=1

(

Y (km∗)+ p
n∗ + d p

n∗ − (z(km∗)+p − zkm∗p)
)+

+

+ ∑
k=k∗

(||YYY km∗

n∗ ||1+ ||DDDn∗ ||−
Cm∗

K
)

>
K

∑
k=1

||YYY km∗

n∗ ||1+K||DDDn∗ ||−Cm∗

=
K

∑
k=1

||YYY km∗

n∗+1||
2 (32)

because the change in total shortfall for stagem∗ in system 1 is smaller thanCm∗
.

Thus, we have that for periodn∗+1 the total shortfall for each stage of system 2
is bounded above by the total shortfall for each stage of system 1, with probability
one.

Now it remains to see what happens aftern∗ + 1 (the first decoupling period).
Assume, there is a third system that starts operating in a TS mode as system 2
with the state variables of system 1, that is, coupled to system 1. System 1 and
system 3 will remain coupled until a capacity bound occurs atsome other period.
By the above discussion we know that a bound in capacity is favorable to system
3, when compared with system 1. Due to Lemma 3 the total shortfall per stage of
system 2 will remain dominated by that of system 3. So we have that until the first
decoupling between system 1 and system 3, system 1 will dominate system 2, due
to transitivity. If we force system 3 to receive the state of system 1 whenever there
is a decoupling between the two the process repeats itself whenever there is a new
bound in capacity and it follows then that the total shortfall per stage for system 2
will remain dominated by that of system 1, with probability one.

QED

In order to establish the uniqueness of the distribution it is also possible to show
that the total shortfall per stage process admits coupling.

Theorem 6.Under the stability conditionKE[||DDD0||] < minm{Cm}, the total short-
fall per stage admits coupling and so does the shortfall process as a consequence.
Therefore, its stationary distribution is unique andYYY n ⇒ ỸYY 0 for all YYY 0.

Proof: According to the proof of Theorem 5 the total shortfall process per stage of
the PS case dominates that of the TS case. Therefore, if the first admits coupling, so
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does the second because the shortfalls are always non negative. By Theorem 2, it is
the case that the first admits coupling.

Thus, the result follows.

QED

3.2.2 Regeneration and Explicit Regeneration Times

Since in the previous subsection a coupling argument was used for Y , it is now
easy to show the following.

Theorem 7.Let demands{DDDn,n ≥ 0} be i.i.d. withKE[||DDD0||]< minm{Cm}. Then
{YYY n,n ≥ 0} is a Harris ergodic Markov chain.

Proof: Since∑K
k=1 ||YYY

km
n+1|| = ψ(YYY n,DDDn), n ≥ 0, YYY is a Markov chain whenDDD is

i.i.d. Theorem 5 established thatYYY has an invariant (i.e., stationary) distribution and
Theorem 6 established thatYYY admits coupling. Thus,YYY is Harris ergodic.

QED

Corollary 4. The inventory process{(III11
n , . . . , IIIKM

n ),n ≥ 0}, under the conditions of
Theorem 3, is a Harris ergodic Markov chain.

Proof: There is a one-to-one correspondence between shortfalls and inventories for
all n. Consequently,III = {IIIn,n ≥ 0} is Markov if YYY is, andIII is Harris ergodic ifYYY
is.

QED

The regeneration times can now be characterized.

Theorem 8.Let demands be i.i.d. withKE[||DDD0||]< minm{Cm}. Definezzz(11)− ≡ 0
and suppose that

P(d p
0 ≤ zkmp − z(km)−p)> 0, k = 1, . . . ,K; m = 1, . . . ,M; p = 1, . . . ,P. (33)

ThenYYY returns to the origin infinitely often, with probability one.

Proof: The proof follows from the fact that the same system operatedunder a PS
mode withCkm =Cm/K will have a shortfall process that dominates that of a system
operated on a TS mode. Since for the PS mode Theorem 4 is applicable it is the case
that if YYY returns to origin infinitely often under the PS mode so it doesfor the TS
mode due to the dominance earlier discussed.

QED

Corollary 5. The inventory process{(III11
n , . . . , IIIKM

n ),n ≥ 0}, under the conditions
of Theorem 4, returns to(zzz11,zzz(11)+ − zzz11, . . . ,zzzKM − zzz(KM)−) infinitely often, with
probability one.
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Proof: Consequence of the relationship between shortfall variables and inventories.

QED

4 Non Uniform Loads and Perfect Yield

We review the models presented in Section 1 to accommodate this extra feature.
The recursions for inventory, echelon inventory, and shortfall do not change. What
changes are the specifics of the production decisions. Recall that the production
expression for the LSR operated in the PS mode is

Pkmp
n = f kmp

n gkm
n . (34)

Since the net production request,f kmp
n , only depend on shortfalls and feeding

inventories their expressions do not change when includingthe non uniform loads.
What changes is the expression forgkm

n , because it accounts for the impact of the
net request over the available capacity. Let us assume that every productp on level
k and stagem needsτkmp units of capacity per unit of material produced. In the
analysis so far it was assumed thatτkmp = 1 for all k,m, p. Given the inclusion of
theτkmp constants, not necessarily all equal to 1, the expression for gkm

n becomes:

gkm
n = min

{

Ckm

∑p τkmp f kmp
n

,1

}

(35)

Whereasf kmp
n expresses the net production request in terms of parts, the term

τkmp f kmp
n expresses that request in terms of machine capacity.

As before, let us first address the discussion of stability for the PS mode.

4.1 Stability and Regeneration for Partially Shared Systems

For this setting there is no substantial change relative to the partially shared sys-
tems with perfect yield and uniform loads by replacing||YYY km

n || with ||YYY km
n ||τ , defined

as

||YYY km
n ||τ =

P

∑
p=1

τkmpY kmp
n . (36)

With this change, equation (10) becomes
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||YYY KM
n+1||τ = max{0, ||YYYKM

n +DDDn||τ (1−
CKM

||YYY KM
n +DDDn||τ

)}

= max{0, ||YYYKM
n ||τ + ||DDDn||τ −CKM} (37)

and equation (12) becomes

||YYY km
n+1||τ = max

{

0, ||YYY km
n ||τ + ||DDDn||τ −Ckm,

(38)
P

∑
p=1

τkmp
(

Y (km)+ p
n + d p

n − (z(km)+ p − zkmp)
)+
}

.

These dynamic equations, for theweighted shortfall sums, fall exactly into the
framework described in Section 3.1. Therefore, the adequate stability condition be-
comes the following.

Theorem 9.Suppose the demands{DDDn,−∞ < n < ∞} are ergodic as well as sta-
tionary. If

E[||DDD0||τ ] =
P

∑
p=1

τkmpE[d p
0 ]<Ckm for all k,m. (39)

then the shortfall process is stable when the system is operated in the PS mode.

Proof: After performing the changes above indicated, the proof is the same as that
of Theorem 1.

QED

All the results presented for the PS mode in Section 3.1 are valid for this setting
without change.

4.2 Stability and Regeneration for Totally Shared Systems

A simple observation of equations (37) and (38) helps to understand why we
cannot resort to the technique used in Section 3.2, when proving stability for to-
tally shared systems with perfect yield and uniform loads. Note that the stochastic
dominance may be destroyed when production is bound by inventory. When loads
are uniform, all values ofτkmp = 1 and stochastic dominance follows trivially. This

dominance would be maintained if the valueY (km)+ p
n would be multiplied byτ(km)+ p

in the expressions above, but it is multiplied byτkmp. In generalτkmp 6= τ(km)+ p.
For totally shared capacity systems there is a need to introduce some changes on

the structure of the control policies. The stability will beestablished by presenting
a particular choice of parameters for the new control policythat yields a stable
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system. Given the proposed choice of parameters is feasibleand induces stability,
it necessarily constitutes an upper bound on the cost. The optimal parameters will
have to incur lower costs. Therefore, by providing an upper bound which is stable
the stability of the system will be asserted.

The main structural change on the control policies proposedis the addition of an
input bound. That is, there is a need to impose a maximum amount of new material
entering the production system for each product per period.Although some bound
exists already, given that machines have finite capacity, this is not enough to estab-
lish stability. It is necessary to define tighter bounds. In [6] the PR performs quite
poorly when the entering level has priority over the others.Also, it was shown that
the degradation of the LSR when switching from the PS mode to the TS mode is
due to the fact that the potential input of new material jumpsfrom CKM to a total
of CM per period, distorting the proportions between the severallevels in favor of
the input of new material. This preference is given at the expense of a slower travel
speed along the production line. Moreover, it was shown thatin the PS mode a sys-
tem with K = 2, M = P = 1, andC21 > C11 improves its performance if we chop
the excess capacity of level 2, makingC21 =C11. Then it was argued that having a
higher capacity on level 2 only increases the speed at which inventory moves to the
buffer feeding level 1, but does not make it move faster towards the output buffer,
since level 1 is the bottleneck.

Although stability is not at risk for the cases discussed in [6], the fact that we
could benefit from the existence of an input bound in such cases constitutes strong
evidence favoring the definition of this richer class of control policies. Besides hav-
ing the base stock variables as the control parameters, we can have the input bound
as an additional control variable, thus defining a wider class of multi-echelon base
stock policies. The existence of such bounds is crucial to establish stability.

Therefore, we resort to classΠ1 policies and define a set of parameters that sta-
bilizes any of our re-entrant systems for any of the proposedproduction rules. Let

∆ p = min
k,m

{
E[d p

0 ]

∑K
i=1 ∑P

j=1τ im jE[d j
0]

Cm} for all p = 1, . . . ,P, (40)

and defineI(KM)+ p = ∆ p as the bound for the input of productp into the system.
That is,I(KM)+ p is the feeding inventory of stageM and levelK. Set∆ kmp = ∆ p for
all k andm, except for∆11p that may assume any positive value.

Assume that the system is operated using any production rulein the TS mode.
With this set of delta variables all inventory variables, exceptI11p

n , will always be
∆ p for each product. At any level and stage, the amount

K

∑
k=1

P

∑
p=1

τkmp∆ p ≤Cm, (41)

by the definition of∆ p. Therefore, there is never a bound in capacity and the system
behaves as if there is no capacity sharing, thus being operated as if there existP
different and decoupled production systems with no re-entrance. The only bound in
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capacity occurs for the equality between net production request and capacity which
can be seen as a no capacity bound situation, since the match is perfect.

We know that for no sharing of capacity a system is stable as long asτkmpE[d p
0 ]<

Ckmp. This conclusion is easily derived from the stability result for partially shared
systems with single product, discussed before (Theorem 9).Slicing the capacity of
machinem into k × p slots and calling each oneCkmp, for k = 1, . . . ,K and p =
1, . . . ,P and adding over all products and levels we get

K

∑
k=1

P

∑
p=1

τkmpE[d p
0 ]<

K

∑
k=1

P

∑
p=1

Ckmp =Cm, (42)

which is the stability condition for totally shared systemswith non uniform loads
and perfect yield. This condition holds iffE[d p

0 ]< ∆ p for all p = 1, . . . ,P.
Having provided a set of parameters which stabilizes the production system for

any production rule in the TS mode it should now be evident that the optimal set of
parameters will have to incur lower costs than the costs incurred by the parameters
just defined. The optimal set of parameters cannot, therefore, induce an unstable
system as long as∆ p > E[d p

0 ]. The following result has been proven.

Theorem 10.Suppose the demands{DDDn,−∞ < n < ∞} are ergodic as well as sta-
tionary. If (42) holds, then the shortfall process is stablewhen the system is operated
in the TS mode, using classΠ1.

The regeneration and explicit regeneration times discussed earlier carry through
trivially for this setting.

4.2.1 Remarks on the ClassΠ1

For the system to be stable, the minimum amount of each product that can get
through the system at any period has to be above the average demand. This is the
same as saying that the bottleneck machine, the machine for which (41) holds in the
equality, has capacity above the load imposed by the demand process.

Note that one can use any of the production rules and, in the particular case of
the priority rule, one can use any arbitrary priority list without risking stability. This
constitutes a strength of the class of policies introduced (recall the literature review
on stability).

Moreover, the argument here used for stability allows us to drop one of the main
constraints of the present model: the re-entrant structureadopted. This technique
extends easily to more complex re-entrant systems where notall the products are
processed by the same number of levels and not all the products visit all the ma-
chines in the same order. Such was not the case of the stability proof for systems
with uniform loads, since the stochastic dominance argument relies on the fact that
the shortfalls added belong to the output buffers of the samemachines.

The optimal policy does not necessarily have the above boundfor the entering
inventory. It may be the case that, during the optimization,the solution converges
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to values ofI(KM)+ p which are equal or aboveCM for all p = 1, . . . ,P. If such is
the case we may drop the explicit bound on input inventory, since being aboveCM

has no physical significance. The cases where the optimization procedure converges
to values ofI(KM)+ p belowCM, can be clearly identified as systems that may need
such bound for the input inventory in order to remain stable.Naturally, it is not
necessarily the case that all the systems for which the optimal I(KM)+ p is underCM

are only stabilized by policies from classΠ1, since cost considerations are taken
into account when determining such values. Note also that while policies inΠ0 are
nonidling in terms of the shortfalls, such is no longer the case for policies inΠ1.

5 Uniform Loads and Random Yield

To accommodate random yield we simply change the dynamic equations for in-
ventories and for shortfalls. The multiplicative random yield, αkmp

n , is assumed to
be independent for each level, stage, and product. Also, it is assumed that the ran-
dom yield is continuous and i.i.d. for each period taking values in the set[0,1].
Demands are assumed continuous, independent across products, and i.i.d. for each
product along time. Both sets of random variables, demand and yield, are assumed
independent.

The shortfall dynamic equation in the presence of random yield assumes the
following form:

Y kmp
n+1 = Y kmp

n + d p
n −αkmp

n Pkmp
n +

q,r=1,1

∑
qr=(km)−

(1−αqrp
n )Pqrp

n , (43)

where the additional summation accounts for the parts lost in the downstream ma-
chines due to the presence of random yield.

For the random yield case it is easy to show stability for single product, NS mode,
with uniform or non uniform loads. To prove stability for themultiple product cases
and other sharing schemes we follow the approach of Section 4.

5.1 Stability and Regeneration for Partially Shared Systems

The presence of random yield in the context of uniform loads does not change
the basics of the formal result. The main difference is the explicit stability condition.
Aside from that, we can repeat the same steps as in Section 3.1. Therefore, the
stability condition proof will be presented and the naturalextension of previous
results to this situation will be listed.

Assume a system operating in the PS mode with the LSR and replacePkmp
n in the

dynamic equation for the shortfall variables.
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Y kmp
n+1 = Y kmp

n + d p
n +

q,r=1,1

∑
qr=(km)−

(1−αqrp
n )Pqrp

n −αkmp
n min{ f kmp

n , f kmp
n

Ckm

∑P
p=1 f kmp

n

}

= max{Y kmp
n + d p

n +
q,r=1,1

∑
qr=(km)−

(1−αqrp
n )Pqrp

n −αkmp
n f kmp

n ,

Y kmp
n + d p

n +
q,r=1,1

∑
qr=(km)−

(1−αqrp
n )Pqrp

n −αkmp
n f kmp

n
Ckm

∑P
p=1 f kmp

n

} (44)

where f kmp
n = min{Y kmp

n + d p
n , I

(km)+ p
n }.

The above dynamic equation for the shortfall variables is not as easy to deal with
as it was for previous settings. Because of this, one has to proceed differently. First,
the stability condition for single product systems with no re-entrance is established.
Later, by the approach of Section 4, stability for the PS modefor multiple products
will be defined. We show that the stability condition for the PS mode is

P

∑
p=1

E[d p
0 ]

∏q,r=k,m
q,r=1,1 E[αqrp

0 ]
<Ckm for







m = 1, . . . ,M

k = 1, . . . ,K
(45)

The indexes in∏q,r=k,m
q,r=1,1 h(q,r) signify that the factors are taken up the production

line from h(1,1) to h(k,m). It does not mean that the iteration is taken from 1 tok
and from 1 tom independently of each other.

To simplify the notation, consider a system with single product and no re-
entrance in the presence of random yield and composed ofM machines. Except
for random yield, this is addressed by [13, 14]; we add randomyield here. For this
simplified version, we have

Theorem 11.Suppose the demand{dn,−∞ < n < ∞} is ergodic as well as sta-
tionary. Additionally, suppose the random yield{αm

n ,−∞ < n < ∞} is ergodic and
stationary. The shortfall process is stable iff

E[d0]

∏i=m
i=1 E[α i

0]
<Cm, for all m = 1, . . . ,M, (46)

holds for the single product system.

Proof: The dynamic equation for shortfalls will be

Y m
n+1 = max{Y m

n + dn+
1

∑
i=m−1

(1−α i
n)P

i
n −αm

n f m
n ,

Y m
n + dn +

1

∑
i=m−1

(1−α i
n)P

i
n −αm

n Cm} (47)
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which, by direct comparison with the equation for perfect yield leads to the follow-
ing necessary and sufficient stability condition

E[d0+
1

∑
i=m−1

(1−α i
0)P

i]< E[αm
0 Cm]. (48)

In the perfect yield situation, it holds thatαkmp
n = 1 and it is the case that the

system is stable iffE[dn −Cm] < 0. A similar reasoning is applied here to propose
the above condition: this condition ensures the existence of a negative drift when
production is bound by capacity. We need only to establish a connection between
(46) and (48). To do so, we first establish a relationship between production amounts
in consecutive machines.

The production of machinei is conditioned by what is effectively produced by
machine(i+1). What is effectively produced by machine(i+1) during periodn is
α i+1

n Pi+1
n . If production starts at a point whereIi+1

0 = ∆ i+1 = zi+1− zi it turns out
that

N

∑
n=1

Pi
n ≤ ∆ i+1+

N

∑
n=1

α i+1
n Pi+1

n , (49)

since machinei cannot engage more material in production than the available inven-
tory.

Dividing the above byN and taking the limit asN → ∞ we get

E[Pi]≤ E[α i+1
0 ]E[Pi+1]. (50)

Given thatα i+1
n is independent ofPi+1

n , the yield process is i.i.d., and the ma-
chines are capacitated, the limit exists and equals the expected value.

Assume now that the inequality above holds strictly. If thatis the case, the inven-
tory sitting in front of machinei, Ii+1, grows to infinity because

Ii+1
n = ∆ i+1+

n

∑
j=1

(α i+1
j Pi+1

j −Pi
j), (51)

and taking the limit asn → ∞ we get

Ii+1
∞ = ∆ i+1+ lim

n→∞

n

∑
j=1

(α i+1
j Pi+1

j −Pi
j)

= ∆ i+1+ lim
n→∞

n

∑
j=1

α i+1
j Pi+1

j − lim
n→∞

n

∑
j=1

Pi
j

= ∆ i+1+ lim
n→∞

nE[α i+1]E[Pi+1]− lim
n→∞

nE[Pi]

= ∞, (52)

by the law of large numbers and because of the assumption on the strict inequality.
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If the value of the feeding inventory for any machine grows toinfinity the system
is unstable. Also, if the value of the feeding inventory grows to infinity, it must be
the case that production of that machine is being bound by capacity in the long run.
Thus, it is established that on a stable system it must be the case that (50) holds at
equality for all machines. It is also easy to show that

E[Pi]≤Ci for i = 1, . . . ,M. (53)

The expected production of any machine is either bounded by the expected pro-
duction of the preceding machine as presented in (50) or is bounded by the avail-
able capacity as presented in (53). That is, only one of theseinequalities will hold
at equality. If at least for one machine the bound occurs due to capacity, then the
system is unstable, implyingE[α1

0 ]E[P
1] < E[d0] and the value ofI1 grows to−∞.

For a system to track demand,E[α1
0 ]E[P

1] has to be equal toE[d0].
Now, observe that if allm−1 stages are stable, eachE[Pi], for i = 1, . . . ,m−1,

can be written as a function ofE[P1] as follows3:

E[Pi] =
E[P1]

∏i
j=2E[α j

0]
, (54)

andE[P1] = E[d0]

E[α1
0 ]

.

Proceeding by backward induction, consider first the case ofm = 1. Expres-
sion (48) will reduce to

E[d0]< E[α1
0 ]C

1, (55)

which is exactly the same as (46) form= 1. To prove the stability condition for stage
m, let us assume that allm−1 downstream stages are stable. That is, assume that
instability cannot be caused by the lastm−1 machines. Therefore, (48) becomes

E[αm
0 ]C

m > E[d]+E[1−αm−1]
E[P1]

∏m−1
j=2 E[α j ]

+ . . .E[1−α1]E[P1]

= E[d]+E[P1](
1

∏m−1
j=2 E[α j]

−E[α1])

= E[d]+E[d](
1

∏m−1
j=1 E[α j ]

−1)

= E[d]
1

∏m−1
j=1 E[α j ]

(56)

showing that if (48) holds, so does (46). It remains to see what happens when (48)
does not hold.

3 Using (50) with the equality sign.
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Let us assume that (48) does not hold for at least one machine.Given that this is a
necessary and sufficient condition for stability, it follows that the system is unstable.
Therefore, it must be the case thatE[P1]< E[d0]/E[α1

0 ].
Given that there is at least one machine violating (48), letm∗ be the bottleneck

machine of the line. That is, the machine that is furthest away from the stability
region. For this machine it is the case thatE[Pm∗

] = Cm∗
and for all the machines

downstream it is the case that (50) holds at equality. Therefore, for i = 1, . . . ,m∗,
E[Pi] can be expressed as a function ofE[P1] as described in (54), since there is no
instability caused by machines following the bottleneck. Inequality (48) for machine
m∗ does not hold, so

E[αm∗

0 ]Cm∗
< E[d0+

1

∑
i=m∗−1

(1−α i
0)P

i]

= E[d0]+
m∗−1

∑
i=1

E[(1−α i
0)]E[P

i]

= E[d0]+E[P1]
m∗−1

∑
i=1

E[1−α i
0]

∏i
j=2E[α j

0]

< E[d0]

(

1+
m∗−1

∑
i=1

E[1−α i
0]

∏i
j=1E[α j

0]

)

= E[d0]
1

∏m∗−1
j=1 E[α j

0]
, (57)

showing that (46) does not hold for machinem∗. Thus, the equivalence between (46)
and (48) is established and the result for single product follows.

QED

It remains to generalize the above to the multiple product situation. By using a
class of policies that imposesbounds on production quantities it will be possible to
provide a set of parameters that ensure no sharing of capacity when the system is
operated in the PS mode.

To simplify the notation, assume we are dealing with a flow line constituted by
M̂ machines and with no re-entrance. In the PS mode, setM̂ = KM. DefineΩ m as
the long run expected amount of work imposed on machinem by all products. This
amount is given by

Ω m =
P

∑
p=1

E[d p
0 ]

∏m
j=1E[α jp

0 ]
for all m = 1, . . . ,M̂. (58)

Define the long run average load of machinem, for all m = 1, . . . ,M̂, as

Λ m =
Ω m

Cm . (59)
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It is not difficult to see that it is necessary for all values ofΛ m to be below unity
in order for the system to be stable.

Now, define as the long run bottleneck machine the one which has the highest
long run average load. So, we havem∗ as the machine for which

Λ∗ =
Ω m∗

Cm∗ = max
m

{Λ m}. (60)

Define the share of each machine that can be used by each product in the long
run as

Cmp =
E[d p

0 ]/∏m
j=1E[α jp

0 ]

Λ m , (61)

and set the values for∆ mp that constitute the control variables for this problem as

∆ m+ p =























Cm∗p ∏m∗

j=m+1E[α jp
0 ] if 1 ≤ m ≤ m∗,

Cm∗p if m = m∗,

Cm∗p/∏m
j=m∗+1E[α jp

0 ] if M̂ > m ≥ m∗.

(62)

Note that∆ m+ p is the nominal inventory of productp that sits in front of machine
m. That is why there is no need to define∆1p, which remains free as before4. The
other control variables are the bounds on the input of new material per period for
each product, which are

IM̂+ p =Cm∗ p/
M̂

∏
j=m∗+1

E[α jp
0 ]. (63)

Given the fact that each value of∆ m+ p ≤ Cmp, it is the case that, as long as

Im+ p
n ≤ ∆ m+ p, there is never a situation where the capacity of machinem has to be

shared in the PS mode. This would always be the case if yield would be deterministic
and exactly equal to its average value for all periods. Sincein generalPr(αmp

n >
E[αmp

0 ])> 0, we cannot ensure that the available inventory for all products sitting in
front of a given machine is always such that its summation is below the machine’s
capacity. Thus, in the PS mode, there will be periods where sharing does indeed
occur and equation (44) would have to be used explicitly to establish stability. It
was said earlier that such dynamic equation is too cumbersome to be tackled. This
implies that it is not possible to derive stability just by imposing a bound on the
new material entering the system as it was done in Section 4. It is necessary to add
further features to the control policies in order to obtain an instance that ensures no
sharing in the PS mode and which can constitute an upper boundon the optimal
cost, while maintaining stability.

4 The same is true of the non negativity constraint.
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The natural extension of classΠ1, furthers the extension proposed in Section 4
by adding a new set of variables. These new variables impose bounds on the amount
of material allowed to enter production for each product at every machine on any
given period. This way, one imposes a maximum share that eachproduct can take
from each machine, even if there is available inventory to produce more. This class
of control policies, which will be calledΠ2, turns out to be the sensible thing to do
from the practitioners’ point of view as well5.

With this broader class of base stock policies in mind, the obvious instance which
ensures stability and constitutes an upper bound on the costof the optimal solution
is such that all the new variables are equal to∆ m+ p as well. That is, the additional
bound for machinem to produce productp is the nominal value of the associated
delta variable.

As was remarked at the end of Section 4, it may also be the case here that the op-
timal values for those bounds are such that sharing will eventually occur. It should
be clear that there is no intention of running these systems asP independent produc-
tion lines. Doing that would signify losing the flexibility allowed by the sharing of
resources. For instance, it was discussed in [6] that the best performance in the TS
mode was always better than the best performance in the PS mode. The greater the
flexibility the better potential use one can make of the available resources. However,
it may be the case that such flexibility may need a minimum amount of restraint to
ensurefairness for all the products. Again, the use of the bounds is only essential to
establish stability for infinite horizon systems.

Thus, the above discussion established the following theorem.

Theorem 12.Suppose the demand{d p
n ,−∞ < n < ∞} is ergodic as well as station-

ary. Additionally, suppose the random yield{αkmp
n ,−∞ < n < ∞} is ergodic and

stationary. If equation (45) holds, then the shortfall process is stable for multiple
product systems operated in the PS mode, using classΠ2.

We argued in terms of a flow line composed ofM̂ machines. When a re-entrant
system withK levels andM machines is operated in the PS mode it is transformed
into a flow line with no re-entrance, where it is possible to map each pair(km) into
a global ordering forM̂ = K ×M machines.

Once the stability condition has been established, all the other results discussed
in Section 3.1 are trivially derived. Theorem 4 and the associated corollary are the
exceptions. In order to characterize the regeneration times we need one additional
assumption, due to the presence of random yield. Additionally to condition (15),
the following condition has to hold so that the shortfall process returns to the origin
infinitely often, with probability one

Pr(αkmp = 1)> 0, k = 1, . . . ,K ;m = 1, . . . ,M ; p = 1, . . . ,P. (64)

If this does not hold, then the convergence of the shortfallsto zero can only occur
in infinite time, since it will be accomplished through a geometric series.

5 Clearly,Π0 ⊂ Π1 ⊂ Π2.
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5.2 Stability and Regeneration for Totally Shared Systems

The stability condition for the TS mode is the natural extension of the previous
condition for random yield in the PS mode.

Theorem 13.Suppose the demand{d p
n ,−∞ < n < ∞} is ergodic as well as station-

ary. Additionally, suppose the random yield{αkmp
n ,−∞ < n < ∞} is ergodic and

stationary. If

K

∑
k=1

P

∑
p=1

E[d p
0 ]

∏q,r=k,m
q,r=1,1 E[αqrp

0 ]
<Cm for m = 1, . . . ,M, (65)

then the shortfall process is stable for multiple product systems operated in the TS
mode, using classΠ2.

Proof: To establish this result we only need to produce an instance of classΠ2,
defined in the earlier subsection. The instantiated parameters ofΠ2 follow the same
reasoning just presented at the end of the previous subsection. That is, compute
the average work on each machine; define the machine with the highest average
load; determine the average share that each product at each level demands from
the bottleneck machine; and use that share to determine the values of∆ kmp and the
values for the bounds on the production for all the levels, stages, and products. Given
those, the system operated in the TS mode never shares capacity across products
and levels. Also, every share allocated is never below the average work imposed.
This implies that theP decoupled systems are all stable and the cost incurred by
such control variables constitutes an upper bound on the performance of the optimal
control variables.

Therefore, the optimal values of these same control variables will have to incur a
lower cost and have to necessarily maintain stability. Also, the optimal values of the
control variables may be such that sharing of capacity does indeed occur and the TS
mode really allows a flexible use of all the available capacity as intended.

QED

Taking into account the discussion on the regeneration times made at the end of
the previous subsection, all the results discussed for the TS mode in Section 3.2
carry through trivially for this setting.

5.2.1 Remarks on the ClassΠ2

The classΠ2 of modified base stock policies constitutes a similar qualitative step
from Π1 as this latter constituted fromΠ0. It may be the case that while optimizing
relative to the base stock levels and production bounds the optimal values are such
that no sharing really occurs either in the PS or the TS mode. This only means that
such is the optimal thing to do and may have no direct relationwith the fact that
policies fromΠ1 or Π0 may induce instability.
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According to the discussion of results in [5], the existenceof production bounds
other than the net capacity may be beneficial in terms of minimizing operational
costs, independent of the stability issue.

Modeling the production system by means of a periodic reviewinventory control
turns out to allow the definition of a broad class of policies that can incorporate
non idling features in a very natural way. The lack of this feature was one of the
drawbacks of other approaches, as queueing networks is one paradigmatic example.

Other modifications can be added to these policies, namely the need to impose
upper bounds on the amount of inventory sitting at each buffer, which could be of
advantage due to cost considerations and also to tackle the existence of machine fail-
ures. However, the modifications introduced toΠ0 to generateΠ2 are the minimal
needed to establish stability.

Note also that, when controlling systems with random yield,deciding to produce
the exact difference between a target value and the present value of inventory is
known to be non-optimal. Other classes of policies would have to be proposed in
order to eventually achieve better performances. Namely, inflating each current pro-
duction decision by the reciprocal of the expected random yield would be a good
candidate for a first approximation, although this is also known to be non-optimal.
This type of generalizations are outside the scope of the present work and are only
here referred to clarify that there is no substantial claim on the classΠ2 other than
it may allow lower costs thanΠ0, it ensures stability for the re-entrant systems ad-
dressed here, and even ensures stability for more complex re-entrant systems as
mentioned in Section 4.

6 Non Uniform Loads and Random Yield

Given the discussion of the previous two sections, the stability results for this
setting are

Theorem 14.Suppose the demand{d p
n ,−∞ < n < ∞} is ergodic as well as station-

ary. Additionally, suppose the random yield{αkmp
n ,−∞ < n < ∞} is ergodic and

stationary. If

P

∑
p=1

τkmp E[d p
0 ]

∏q,r=k,m
q,r=1,1 E[αqrp

0 ]
<Ckm for







m = 1, . . . ,M

k = 1, . . . ,K
(66)

then the shortfall process is stable for multiple product systems operated in the PS
mode, using classΠ2.

Theorem 15.Suppose the demand{d p
n ,−∞ < n < ∞} is ergodic as well as station-

ary. Additionally, suppose the random yield{αkmp
n ,−∞ < n < ∞} is ergodic and

stationary. If
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K

∑
k=1

P

∑
p=1

τkmp E[d p
0 ]

∏q,r=k,m
q,r=1,1 E[αqrp

0 ]
<Cm for m = 1, . . . ,M, (67)

then the shortfall process is stable for multiple product systems operated in the TS
mode, using classΠ2.

7 Conclusions

We have established the conditions for stability on multiple product re-entrant flow
lines for a wide range of settings. Our stability results cover systems with perfect
and random yield, systems with uniform or non uniform loads,and systems with
any type of processing flow. We proposed a class of control policies for which the
necessary stability conditions are also sufficient. This class of control policies is a
variant of the capacitated multi-echelon base stock policies, where each production
decision has an explicit upper bound. Our stability discussion places the emphasis
on determining stable policies rather than determining conditions under which a
given policy induces stability. One of the elegances of the stability discussion is
that it agrees with some of the insights produced by the experimental data of [6] and
works concurrently with them. Therefore, the classes of policies that ensure stability
provide an important contribution of this paper for future research.

Although some of the features of the richer policies are not particularly new
nor unexpected, their study is still relatively insignificant. That has to do with the
complexity of those policies in terms of their analytical evaluation. However, as
long as a general tool like IPA can be used, their study becomes an easier task to
undertake.

More than stressing the fact that the necessary stability conditions are also suffi-
cient, we believe that the reasoning behind the arguments that led to this property are
the most relevant contributions of the present work, that may span to other contexts,
queueing networks being a possible example.

The main insight provided by the stability discussion, is the fact that there is a
definite advantage in controlling production with idling policies. Even when back-
logs are high, there should be some restraint on the amounts of new material entering
the system and on the amounts of material allowed to move to the next operation.
Much of the research in the past has concentrated on non-idling policies for intuitive
reasons. This paper clearly challenges that intuition for non acyclic systems, multi-
ple products, non uniform loads, and random yield. The modifications proposed to
Π0 are the minimal needed to establish sufficiency of the necessary stability condi-
tion.

Future research will have to address the validation of the IPA approach for these
new classes of policies and investigate their potential in terms of performance.
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Appendix

This appendix includes some of the proofs on auxiliary results, skipped along
the paper that were omitted then to avoid loosing sight of theessentials and because
some of them are relatively trivial extensions of other results published.

Their inclusion here is intended at making this document themore self contained
possible.

Proof of Lemma 2
Define

Φ1 = Φ,
Φn(YYY ,DDD1, . . . ,DDDn) = Φn−1 (Φ(YYY ,DDD1),DDD2, . . . ,DDDn) ,

φ1 = φ ,
φn(YYY ,DDD1, . . . ,DDDn) = ||Φn(YYY ,DDD1, . . . ,DDDn)||= φn−1 (Φ(YYY ,DDD1),DDD2, . . . ,DDDn) ,

n = 2,3, . . ., with Φ andφ as in Lemma 1. Then

||YYY n||= φn(YYY 0,DDD0, . . . ,DDDn−1), a.s. (68)

Eachφn is increasing and continuous.
For integeri, defineiYYY 0 such that||iYYY 0||= 0 and

||iYYY n||= φn(0,DDDi−n, . . . ,DDDi−1), n ≥ 1. (69)

That is,||iYYY n|| is thenth-period total shortfall for a process starting at the origin
a timei−n. Therefore, if||YYY 0||= 0, then||iYYY n|| has the distribution of||YYY n||, due to
the stationarity of{DDDn}. Moreover, sinceφ is increasing,

||iYYY n+1|| = φn+1(0,DDDi−n−1, . . . ,DDDi−1) (70)

= φn(φ(0,DDDi−n−1),DDDi−n, . . . ,DDDi−1)

≥ φn(0,DDDi−n, . . . ,DDDi−1)

= ||iYYY n||.

This means that, for eachi, ||iYYY n|| increases almost surely to a limit asn → ∞.
Denote this limit by||ỸYY i||. Notice that

||i+1YYY n|| = φ (Φn−1(0,DDDi−n+1, . . . ,DDDi−1),DDDi)

= φ(iYYY n−1,DDDi). (71)

Lettingn increase and using the continuity ofφ , we conclude that
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||ỸYY i+1||= φ(ỸYY i,DDDi) (72)

for all i. For the last assertion in the lemma, notice (as above) that||0YYY n|| has the
same distribution as||YYY n|| if ||YYY 0|| = 0, so that if{||0YYY n||,n ≥ 0} increases almost
surely to||ỸYY 0||, then the distribution of{||YYY n||,n ≥ 0} increases to that of||ỸYY 0||.

QED

Proof of Theorem 1
The proof follows a reasoning similar to the one used in [13] to prove their The-

orem 1 by using here equations (10) and (12).
For levelK and stageM the total shortfall process{||YYY KM

n ||,n ≥ 0} follows a
Lindley recursion, (10). It follows from Loynes’ analysis of the single-server queue
that if E[||DDD0||] < CKM then ||ỸYY

KM
0 || < ∞, a.s., whereas ifE[||DDD0||] > CKM then

||ỸYY
KM
0 ||= ∞, a.s..

The proof proceeds by induction on the levels and stages from(K,M) down to

11, assuming that (13) holds. Suppose||ỸYY
km
0 || is finite, a.s.. To show that the same

must be true of||ỸYY
(km)−

0 ||, we argue that if||ỸYY
(km)−

0 || = ∞, then we would have

E[||DDD0||] ≥ C(km)− . Observe, first, that if||ỸYY
(km)−

n || = ∞, then so is||ỸYY
(km)−

n+1 ||. In

other words, the event{||ỸYY
(km)−

n || = ∞} is invariant under a shift in the time index
and must therefore have probability zero or one (by the ergodicity of demands).

Now we use the random variables||iYYY n|| defined in Lemma 2. As shown there,
||iYYY n+1|| ≥ ||iYYY n||, a.s., for alln andi. Moreover,||iYYY n+1|| has the same distribution
as||i+1YYY n+1||, soE[||i+1YYY n+1||−||iYYY n||]≥ 0; this holds, in particular, for the(km)−-
th component:

E[||i+1YYY (km)−

n+1 ||− ||iYYY (km)−

n ||]≥ 0. (73)

From (71) we know that||i+1YYY n+1|| = φ(iYYY n,DDDi). So,||i+1YYY (km)−

n+1 ||− ||iYYY (km)−

n ||
is the increase in the echelon-(km)− total shortfall due to demandDi, and therefore
cannot exceed||DDDi||. Thus,

||i+1YYY (km)−

n+1 ||− ||iYYY (km)−

n || ≤ ||DDDi||, for all n ≥ 0. (74)

If everyCkm is infinite, then the conclusion of the Theorem is immediate;suppose
then that someCkm is finite. ThenE[||DDDi||]< ∞, so a consequence of Fatou’s lemma
and (74) is

E[limsup
n→∞

||i+1YYY (km)−

n+1 ||− ||iYYY (km)−

n ||]≥ limsup
n→∞

E[||i+1YYY (km)−

n+1 ||− ||iYYY (km)−

n ||], (75)

and, by (73), this is non negative. Now if||ỸYY
(km)−

0 || is infinite while||ỸYY
km
0 || is finite,

then
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limsup
n→∞

{||i+1YYY (km)−

n+1 ||− ||iYYY (km)−

n ||} = limsup
n→∞

max
{

0, ||iYYY (km)−

n ||+ ||DDDi||−C(km)− ,

P

∑
p=1

(

iY kmp
n +d p

i − (zkmp − z(km)− p)
)+

}

−||iYYY (km)−

n ||

= ||DDDi||−C(km)− ,

implying E[||DDDi||]−C(km)− ≥ 0. Thus, if in factE[||DDDi||] < C(km)− , then||ỸYY
(km)−

0 ||
must be finite with probability one.

Conversely, suppose thatE[||DDD0||] > Ckm and let(k,m) be the earliest level and
stage for which this holds. From (12) we see that||YYY km

n+1|| ≥ ||Y km
n ||+ ||DDDn||−Ckm,

and similarly

||0YYY km
n+1|| ≥

n+1

∑
r=1

(||DDD−r||−Ckm). (76)

Hence, lettingn increase to∞,

||ỸYY
km
0 || ≥ limsup

n→∞

n+1

∑
r=1

(||DDD−r||−Ckm), (77)

and this is∞ whenE[||DDD0||]−Ckm > 0. Forqr such that levelq and stager occur
after levelk and stagem, notice that

YYY qr
n = YYY (qr)+

n − (zzz(qr)+ − zzzqr)+ IIIqr
n

= YYY ((qr)+)+
n − (zzz((qr)+)+ − zzz(qr)+)+ III(qr)+

n − (zzz(qr)+ − zzzqr)+ IIIqr
n

= YYY ((qr)+)+
n − (zzz((qr)+)+ − zzzqr)+ III(qr)+

n + IIIqr
n

...
...

...

= YYY km
n − (zzzkm − zzzqr)+

(km)−

∑
s,t=q,r

IIIst
n

for all n, which leads to

||YYY qr
n || = ||YYY km

n ||− (||zzzkm||− ||zzzqr||)+
(km)−

∑
s,t=q,r

||IIIst
n ||

≥ ||YYY km
n ||− (||zzzkm||− ||zzzqr||)

because||IIIst
n || ≥ 0 for all n, s, andt.

From this we can conclude that||ỸYY
qr
0 ||= ∞ if ||ỸYY

km
0 ||= ∞.
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QED

Proof of Theorem 2
The proof follows exactly the same reasoning as that of Theorem 2 in [13].
It suffices to show that for all||YYY 0||, the process{||YYY n||,n ≥ 0} eventually co-

incides with a copy started at zero when both are driven by thesame demands.
Notice that||YYY km

n || is always at least as large as the corresponding component of
a copy started at zero. Since||YYY KM

n || follows a Lindley recursion withe negative
drift, it hits zero at a finite timeNKM. Subsequently, it coincides with the(KM)−th
component of the process started at zero. Suppose now that for all n ≥ Nkm,
(||YYY km

n ||, . . . , ||YYY KM
n ||) coincides with the corresponding components started at zero.

We claim that for some almost-surely finiteN(km)− ≥ Nkm,

||YYY (km)−

N(km)−
||= max

{

0,
P

∑
p=1

(

Y kmp
n + d p

n − (zkmp − z(km)− p)
)+
}

; (78)

this will provide the coupling time for||YYY (km)− || since||YYY km|| has already coupled.
Suppose there is no suchN(km)− . Then

||YYY (km)−

n+1 ||= ||YYY (km)−

n ||+ ||DDDn||−C(km)− (79)

for all n ≥ Nkm, implying that liminfn ||YYY
(km)−

n || = −∞, sinceE[||DDD0||] < C(km)− .
This is impossible, because the shortfalls are always non negative, so (78) must
indeed occur in finite time. Subsequently,||YYY (km)− || coincides with the copy started
at zero. We conclude by induction that there is anN11, finite a.s., such that the entire
vector||YYY n|| couples with the initially zero process at timeN11. From this it follows
that||YYY n|| ⇒ ||ỸYY 0|| since||ỸYY 0|| is the limit in distribution when||YYY 0||= 0.

Uniqueness follows. If||ŶYY 0|| is stationary then||ŶYY n|| couples with||ỸYY n|| in finite
time, implying that they must have the same distribution.

QED

Proof of Theorem 4
If E[||DDD0||]<Ckm, thenP(||D0||<C11)> 0. Consequently, under the conditions

of the theorem there exists anε with ε < mink,m Ckm andε/P ≤ mink,m,p(zkmp −

z(km)− p) such thatδ ∆
=P(d1

0 ≤ ε/P, . . . ,dP
0 ≤ ε/P)> 0. SinceYYY has a finite stationary

distribution, there exists a constantb > 0 such that the setBb ⊆ RK×M defined by

Bb = {(y11, . . . ,yKM) : 0≤ ykmp ≤ b/P,k = 1, . . . ,K;m = 1, . . . ,M; p = 1, . . . ,P}
(80)

is visited infinitely often byYYY . We will show that there exists an integerr ≥ 0 and a
realq such that

Px(||YYY r||= 0)≥ q > 0 for all x ∈ Bb, (81)

from which it follows thatYYY visits 0 infinitely often.
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If d p
0 ≤ ε/P, then either||YYY KM

1 || = 0 or ||YYY KM
1 || ≤ ||YYY KM

0 || − (CKM − ε). Thus,
every time a demand for all products falls in[0,ε/P], the echelon-KM shortfall
is decreased by at leastCKM − ε, until it reaches zero. Starting inBb, it takes at
mostrKM = ⌈b/(CKM −ε)⌉ consecutive such demands to drive that shortfall to zero.
Thus, withqKM = δ rKM , we havePx(||YYY KM

rKM
||= 0)≥ qKM for all x ∈ Bb.

Suppose now that||YYY (km)+

0 ||, . . . , ||YYY KM
0 || = 0 for some(k,m) and thatYYY kmp

0 || ≤
b/P, for all p = 1, . . . ,P. With probability at leastδ n, shortfalls(km)+, . . . ,(K,M)

will remain at zero for the nextn transitions. Moreover, for anyn, if ||YYY (km)+

n || = 0

and||YYY km
n ||> 0, then the inventoryI(km)+ p

n available for use by stage(k,m) is greater
or equal to(z(km)+ p − zkmp), for all p = 1, . . . ,P, being it the case that the inequality
holds for at least one product, because of (14). Thus, if||d p

n || ≤ ε/P, stage(k,m)
cannot be constrained by inventory, and either||YYY km

n+1|| = 0 or ||YYY km
n+1|| ≤ ||YYY km

n ||−
(Ckm − ε). If we setrkm = ⌈b/(Ckm − ε)⌉ then, with probability at leastqkm = δ rkm .
||YYY km|| is driven to zero inrkm steps. We conclude that with probability at least
q = q11· · ·qKM, ||YYY r11+···+rKM ||= 0 for anyYYY 0 ∈ Bb.

QED


